Isolation, Structure Elucidation and Antimicrobial Evaluation of Natural Pentacyclic Triterpenoids and Phytochemical Investigation of Different Fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimicrobial Activity of Different Extracts
2.2. Characterization of the Isolated Compounds
2.3. HPLC-ESI-MS/MS Analysis of Different Extracts of Zizyphus spina-christi L. Stem Bark
2.4. In Silico Molecular Docking
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Preparation of the Plant Extract
3.4. Antimicrobial Activity
3.5. Separation and Purification of the Plant Metabolites from n-Butanol Fraction
3.6. LC-HR/ESI-MS Analysis of Different Extracts of Z. spina-christi L. Stem Bark
3.7. In Silico Molecular Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Adzu, B.; Amos, S.; Dzarma, S.; Wambebe, C.; Gamaniel, K. Effect of Zizyphus spina-christi Willd aqueous extract on the central nervous system in mice. J. Ethnopharmacol. 2002, 79, 13–16. [Google Scholar] [CrossRef]
- Shahat, A.A.; Pieters, L.; Apers, S.; Nazeif, N.M.; Abdel-Azim, N.S.; Berghe, D.V.; Vlietinck, A.J. Chemical and biological investigations on Zizyphus spina-christi L. Phyther. Res. 2001, 15, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Adzu, B.; Amos, S.; Wambebe, C.; Gamaniel, K. Antinociceptive activity of Zizyphus spina-christi root bark extract. Fitoterapia 2001, 72, 344–350. [Google Scholar] [CrossRef]
- Waggas, A.M.; Al-hasani, R.H. Effect of Sidr (Zizyphus spina-christi) fruit extract on the central nervous system in male albino rats. Am. J. Sustain. Agric. 2009, 4, 263–267. [Google Scholar]
- Adzu, B.; Haruna, A.K. Studies on the use of Zizyphus spina-christi against pain in rats and mice. Afr. J. Biotechnol. 2007, 6, 1317–1324. [Google Scholar] [CrossRef]
- Ads, E.N.; Rajendrasozhan, S.; Hassan, S.I.; Sharawy, S.M.S.; Humaidi, J.R. Phytochemical, antimicrobial and cytotoxic evaluation of Ziziphus spina-christi (L.) stem bark. Biomed. Res. 2017, 28, 6646–6653. [Google Scholar]
- Ads, E.N.; Rajendrasozhan, S.; Hassan, S.I.; Sharawy, S.M.S.; Humaidi, J.R. Phytochemical screening of different organic crude extracts from the stem bark of Ziziphus spina-christi (L.). Biomed. Res. 2018, 29, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Mahran, G.E.H.; Glombitza, K.; Mirhom, Y.; Hartmann, R.; Michei, C.G. Novel Saponins from Zizyphus spina-christi Growing in Egypt. Planta Med. 1995, 62, 163–165. [Google Scholar] [CrossRef]
- Bozicevic, A.; De Mieri, M.; Di Benedetto, A.; Gafner, F.; Hamburger, M. Dammarane-type saponins from leaves of Ziziphus spina-christi. Phytochemistry 2017, 138, 134–144. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; Camangi, F.; Bader, A.; Braca, A. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chem. 2009, 112, 858–862. [Google Scholar] [CrossRef]
- Ghafoor, A.O.; Qadir, H.K.; Fakhri, N.A. Analysis of phenolic compounds in extracts of Ziziphus spina-christi using RPHPLC method. J. Chem. Pharm. Res. 2012, 4, 3158–3163. [Google Scholar]
- Zhao, F.; Zhang, C.; Nan, W.; Lu, W. An integrated bioprocess for fermentative production of protopanaxadiol by recycling ethanol waste during down-stream extraction process. J. Clean. Prod. 2019, 234, 1–8. [Google Scholar] [CrossRef]
- Hak, C.K.; Young, D.M.; Kyung, R.K.; Eun, J.B.; Chong, S.L.; Kang, R.L. A new acylglycosyl sterol from Quisqualis Fructus. Arch. Pharm. Res. 2003, 26, 275–278. [Google Scholar] [CrossRef]
- Chandramu, C.; Manohar, R.D.; Krupadanam, D.G.L.; Dashavantha, R.V. Isolation, characterization and biological activity of betulinic acid and ursolic acid from Vitex negundo L. Phyther. Res. 2003, 17, 129–134. [Google Scholar] [CrossRef]
- Yamashita, K.; Lu, H.; Lu, J.; Chen, G.; Yokoyama, T.; Sagara, Y.; Manabe, M.; Kodama, H. Effect of three triterpenoids, lupeol, betulin, and betulinic acid on the stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils. Clin. Chim. Acta 2002, 325, 91–96. [Google Scholar] [CrossRef]
- De Oliveira, B.H.; Santos, C.A.M.; Espíndola, A.P.D.M. Determination of the triterpenoid, betulinic acid, in Doliocarpus schottianus by HPLC. Phytochem. Anal. 2002, 13, 95–98. [Google Scholar] [CrossRef]
- Schühly, W.; Heilmann, J.; Çalis, I.; Sticher, O. New triterpenoids with antibacterial activity from Zizyphus joazeiro. Planta Med. 1999, 65, 740–743. [Google Scholar] [CrossRef]
- O’Connell, M.M.; Bentley, M.D.; Campbell, C.S.; Cole, B.J.W. Betulin and lupeol in bark from four white-barked birches. Phytochemistry 1988, 27, 2175–2176. [Google Scholar] [CrossRef]
- Kim, D.S.H.L.; Chen, Z.; Van Nguyen, T.; Pezzuto, J.M.; Qiu, S.; Lu, Z.Z. A concise semi-synthetic approach to betulinic acid from betulin. Synth. Commun. 1997, 27, 1607–1612. [Google Scholar] [CrossRef]
- Myszka, H.; Grzywacz, D.; Zdrowowicz, M.; Spisz, P.; Butowska, K.; Rak, J.; Piosik, J.; Jaśkiewicz, M.; Kamysz, W.; Liberek, B. Design, synthesis and biological evaluation of betulin-3-yl 2-amino-2-deoxy-β-d-glycopyranosides. Bioorg. Chem. 2020, 96, 103568. [Google Scholar] [CrossRef]
- Cichewicz, R.H.; Kouzi, S.A. Chemistry, Biological Activity, and Chemotherapeutic Potential of Betulinic Acid for the Prevention and Treatment of Cancer and HIV Infection. Med. Res. Rev. 2004, 24, 90–114. [Google Scholar] [CrossRef] [PubMed]
- Yogeeswari, P.; Sriram, D. Betulinic Acid and Its Derivatives: A Review on their Biological Properties. Curr. Med. Chem. 2010, 12, 657–666. [Google Scholar] [CrossRef] [PubMed]
- El Deeb, K.S.; Al-Haidari, R.A.; Mossa, J.S.; Ateya, A.M. Phytochemical and pharmacological studies of Maytenus forsskaoliana. Saudi Pharm. J. 2003, 11, 184–191. [Google Scholar]
- Fulda, S.; Debatin, K.M. Sensitization for anticancer drug-induced apoptosis by betulinic acid. Neoplasia 2005, 7, 162–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, H.; Li, H.; Zhang, S.; Lu, H.; Chen, Q. A Review on Preparation of Betulinic Acid and Its Biological Activities. Molecules 2021, 26, 5583. [Google Scholar] [CrossRef]
- Haque, S.; Nawrot, D.A.; Alakurtti, S.; Ghemtio, L.; Yli-Kauhaluoma, J.; Tammela, P. Screening and characterisation of antimicrobial properties of semisynthetic betulin derivatives. PLoS ONE 2014, 9, e102696. [Google Scholar] [CrossRef] [Green Version]
- Aly, S.H.; Elissawy, A.; Eldahshan, O.; Elshanawany, M.; Singab, A.N. Phytochemical investigation using GC/MS analysis and evaluation of antimicrobial and cytotoxic activities of the lipoidal matter of leaves of Sophora secundiflora and Sophora tomentosa. Arch. Pharm. Sci. Ain. Shams Univ. 2020, 4, 207–214. [Google Scholar]
- Jamila, N.; Khairuddean, M.; Khan, S.N.; Khan, N.; Osman, H. Phytochemicals from the bark of Garcinia hombroniana and their biological activities. Rec. Nat. Prod 2014, 8, 312–316. [Google Scholar]
- Joshi, H.; Saxena, G.K.; Singh, V.; Arya, E.; Singh, R.P. Phytochemical investigation, isolation and characterization of betulin from bark of Betula utilis. J. Pharmacogn. Phytochem. 2013, 2, 145–151. [Google Scholar]
- Chrobak, E.; Jastrzębska, M.; Bębenek, E.; Kadela-Tomanek, M.; Marciniec, K.; Latocha, M.; Wrzalik, R.; Kusz, J.; Boryczka, S. Molecular Structure, In Vitro Anticancer Study and Molecular Docking of New Phosphate Derivatives of Betulin. Molecules 2021, 26, 737. [Google Scholar] [CrossRef]
- Tijjani, A.; Ndukwe, I.G.; Ayo, R.G. Isolation and characterization of lup-20 (29)-ene-3, 28-diol (Betulin) from the stem-bark of Adenium obesum (Apocynaceae). Trop. J. Pharm. Res. 2012, 11, 259–262. [Google Scholar] [CrossRef] [Green Version]
- Wani, M.S.; Gupta, R.C.; Pradhan, S.K.; Munshi, A.H. Estimation of four triterpenoids, betulin, lupeol, oleanolic acid, and betulinic acid, from bark, leaves, and roots of Betula utilis D. Don using a validated high-performance thin-layer chromatographic method. JPC-J. Planar Chromatogr. TLC 2018, 31, 220–229. [Google Scholar] [CrossRef]
- Tuenter, E.; Foubert, K.; Staerk, D.; Apers, S.; Pieters, L. Isolation and structure elucidation of cyclopeptide alkaloids from Ziziphus nummularia and Ziziphus spina-christi by HPLC-DAD-MS and HPLC-PDA-(HRMS)-SPE-NMR. Phytochemistry 2017, 138, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Nawwar, M.A.M.; Ishak, M.S.; Michael, H.N.; Buddrust, J. Leaf flavonoids of Ziziphus spina-christi. Phytochemistry 1984, 23, 2110–2111. [Google Scholar] [CrossRef]
- Zazouli, S.; Chigr, M.; Ramos, P.A.B.; Rosa, D.; Castro, M.M.; Jouaiti, A.; Duarte, M.F.; Santos, S.A.O.; Silvestre, A.J.D. Chemical Profile of Lipophilic Fractions of Different Parts of Zizyphus lotus L. by GC-MS and Evaluation of Their Antiproliferative and Antibacterial Activities. Molecules 2022, 27, 483. [Google Scholar] [CrossRef]
- Tschesche, R.; Wilhelm, H.; Fehlhaber, H. Alkaloids from Rhamnaceae. xIV. mauritin-A and mauritin-B, two peptide alkaloids from Zizyphus mauritiana Lam. Tetrahedron Lett. 1972, 13, 2609–2612. [Google Scholar] [CrossRef]
- Cadi, H.E.; Bouzidi, H.E.L.; Selama, G.; Cadi, A.E.; Ramdan, B.; Oulad, Y.; Majdoub, E.; Alibrando, F.; Dugo, P.; Mondello, L.; et al. Physico-Chemical and Phytochemical Characterization of Moroccan Wild Jujube “Zizyphus lotus (L.)” Fruit Crude Extract and Fractions. Molecules 2020, 25, 5237. [Google Scholar] [CrossRef]
- Benslama, A.; Harrar, A.; Gul, F.; Demirtas, I. Phenolic Compounds, Antioxidant and Antibacterial Activities of Zizyphus lotus L. Leaves Extracts. Nat. Prod. J. 2017, 7, 316–322. [Google Scholar] [CrossRef]
- Iwashina, T.; Saito, Y.; Peng, C.; Yokota, M.; Kokubugata, G. Foliar Flavonoids from Two Begonia Species in Japan Tsukasa. Bull. Natl. Museum Nat. Sci. Ser. B 2008, 34, 175–181. [Google Scholar]
- Ayoub, I.M.; Korinek, M.; El-shazly, M.; Wetterauer, B.; El-beshbishy, H.A. Anti-Allergic, Anti-Inflammatory and Anti-Hyperglycemic Activity of Chasmanthe aethiopica Leaf Extract and Its Profiling Using LC/MS and GLC/MS. Plants 2021, 10, 1118. [Google Scholar] [CrossRef]
- Álvarez-Fernández, M.A.; Cerezo, A.B.; Canete-Rodriguez, A.M.; Troncoso, A.M.; García-Parrilla, M.C. Composition of nonanthocyanin polyphenols in alcoholic-fermented strawberry products using LC–MS (QTRAP), high-resolution MS (UHPLC-Orbitrap-MS), LC-DAD, and antioxidant activity. J. Agric. Food Chem. 2015, 63, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Švehlíková, V.; Bennett, R.N.; Mellon, F.A.; Needs, P.W.; Piacente, S.; Kroon, P.A.; Bao, Y. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry 2004, 65, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Ganapaty, S.; Thomas, P.S.; Ramana, K.V.; Karagianis, G.; Waterman, P.G. Dammarane and ceanothane triterpenes from Zizyphus glabrata. Zeitschrift Fur Naturforsch.-Sect. B J. Chem. Sci. 2006, 61, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Ck, S.; Ps, U. GC-MS and HR-LCMS fingerprinting of various parts of Oroxylum indicum (L.) Vent. A comparative phytochemical study based on plant part substitution approach. J. Pharmacogn. Phytochem. 2020, 9, 1817–1824. [Google Scholar]
- Mukhtar, H.M.; Ansari, S.H.; Ali, M.; Naved, T. New Compounds from Zizyphus vulgaris. Pharm. Biol. 2004, 42, 508–511. [Google Scholar] [CrossRef]
- Kundu, A.B.; Barik, B.R.; Mondal, D.N.; Dey, A.K.; Banerji, A. Zizyberanalic acid, A pentacyclic triterpenoid of Zizyphus jujuba. Phytochemistry 1989, 28, 3155–3158. [Google Scholar] [CrossRef]
- Abdel Maboud, T. Cytotoxic Potentials and Phytoconstituents Profiling of Blepharis Edulis (Forssk.) Pers. Using Uhplc/Q-Tof-Ms-Ms. Al-Azhar J. Pharm. Sci. 2021, 63, 37–56. [Google Scholar] [CrossRef]
- Ayatollahi, A.M.; Ghanadian, M.; Afsharypour, S.; Abdella, O.M.; Mirzai, M.; Askari, G. Pentacyclic triterpenes in Euphorbia microsciadia with their T-cell proliferation activity. Iran. J. Pharm. Res. 2011, 10, 287–294. [Google Scholar] [CrossRef]
- Abuzaid, H.; Amin, E.; Moawad, A.; Abdelmohsen, U.R.; Hetta, M.; Mohammed, R. Liquid Chromatography High-Resolution Mass Spectrometry Analysis, Phytochemical and Biological Study of Two Aizoaceae Plants: A New Kaempferol Derivative from Trianthema portulacastrum L. Pharmacogn. Res. 2020, 12, 212–218. [Google Scholar] [CrossRef]
- Hitotsuyanagi, Y.; Fujiki, H.; Suganuma, M.; Aimi, N.; Sakai, S.; Endo, Y.; Shudo, K.; Sugimura, T. Isolation and structure elucidation of teleocidin B-1, B-2, B-3, and B-4. Chem. Pharm. Bull. 1948, 32, 4233–4236. [Google Scholar] [CrossRef] [Green Version]
- Ha, D.T.; Loan, L.T.; Hung, T.M.; Han, L.V.N.; Khoi, N.M.; Dung, L.V.; Min, B.S.; Nguyen, N.P.D. An improved HPLC-DAD method for quantitative comparisons of triterpenes in Ganoderma lucidum and its five related species originating from Vietnam. Molecules 2015, 20, 1059–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Falev, D.I. Determination of triterpenoids from birch bark by liquid chromatography-tandem mass spectrometry. J. Anal. Chem. 2014, 69, 1264–1269. [Google Scholar] [CrossRef]
- Stobiecki, M.; Skirycz, A.; Kerhoas, L.; Kachlicki, P.; Muth, D.; Einhorn, J.; Mueller-Roeber, B. Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS. Metabolomics 2006, 2, 197–219. [Google Scholar] [CrossRef]
- Lee, S.M.; Min, B.S.; Lee, C.; Kim, K.; Kho, Y.H. Cytotoxic Triterpenoids from the Fruits of Zizyphus jujuba. Planta Med. 2003, 69, 1051–1054. [Google Scholar]
- Liu, M.-H.; Zhang, Q.; Zhang, Y.-H.; Lu, X.-Y.; Fu, W.-M.; He, J.-Y. Chemical Analysis of Dietary Constituents in Rosa roxburghii and Rosa sterilis Fruits. Mol. Artic. 2016, 21, 1204. [Google Scholar] [CrossRef]
- El Sayed, A.M.; Basam, S.M.; El-Naggar, E.M.B.A.; Marzouk, H.S.; El-Hawary, S. LC–MS/MS and GC–MS profiling as well as the antimicrobial effect of leaves of selected Yucca species introduced to Egypt. Sci. Rep. 2020, 10, 17778. [Google Scholar] [CrossRef]
- Brito, A.; Ramirez, J.E.; Areche, C.; Sepúlveda, B.; Simirgiotis, M.J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef]
- Patil, S.H.; Kurlapkar, D.D.; Gaikwad, D.K. Phytochemical Characterization of Natural Dye Extracted from Senna siamea Pods. Open Access Libr. J. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Oyedemi, B.O.M.; Oyedemi, S.O.; Swain, S.S.; Prieto, J.M.; Stapleton, P. Bactericidal and antibiotic-modulation activities of methanol crude extracts of Ligustrum lucidum and Lobelia inflata against MRSA phenotypes: Molecular docking studies of some isolated compounds from both plants against DNA gyrase A. S. Afr. J. Bot. 2020, 130, 54–63. [Google Scholar] [CrossRef]
- Rajkumari, J.; Borkotoky, S.; Murali, A.; Suchiang, K.; Mohanty, S.K.; Busi, S. Attenuation of quorum sensing controlled virulence factors and biofilm formation in Pseudomonas aeruginosa by pentacyclic triterpenes, betulin and betulinic acid. Microb. Pathog. 2018, 118, 48–60. [Google Scholar] [CrossRef]
- Hargrove, T.Y.; Wawrzak, Z.; Lamb, D.C.; Guengerich, F.P.; Lepesheva, G.I. Structure-functional characterization of cytochrome P450 sterol 14α-demethylase (CYP51B) from Aspergillus fumigatus and molecular basis for the development of antifungal drugs. J. Biol. Chem. 2015, 290, 23916–23934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sogabe, S.; Masubuchi, M.; Sakata, K.; Fukami, T.A.; Morikami, K.; Shiratori, Y.; Ebiike, H.; Kawasaki, K.; Aoki, Y.; Shimma, N. Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors. Chem. Biol. 2002, 9, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Achari, A.; Somers, D.O.; Champness, J.N.; Bryant, P.K.; Rosemond, J.; Stammers, D.K. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 1997, 4, 490–497. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, N.; Li, F.; Jia, X.; Peng, H.; Liu, Y.; Xiao, Y. Complex structure of Pseudomonas aeruginosa arginine rhamnosyltransferase EarP with its acceptor elongation factor P. J. Bacteriol. 2019, 201, e00128-19. [Google Scholar] [CrossRef] [Green Version]
- Hampele, I.C.; D’Arcy, A.; Dale, G.E.; Kostrewa, D.; Nielsen, J.; Oefner, C.; Page, M.G.P.; Schönfeld, H.-J.; Stüber, D.; Then, R.L. Structure and function of the dihydropteroate synthase from Staphylococcus aureus. J. Mol. Biol. 1997, 268, 21–30. [Google Scholar] [CrossRef]
- Levy, C.; Minnis, D.; Derrick, J.P. Dihydropteroate synthase from Streptococcus pneumoniae: Structure, ligand recognition and mechanism of sulfonamide resistance. Biochem. J. 2008, 412, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [Google Scholar] [CrossRef]
- El Hassab, M.A.; Fares, M.; Amin, M.K.; Al-Rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Alkahtani, H.M.; Eldehna, W.M. Toward the Identification of Potential α-Ketoamide Covalent Inhibitors for SARS-CoV-2 Main Protease: Fragment-Based Drug Design and MM-PBSA Calculations. Processes 2021, 9, 1004. [Google Scholar] [CrossRef]
Tested Microorganisms | Chloroform | n-Butanol | Diethyl Ether | Positive Control |
---|---|---|---|---|
Fungi | Zone of Inhibition | Amphotericin B | ||
Aspergillus fumigatus (RCMB 02568) | NA | 18.6 ± 0.58 | NA | 23.7 ± 1.20 |
Candida albicans (RCMB 05036) | NA | 20.6 ± 1.20 | NA | 25.4 ± 0.58 |
Gram-positive Bacteria | Ampicillin | |||
Streptococcus pneumoniae (RCMB 010010) | 13.2 ± 0.63 | 18.2 ± 0.58 | NA | 23.8 ± 1.20 |
Staphylococcus aureus (RCMB 010028) | 16.4 ± 1.20 | 20.1 ± 0.63 | NA | 27.4 ± 0.72 |
Gram-negative Bacteria | Ciprofloxacin | |||
Pseudomonas aeruginosa (RCMB 010043) | 15.3 ± 1.50 | 16.2 ± 0.58 | NA | 20.6 ± 1.20 |
Escherichia coli (RCMB 010052) | 15.9 ± 0.63 | 18.4 ± 0.72 | NA | 23.4 ± 0.63 |
Physical Properties | Compound 16 | Compound 23 |
---|---|---|
Color | White | Yellowish white needles (in CHCl3-MeOH) |
State | Crystalline Solid | Crystalline Solid |
Melting Point | 296–297 °C | 244–246 °C |
Solubility | Soluble in chloroform, ethyl acetate and isobutanol | Soluble in chloroform and ethyl acetate and isobutanol |
Rf Value | 0.531 in ethyl acetate-n-hexane (1:2) & 0.92 in toluene: ethyl acetate: formic acid (T:E:F, 7:5:1; v/v/v) | 0.47 in ethyl acetate-n-hexane (1:2) & 0.81 in toluene: ethyl acetate: formic acid (T:E:F, 7:5:1; v/v/v) |
No. | tR (min.) | Compound Name | Molecular Formula | m/z | Total Extract | Diethyl Ether | n-Butanol | References |
---|---|---|---|---|---|---|---|---|
1 | 6.753 | Gallic acid | C7H6O5 | 168.0130 | + | + | - | [38] |
2 | 12.493 | Genistic acid | C7H6O4 | 154.0332 | + | + | - | [38] |
3 | 17.543 | p-hydroxybenzoic acid | C7H6O3 | 136.0232 | + | + | - | [38] |
4 | 32.314 | Quercetin 3,7,3′-trimethyl ether | C18H16O7 | 345.1512 | + | - | - | [39] |
5 | 40.872 | Hydroxy-oleic acid | C18H34O3 | 298.0363 | - | + | - | [40] |
6 | 51.079 | Mauritine A | C32H41N5O5 | 576.3172 | + | - | - | [36] |
7 | 53.425 | Eriodictyol-7-O-glucoside | C21H22O11 | 450.2016 | + | - | + | [41] |
8 | 65.849 | Apigenin-7-O-glucoside | C21H20O10 | 432.1981 | - | - | + | [42] |
9 | 74.425 | Granulosic acid | C30H46O6 | 504.3203 | + | - | - | [43] |
10 | 84.917 | Nummularine-U | C26H39N4O4 | 470.3367 | + | - | - | [33] |
11 | 87.875 | 23-methyl-5Z,9Z-tetracosadienoic acid | C25H46O2 | 378.3493 | - | + | - | [44] |
12 | 90.720 | Zizyphulanostane-21-oica acid | C30H50O3 | 458.3386 | + | - | - | [45] |
13 | 91.314 | Ceanothic acid | C30H46O5 | 487.3407 | + | + | - | [46] |
14 | 92.362 | Zizyberanalic acid | C30H46O4 | 470.3292 | + | + | - | [46] |
15 | 95.412 | Okanin-4′-O-glucoside | C21H22O11 | 451.3191 | + | - | - | [47] |
16 | 97.288 | Betulinic acid | C30H48O3 | 457.3305 | + | - | + | [48] |
17 | 100.690 | Quercitrin | C28H48O4 | 448.3563 | + | - | - | [34] |
18 | 100.826 | Stigmast-7-en-3-ol | C29H50 O | 414.3121 | + | + | - | [49] |
19 | 102.449 | Isoquercetin | C21H20O12 | 464.3511 | + | - | - | [10] |
20 | 102.533 | Lupeol acetate | C32H52O2 | 468.3028 | - | + | - | [40] |
21 | 109.603 | Teleocidin B-1 | C28H41N3O2 | 451.3204 | + | - | - | [50] |
22 | 111.252 | Lucidadiol | C30H48O3 | 456.3594 | + | - | + | [51] |
23 | 113.057 | Betulin | C30H50O2 | 442.3799 | + | - | + | [52] |
24 | 116.061 | Sinapoyl malate | C15H16O9 | 340.2317 | + | + | - | [53] |
25 | 117.696 | Trihydroxy-oleic acid | C18H34O5 | 330.2762 | + | + | + | [50] |
26 | 122.270 | Zizyberenalic acid | C30H44O3 | 452.3086 | + | - | - | [54] |
27 | 123.091 | n-Hexadecanoic acid | C16H32O2 | 256.2388 | + | - | - | [55] |
28 | 125.489 | Hexadecanoic acid, ethyl ester | C18H36O2 | 284.2933 | + | + | + | [7] |
29 | 126.36 | Kaempferol-3-O-α-l-arabinoside | C20H18O10 | 418.3809 | + | + | + | [56] |
30 | 128.231 | Luteolin 7,3′-diglucoside | C27H30O16 | 610.1543 | + | - | + | [57] |
31 | 130.029 | Docosanedioic acid | C22H42O4 | 370.3070 | + | - | - | [58] |
32 | 133.177 | Tetracosane | C24H50 | 338.3404 | + | + | + | [55] |
33 | 134.497 | Octadecanoic acid, ethyl ester | C20H40O2 | 312.3246 | + | + | + | [7] |
34 | 139.627 | Isoorientin 3′,6′′-di-O-glucoside | C32H38O21 | 758.1921 | + | - | + | [10] |
35 | 150.535 | Quercetin 3-O-robinobioside | C27H30O16 | 610.1823 | + | - | - | [10] |
36 | 154.874 | Rutin | C27H30O16 | 610.1823 | + | + | + | [10] |
Targets Proteins | Compound | Docking Scores |
---|---|---|
A. Fumigatus (4UYM) | Betulin | −11.7 |
Betulinic acid | −12.3 | |
C. Albicans (1IYL) | Betulin | −13.5 |
Betulinic acid | −12.1 | |
E. coli (1AJ2) | Betulin | −11.5 |
Betulinic acid | −9.2 | |
P. aeruginosa (6J7L) | Betulin | −7.6 |
Betulinic acid | −7.7 | |
S. aureus (1AD4) | Betulin | −7.4 |
Betulinic acid | −8.8 | |
S. pneumonia (2VEG) | Betulin | −10.8 |
Betulinic acid | −9.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ads, E.N.; Hassan, S.I.; Rajendrasozhan, S.; Hetta, M.H.; Aly, S.H.; Ali, M.A. Isolation, Structure Elucidation and Antimicrobial Evaluation of Natural Pentacyclic Triterpenoids and Phytochemical Investigation of Different Fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS Analysis. Molecules 2022, 27, 1805. https://doi.org/10.3390/molecules27061805
Ads EN, Hassan SI, Rajendrasozhan S, Hetta MH, Aly SH, Ali MA. Isolation, Structure Elucidation and Antimicrobial Evaluation of Natural Pentacyclic Triterpenoids and Phytochemical Investigation of Different Fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS Analysis. Molecules. 2022; 27(6):1805. https://doi.org/10.3390/molecules27061805
Chicago/Turabian StyleAds, Essam N., Syed I. Hassan, Saravanan Rajendrasozhan, Mona H. Hetta, Shaza H. Aly, and Mohamed A. Ali. 2022. "Isolation, Structure Elucidation and Antimicrobial Evaluation of Natural Pentacyclic Triterpenoids and Phytochemical Investigation of Different Fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS Analysis" Molecules 27, no. 6: 1805. https://doi.org/10.3390/molecules27061805
APA StyleAds, E. N., Hassan, S. I., Rajendrasozhan, S., Hetta, M. H., Aly, S. H., & Ali, M. A. (2022). Isolation, Structure Elucidation and Antimicrobial Evaluation of Natural Pentacyclic Triterpenoids and Phytochemical Investigation of Different Fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS Analysis. Molecules, 27(6), 1805. https://doi.org/10.3390/molecules27061805