The Influence of Electrolyte Type on Kinetics of Redox Processes in the Polymer Films of Ni(II) Salen-Type Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR ATR of Polymer Films
2.2. EQCM Research
2.2.1. Voltammetric Curves
2.2.2. Gravimetric Curves
2.3. Cyclic Voltammetry
2.3.1. Electroactive Surface Coverage
2.3.2. Kinetic Analysis
3. Materials and Methods
3.1. Materials
3.2. Instruments
3.3. Electrode Modification Procedure
3.4. Procedures for Investigating the Modified Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Teixeira, M.F.S.; Dadamos, T.R.L. An electrochemical sensor for dipyrone determination based on nickel-salen film modified electrode. Procedia Chem. 2009, 1, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Miomandre, F.; Audebert, P.; Maumy, M.; Uhl, L. Electrochemical behaviour of iron(III) salen and poly(iron–salen). Application to the electrocatalytic reduction of hydrogen peroxide and oxygen. J. Electroanal. Chem. 2001, 516, 66–72. [Google Scholar] [CrossRef]
- Vilas-Boas, M.; Pereira, E.M.; Freire, C.; Hillman, A.R. Oxidation of ferrocene derivatives at a poly[Ni(saltMe)] modified electrode. J. Electroanal. Chem. 2002, 538–539, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.S.; Dadamos, T.R.L.; Teixeira, M.F.S. Development of an electrochemical sensor for determination of dissolved oxygen by nickel–salen polymeric film modified electrode. Sens. Actuators B 2012, 175, 111–117. [Google Scholar] [CrossRef]
- Tedim, J.; Carneiro, A.; Bessada, R.; Patricio, S.; Magalhães, A.L.; Freire, C.; Gurman, S.J.; Hillman, A.R. Correlation structure and ion recognition properties of [Ni(salen)]-based polymer films. J. Electroanal. Chem. 2007, 610, 46–56. [Google Scholar] [CrossRef]
- Bott-Neto, J.L.; Martins, T.S.; Machado, S.A.S.; Ticianelli, E.A. Electrocatalytic Oxidation of Methanol, Ethanol, and Glycerol on Ni(OH)2 Nanoparticles Encapsulated with Poly[Ni(salen)] Film. ACS Appl. Mater. Interfaces 2019, 11, 30810–30818. [Google Scholar] [CrossRef]
- Martins, T.S.; Bott-Neto, J.L.; Raymundo-Pereira, P.A.; Ticianelli, E.A.; Machado, S.A.S. An electrochemical furosemide sensor based on pencil graphite surface modified with polymer film Ni-salen and Ni (OH) 2/C nanoparticles. Sens. Actuators B Chem. 2018, 276, 378–387. [Google Scholar] [CrossRef]
- Dahm, C.E.; Peters, D.G. Catalytic reduction of α, ω-dihaloalkanes with nickel (I) salen as a homogeneous-phase and polymer-bound mediator. J. Electroanal. Chem. 1996, 406, 119–129. [Google Scholar] [CrossRef]
- Łępicka, K.; Majewska, M.; Nowakowski, R.; Kutner, W.; Pieta, P. High electrochemical stability of meso-Ni-salen based conducting polymer manifested by potential-driven reversible changes in viscoelastic and nanomechanical properties. Electrochim. Acta 2019, 297, 94–100. [Google Scholar] [CrossRef]
- Kuznetsov, N.; Yang, P.; Gorislov, G.; Zhukov, Y.; Bocharov, V.; Malev, V.; Levin, O. Electrochemical transformations of polymers formed from nickel (II) complexes with salen-type ligands in aqueous alkaline electrolytes. Electrochim. Acta 2018, 271, 190–202. [Google Scholar] [CrossRef]
- Timonov, A.; Logvinov, S.; Shkolnik, N.; Kogan, S. Polymer-Modified Electrode for Energy Storage Devices and Electrochemical Supercapacitor Based on Said Polymer-Modified Electrode. U.S. Patent 6,795,293, 21 September 2004. [Google Scholar]
- Konev, A.S.; Kayumov, M.Y.; Karushev, M.P.; Novoselova, Y.V.; Lukyanov, D.A.; Alekseeva, E.V.; Levin, O.V. Polymeric Metal Salen-Type Complexes as Catalysts for Photoelectrocatalytic Hydrogen Peroxide Production. ChemElectroChem 2018, 5, 3138–3142. [Google Scholar] [CrossRef]
- Barwiolek, M.; Szłyk, E.; Surdykowski, A.; Wojtczak, A. New nickel(II) and copper(II) complexes with unsymmetrical Schiff bases derived from (1R,2R)(−)cyclohexanediamine and the application of Cu(II) complexes for hybrid thin layers deposition. Dalton Trans. 2013, 42, 11476–11487. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-B.; Chu, Y.; He, J.; Xie, J.; Liu, J.; Wang, N.; Tang, J. Photocatalytic Hydrogen Production Based on a Serial Metal-Salen Complexes and the Reaction Mechanism. ChemCatChem 2019, 11, 6324–6331. [Google Scholar] [CrossRef]
- Martin, E.T.; . Goodson, A.L.; . McGuire, C.M.; Rose, J.A.; Ourari, A.; Mubarak, M.S.; Peters, D.G. Catalytic reduction of 1-bromodecane and 1-iododecane by electrogenerated, structurally modified nickel(I) salen. J. Electroanal. Chem. 2018, 815, 225–230. [Google Scholar] [CrossRef]
- Goldsby, K.A.; Blaho, J.K.; Hoferkamp, L.A. Oxidation of nickel(II) bis(salicylaldimine) complexes: Solvent control of the ultimate redox site. Polyhedron 1989, 8, 113. [Google Scholar] [CrossRef]
- Hoferkamp, L.A.; Goldsby, K.A. Surface-modified electrodes based on nickel(II) and copper(II) bis(salicylaldimine) complexes. Chem. Mater. 1989, 1, 348. [Google Scholar] [CrossRef]
- Audebert, P.; Capdevielle, P.; Maumy, M. Description of new redox and conducting polymers based on Copper containing units: Emphasis on the role of Copper in the electron transfer mechanism. Synth. Met. 1991, 41, 3049–3052. [Google Scholar] [CrossRef]
- Audebert, P.; Hapiot, P.; Capdevielle, P.; Maumy, M. Electrochemical polymerization of several salen-type complexes. Kinetic studies in the microsecond time range. J. Electroanal. Chem. 1992, 338, 269. [Google Scholar] [CrossRef]
- Capdevielle, P.; Aubert, P.-H.; Audebert, P.; Roche, M. Synthesis anf electrochemical properties of salens and poly(salens) where the nitrogens are bridged by phenanthroline structure. New J. Chem. 1997, 21, 621–626. [Google Scholar]
- Aubert, P.-H.; Audebert, P.; Capdevielle, P.; Maumy, M.; Roche, M. Electrochemical oxidative polymerization of binuclear ‘anil’ and ‘saleN′-type complexes and tetrahydro derivatives. New J. Chem. 1999, 23, 297–301. [Google Scholar] [CrossRef]
- Dahm, C.E.; Peters, D.G.; Simonet, J. Electrochemical and spectroscopic characterization of anodically formed nickel salen polymer films on glassy carbon, platinum, and optically transparent tin oxide electrodes in acetonitrile containing tetramethylammonium tetrafluoroborate. J. Electroanal. Chem. 1996, 410, 163–171. [Google Scholar] [CrossRef]
- Vilas-Boas, M.; Freire, C.; de Castro, B.; Hillman, A.R. Electrochemical Characterization of a Novel Salen-Type Modified Electrode. J. Phys. Chem. B 1998, 102, 8533–8540. [Google Scholar] [CrossRef] [Green Version]
- Vilas-Boas, M.; Freire, C.; de Castro, B.; Christensen, P.A.; Hillman, A.R. New Insights into the Structure and Properties of Electroactive Polymer Films Derived from [Ni(salen)]. Inorg. Chem. 1997, 36, 4919–4929. [Google Scholar] [CrossRef]
- Vilas-Boas, M.; Santos, I.C.; Henderson, M.J.; Freire, C.; Hillman, A.R.; Vieil, E. Electrochemical Behavior of a New Precursor for the Design of Poly[Ni(salen)]-Based Modified Electrodes. Langmuir 2003, 19, 7460–7468. [Google Scholar] [CrossRef] [Green Version]
- Vilas-Boas, M.; Henderson, M.J.; Freire, C.; Hillman, A.R.; Vieil, E. A Combined Electrochemical Quartz-Crystal Microbalance Probe Beam DeOection (EQCM-PBD) Study of Solvent and Ion Transfers at a Poly[Ni(saltMe)]-Modified Electrode During Redox Switching. Chem. Eur. J. 2000, 6, 1160–1167. [Google Scholar] [CrossRef]
- Tedim, J.; Patrício, S.; Fonseca, J.; Magalhães, A.L.; Moura, C.; Hillman, A.R.; Freire, C. Modulating spectroelectrochemical properties of [Ni(salen)] polymeric films at molecular level. Synth. Met. 2011, 161, 680–691. [Google Scholar] [CrossRef]
- Levin, O.V.; Karushev, M.P.; Timonov, A.M.; Alekseeva, E.V.; Zhang, S.; Malev, V.V. Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases. Electrochim. Acta 2013, 109, 153–161. [Google Scholar] [CrossRef]
- Rodyagina, T.Y.; GamaN′kov, P.V.; Dmitrieva, E.A.; Chepurnaya, I.A.; Vasil’eva, S.V.; Timonov, A.M. Structuring Redox Polymers Poly[M(Schiff)] (M = Ni, Pd; Schiff = Schiff Bases) on a Molecular Level: Methods and Results of an Investigation. Russ. J. Electrochem. 2005, 41, 1101–1110. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Arai, N.; Dunn, T.J.; Yajima, T.; Tani, F.; Ramogida, C.F.; Storr, T. Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(II)-(disalicylidene)diamine complexes. Dalton Trans. 2011, 40, 2469. [Google Scholar] [CrossRef]
- Clarke, R.M.; Herasymchuk, K.; Storr, T. Electronic Structure Elucidation in Oxidized Metal Salen Complexes. Coord. Chem. Rev. 2017, 352, 67–82. [Google Scholar] [CrossRef]
- Rotthaus, O.; Thomas, F.; Jarjayes, O.; Philouze, C.; Saint-Aman, E.; Pierre, J.-L. Valence Tautomerism in Octahedral and Square-Planar Phenoxyl–Nickel(II) Complexes: Are Imino Nitrogen Atoms Good Friends. Chem. Eur. J. 2006, 12, 6953–6962. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; de Castro, B. Spectroscopic characterisation of electrogenerated nickel(III) species. Complexes with N2O2 Schiff-base ligands derived from salicylaldehyde. J. Chem. Soc. Dalton Trans. 1998, 9, 1491–1498. [Google Scholar] [CrossRef]
- Özalp-Yaman, S.; Kasumov, V.T.; Önal, A.M. Electrochemistry of nickel(II) complexes with N,N′-bis(3,5-di-tert-butylsalicylidene)polymethylenediamines. Polyhedron 2005, 24, 1821–1828. [Google Scholar] [CrossRef]
- Tomczyk, D.; Nowak, L.; Bukowski, W.; Bester, K.; Urbaniak, P.; Andrijewski, G.; Olejniczak, B. Reductive and oxidative electrochemical study and spectroscopic properties of nickel(II) complexes with N2O2 Schiff bases derived from (±)-trans-N,N′-bis(salicylidene)-1,2-cyclohexanediamine. Electrochim. Acta 2014, 121, 64–77. [Google Scholar] [CrossRef]
- Tomczyk, D.; Bukowski, W.; Bester, K.; Urbaniak, P.; Seliger, P.; Andrijewski, G.; Skrzypek, S. The mechanism of electropolymerization of nickel(II) salen type complexes. New J. Chem. 2017, 41, 2112–2123. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, D.; Bukowski, W.; Bester, K. Redox processes in the solution of Ni(II) complex with salen type ligand and in the polymer films. Electrochim. Acta 2018, 267, 181–194. [Google Scholar] [CrossRef]
- Tomczyk, D.; Bukowski, W.; Bester, K. Kinetics of Redox Processes in the Polymer Films of Ni(II) Salen Type Complexes. J. Electrochem. Soc. 2019, 166, H194–H204. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 71–93. [Google Scholar]
- Mohan, J. Organic Spectroscopy: Principles and Applications, 2nd ed.; CRC Press: Harrow, UK; Alpha Science International Ltd.: Pangbourne, UK, 2004; pp. 81–82. [Google Scholar]
- Vilas-Boas, M.; Freire, C.; de Castro, B.; Christensen, P.A.; Hillman, A.R. Spectroelectrochemical Characterisation of poly[Ni(saltMe)]-Modified Electrodes. Chem. Eur. J. 2001, 7, 139–150. [Google Scholar] [CrossRef]
- Sauerbrey, G. Effect of Electrode Surface Modification by Sulfide on QCM Based Protein Biosensor. Z. Phys. 1959, 155, 206. [Google Scholar] [CrossRef]
- Ramirez, S.; Hillman, A.R. Electrochemical quartz crystal microbalance studies of poly(ortho-toluidine) films exposed to aqueous perchloric acid solutions. J. Electrochem. Soc. 1998, 145, 2640–2647. [Google Scholar] [CrossRef]
- Vorotyntsev, M.A.; Vieil, E.; Heinze, J. Charging process in polypyrrole films: Effect of ion association. J. Electroanal. Chem. 1998, 450, 121–141. [Google Scholar] [CrossRef]
- Skompska, M.; Vorotyntsev, M.A.; Goux, J.; Moise, C.; Heinz, O.; Cohen, Y.S.; Levi, M.D.; Gofer, Y.; Salitra, G.; Aurbach, D. Mechanism of redox transformation of titanocene dichloride centers immobilized inside a polypyrrole matrix—EQCM and XPS evidences. Electrochim. Acta 2005, 50, 1635–1641. [Google Scholar] [CrossRef]
- Hurrell, H.C.; Abruna, H.D. Redox conduction in electropolymerized films of transition-metal complexes of Os, Ru, Fe, and Co. Inorg. Chem. 1990, 29, 736–741. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry, 3rd ed.; Wiley-VCH: Hoboken, NJ, USA, 2006; p. 39. [Google Scholar]
- Bedioui, E.; Merino, A.; Devynck, J.; Mestres, C.; Bied-Charreton, C. Poly(pyrrole-manganese tetraphenylporphyrin) film electrodes in acetonitrile solution. J. Electroanal. Chem. 1988, 239, 433–439. [Google Scholar] [CrossRef]
- Tomczyk, D.; Bukowski, W.; Bester, K.; Kaczmarek, M. Electrocatalytic Properties of Ni(II) Schiff Base Complex Polymer Films. Materials 2022, 15, 191. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 505, 595. [Google Scholar]
- Bailes, R.H.; Calvin, M. The Oxygen-carrying Synthetic Chelate Compounds. VII. Preparation. J. Am. Chem. Soc. 1947, 69, 1886–1893. [Google Scholar] [CrossRef]
- Cavalheiro, E.T.G.; Lemos, F.C.D.; Schpector, J.Z.; Dockal, E.R. The Thermal Behaviour of Nickel, Copper and Zinc Complexes with the Schiff Bases cis- and trans- N,N′-Bis(Salicylidene)-1,2-Ciclohexadiamine (Salcn). Thermochim. Acta 2001, 370, 129–133. [Google Scholar] [CrossRef]
PF6− | ClO4− | BF4− | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | I | II | I | II | ||||||||
v/V·s−1 | M | n + ns | M | n + ns | M | n + ns | M | n + ns | M | n + ns | M | n + ns | |
CH2Cl2 | 0.05 | 97 | 0.7 | 145 | 1 + 0.0 | 65 | 0.6 | 92 | 0.9 + 0 | 43 | 0.5 | 63 | 0.7 |
0.01 | 97 | 0.7 | 164 | 1 + 0.2 | 65 | 0.6 | 116 | 1 + 0.2 | 48 | 0.5 | 63 | 0.7 | |
0.05 | 116 | 0.8 | 154 | 1 + 0.1 | 74 | 0.7 | 99 | 1 + 0.0 | 41 | 0.5 | 73 | 0.8 | |
after red. 40 s, 0 V | |||||||||||||
MeCN | 0.05 | 145 | 1.0 | 309 | 1 + 4.0 | 97 | 1.0 | 241 | 1 + 3.6 | 87 | 1.0 | 154 | 1 + 1.6 |
0.01 | 145 | 1.0 | 309 | 1 + 4.0 | 96 | 1.0 | 251 | 1 + 3.7 | 87 | 1.0 | 157 | 1 + 1.6 |
PF6− | ClO4− | BF4− | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | I | II | I | II | ||||||||
Polymer | v/V·s−1 | M | n + ns | M | n + ns | M | n + ns | M | n + ns | M | n + ns | M | n + ns |
Poly | |||||||||||||
[Ni(salcn | 0.05 | 347 | 1 + 2.4 | 164 | 1 + 0.2 | 304 | 1 + 2.4 | 116 | 1 + 0.2 | 270 | 1 + 2.2 | 37 | 0.4 |
(Me))] | 0.01 | 367 | 1 + 2.6 | 193 | 1 + 0.6 | 304 | 1 + 2.4 | 135 | 1 + 0.4 | 270 | 1 + 2.2 | 39 | 0.4 |
Poly | |||||||||||||
[Ni(salcn | 0.05 | 483 | 1 + 4.0 | 323 | 1 + 2.1 | 436 | 1 + 4.0 | 280 | 1 + 2.1 | 415 | 1 + 4.0 | 66 | 0.8 |
(Bu))] | 0.01 | 484 | 1 + 4.0 | 318 | 1 + 2.0 | 443 | 1 + 4.0 | 280 | 1 + 2.1 | 415 | 1 + 4.0 | 87 | 1.0 |
108 cD1/2/mol·cm−2·s−1/2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ClO4− | PF6−/ClO4− b | BF4− | PF6−/BF4− c | PF6− | |||||||||
na | cDa1/2 | cDc1/2 | cDa1/2 | cDc1/2 | cDa1/2 | cDa1/2 | cDc1/2 | cDc1/2 | cDa1/2 | cDc1/2 | cDa1/2 | cDc1/2 | |
II | I | II | I | I | II | I | II | II | I | II | I | ||
CH2Cl2 | 3 | 0.163 | 0.154 | 0.213 | 0.197 | 0.144 | - | - | - | 0.225 | - | 0.184 d | 0.054 d |
5 | 0.173 | 0.156 | 0.222 | 0.202 | 0.152 | - | - | - | 0.232 | - | 0.192 d | 0.060 d | |
10 | 0.187 | 0.140 | 0.239 | 0.206 | 0.169 | - | - | - | 0.253 | - | 0.207 d | 0.063 d | |
15 | 0.183 | 0.136 | 0.234 | 0.199 | 0.166 | - | - | - | 0.249 | - | 0.205 d | 0.059 d | |
20 | 0.180 | 0.132 | 0.226 | 0.184 | 0.162 | - | - | - | 0.240 | - | 0.200 d | 0.057 d | |
MeCN | 3 | 0.213 | 0.180 | - | - | 0.204 | 0.234 | 0.101 | 0.674 | - | - | 0.237 | 0.202 |
5 | 0.227 | 0.191 | - | - | 0.213 | 0.247 | 0.106 | 0.682 | - | - | 0.254 | 0.215 | |
10 | 0.243 | 0.196 | - | - | 0.237 | 0.269 | 0.118 | 0.777 | - | - | 0.273 | 0.224 | |
15 | 0.254 | 0.207 | - | - | 0.246 | 0.280 | 0.121 | 0.786 | - | - | 0.286 | 0.244 | |
20 | 0.260 | 0.211 | - | - | 0.252 | 0.285 | 0.124 | 0.789 | - | - | 0.294 | 0.246 |
108 cD1/2/mol·cm−2·s−1/2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
PF6− | ClO4− | PF6−/ClO4− b | BF4− | PF6−/BF4− c | ||||||
na | cDa1/2 | cDc1/2 | cDa1/2 | cDc1/2 | cDa1/2 | cDc1/2 | cDa1/2 | cDc1/2 | cDa1/2 | cDc1/2 |
I | II | I | II | I | II | I | II | I | II | |
5 | 0.808 d | 0.394 d | 0.624 | 0.489 | 1.25 | 0.982 | 0.520 | 0.481 | 1.56 | 1.43 |
10 | 1.49 d | 0.629 d | 1.13 | 0.762 | 2.25 | 1.59 | 0.937 | 0.856 | 2.82 | 2.51 |
15 | 1.97 d | 1.03 d | 1.49 | 0.942 | 2.94 | 2.10 | 1.29 | 1.16 | 3.82 | 3.45 |
20 | 2.34 d | 1.22 d | 1.72 | 1.10 | 3.56 | 2.42 | 1.57 | 1.31 | 4.45 | 3.90 |
25 | 2.53 d | 1.37 d | 1.99 | 1.24 | 3.89 | 2.61 | 1.67 | 1.33 | 4.90 | 4.16 |
30 | 2.76 d | 1.43 d | 2.13 | 1.32 | 4.17 | 2.83 | 1.85 | 1.46 | 5.19 | 4.31 |
108 cD1/2/mol·cm−2·s−1/2 | ||||||||
---|---|---|---|---|---|---|---|---|
ClO4− | PF6−/ClO4− b | |||||||
na | cDa1/2 | cDa1/2 | cDc1/2 | cDc1/2 | cDa1/2 | cDa1/2 | cDc1/2 | cDc1/2 |
I | II | I | II | I | II | I | II | |
10 | 1.09 | 1.43 | 1.39 | 0.960 | 2.60 | 3.32 | 3.41 | 2.32 |
15 | 1.67 | 2.15 | 2.06 | 1.49 | 3.96 | 5.03 | 5.18 | 3.52 |
20 | 1.97 | 2.54 | 2.46 | 1.74 | 4.73 | 5.96 | 6.13 | 4.17 |
25 | 2.59 | 3.21 | 3.10 | 2.38 | 6.20 | 7.75 | 7.94 | 5.48 |
30 | 3.02 | 3.69 | 3.54 | 3.09 | 7.27 | 9.01 | 9.25 | 6.43 |
BF4− | PF6−/BF4−c | |||||||
10 | 0.856 | 1.29 | 0.288 | - | 3.15 | 4.81 | 1.09 | - |
15 | 1.34 | 1.99 | 0.446 | - | 5.12 | 7.63 | 1.74 | - |
20 | 1.55 | 2.27 | 0.509 | - | 5.90 | 8.74 | 2.07 | - |
25 | 2.06 | 3.01 | 0.662 | - | 7.71 | 11.5 | 2.55 | - |
30 | 2.42 | 3.53 | 0.770 | - | 8.94 | 13.3 | 2.94 | - |
PF6− d | ||||||||
10 | 1.61 | 1.71 | 1.74 | 1.22 | ||||
15 | 2.51 | 2.63 | 2.68 | 1.85 | ||||
20 | 2.94 | 3.07 | 3.21 | 2.12 | ||||
25 | 3.95 | 3.87 | 3.85 | 2.74 | ||||
30 | 4.57 | 4.46 | 4.49 | 3.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, D.; Seliger, P.; Bukowski, W.; Bester, K. The Influence of Electrolyte Type on Kinetics of Redox Processes in the Polymer Films of Ni(II) Salen-Type Complexes. Molecules 2022, 27, 1812. https://doi.org/10.3390/molecules27061812
Tomczyk D, Seliger P, Bukowski W, Bester K. The Influence of Electrolyte Type on Kinetics of Redox Processes in the Polymer Films of Ni(II) Salen-Type Complexes. Molecules. 2022; 27(6):1812. https://doi.org/10.3390/molecules27061812
Chicago/Turabian StyleTomczyk, Danuta, Piotr Seliger, Wiktor Bukowski, and Karol Bester. 2022. "The Influence of Electrolyte Type on Kinetics of Redox Processes in the Polymer Films of Ni(II) Salen-Type Complexes" Molecules 27, no. 6: 1812. https://doi.org/10.3390/molecules27061812
APA StyleTomczyk, D., Seliger, P., Bukowski, W., & Bester, K. (2022). The Influence of Electrolyte Type on Kinetics of Redox Processes in the Polymer Films of Ni(II) Salen-Type Complexes. Molecules, 27(6), 1812. https://doi.org/10.3390/molecules27061812