Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plant Materials, Experiment Design, and Layout
2.3. Tray Preparation
2.4. Imposing Salinity Stress
2.5. Chemicals
2.6. Leaf Color Measurement
2.7. Determination of Chlorophyll and Total Carotene (μg·g−1)
2.8. Determination of Betacyanin and Betaxanthin (μg·g−1)
2.9. Sample Extractions for TPC, TFC, and TAC Analyses
2.10. Determination of the Total Polyphenol Content
2.11. Determination of Total Flavonoid Content
2.12. Determination of Total Antioxidant Activity (TAC)
2.13. Statistical Analysis
3. Result and Discussion
3.1. Color Parameters
3.2. Leaf Chlorophyll Content
3.3. Leaf Color Pigment Content
3.4. Total Polyphenols, Total Flavonoid Content, and Antioxidant Activity
3.5. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genotypic Variability for Nutrient, Antioxidant, Yield and Yield Contributing Traits in Vegetable Amaranth. J. Food Agric. Environ. 2014, 12, 168–174. [Google Scholar]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability, heritability and genetic association in vegetable amaranth (Amaranthus tricolor L.). Spanish J. Agril. Res. 2015, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability in Composition of Vitamins and Mineral Antioxidants in Vegetable Amaranth. Genetika 2015, 47, 85–96. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genetic Variation and Interrelationships among Antioxidant, Quality, and Agronomic Traits in Vegetable Amaranth. Turk. J. Agric. For. 2016, 40, 526–535. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genotypic Diversity in Vegetable Amaranth for Antioxidant, Nutrient and Agronomic Traits. Indian J. Genet. Pl. Breed. 2017, 77, 173–176. [Google Scholar] [CrossRef]
- Chakrabarty, T.; Sarker, U.; Hasan, M.; Rahman, M.M. Variability in Mineral Compositions, Yield and Yield Contributing Traits of Stem Amaranth (Amaranthus lividus). Genetika 2018, 50, 995–1010. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability in total antioxidant capacity, antioxidant leaf pigments and foliage yield of vegetable amaranth. J. Integr. Agric. 2018, 17, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Phenotypic Divergence in Vegetable Amaranth for Total Antioxidant Capacity, Antioxidant Profile, Dietary Fiber, Nutritional and Agronomic Traits. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2018, 68, 67–76. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Antioxidant Leaf Pigments and Variability in Vegetable Amaranth. Genetika 2018, 50, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Khanam, U.K.S.; Oba, S. Bioactive Substances in Leaves of Two Amaranth Species, Amaranthus lividus, and A. hypochondriacus. Canadian J. Plant Sci. 2013, 93, 47–58. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amaran. Tricolor. Appl. Biochem. Biotechnol. 2018, 186, 999–1016. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Response of Nutrients, Minerals, Antioxidant Leaf Pigments, Vitamins, Polyphenol, Flavonoid and Antioxidant Activity in Selected Vegetable Amaranth under Four Soil Water Content. Food Chem. 2018, 252, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, I.A.; Farinha, A.P.; Negrao, S.; Goncalves, N.; Fonseca, C.; Rodrigues, M. Coping with Abiotic Stress: Proteome Changes for Crop Improvement. J. Proteom. 2013, 93, 145–168. [Google Scholar] [CrossRef]
- Stoeva, N.; Kaymakanova, M. Effect of Salt Stress on the Growth and Photosynthesis Rate of Bean Plants (Phaseolus vulgaris L.). J. Cent. Eur. Agric. 2008, 9, 385–392. [Google Scholar]
- James, R.A.; Blake, C.; Byrt, C.S.; Munns, R. Major Genes for Na+ Exclusion, Nax1 and Nax2 wheat HKT1; 4 and HKT1; 5), Decrease Na+ Accumulation in Bread Wheat Leaves Under Saline and Waterlogged Conditions. J. Exp. Bot. 2011, 62, 2939–2947. [Google Scholar] [CrossRef] [Green Version]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress and Signal Transduction. Ann. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Catalase, Superoxide Dismutase and Ascorbate-Glutathione Cycle Enzymes Confer Drought Tolerance of A. tricolor. Sci. Rep. 2018, 8, 16496. [Google Scholar] [CrossRef] [Green Version]
- Stagnari, F.; Angelica, G.; Mychele, P. 2016. Water Stress and Crop Plant: A Sustainable Approach. In Drought Stress Effect on Crop Quality; Ahamad, P., Ed.; John Wiley Sons Ltd.: West Sussex, UK, 2016; pp. 375–387. [Google Scholar]
- Sarker, U.; Oba, S. Drought Stress Enhances Nutritional and Bioactive Compounds, Phenolic Acids and Antioxidant Capacity of Amaranthus Leafy Vegetable. BMC Plant Biol. 2018, 18, 258. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Oba, S. Salinity Stress Accelerates Nutrients, Dietary Fiber, Minerals, Phytochemicals and Antioxidant Activity in Amaranthus tricolor Leaves. PLoS ONE 2018, 13, 0206388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Oba, S. Augmentation of Leaf Color Parameters, Pigments, Vitamins, Phenolic Acids, Flavonoids and Antioxidant Activity in Selected Amaranthus tricolor under Salinity Stress. Sci. Rep. 2018, 8, 12349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Oba, S. Salinity Stress Enhances Color Parameters, Bioactive Leaf Pigments, Vitamins, Polyphenols, Flavonoids and Antioxidant Activity in Selected Amaranthus Leafy Vegetables. J. Sci. Food Agric. 2019, 99, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Selmar, D.; Kleinwachter, M. Influencing the Product Quality by Deliberately Applying Drought Stress During the Cultivation of Medicinal Plants. Ind. Crops Prod. 2013, 42, 558–566. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I.C. Salinity Effect on Nutritional Value, Chemical Composition and Bioactive Compounds Content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Alam, M.Z. Effects of Salinity and Salinity-induced Augmented Bioactive Compounds in Purslane (portulaca oleracea L.) for Possible Economical Use. Food Chem. 2015, 169, 439–447. [Google Scholar] [CrossRef]
- Lim, J.H.; Park, K.J.; Kim, B.K.; Jeong, J.W.; Kim, H.J. Effect of Salinity Stress on Phenolic Compounds and Carotenoids in Buckwheat (Fagopyrum esculentum M.) Sprout. Food Chem. 2012, 135, 1065–1070. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Antioxidant Constituents of Three Selected Red and Green Color Amaranthus Leafy Vegetable. Sci. Rep. 2019, 9, 18233. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Color Attributes, Betacyanin, and Carotenoid Profiles, Bioactive Components, and Radical Quenching Capacity in Selected Amaranthus gangeticus Leafy Vegetables. Sci. Rep. 2021, 11, 11559. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Leaf Pigmentation, Its Profiles and Radical Scavenging Activity in Selected Amaranthus tricolor Leafy Vegetables. Sci. Rep. 2020, 10, 18617. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Protein, Dietary Fiber, Minerals, Antioxidant Pigments and Phytochemicals, and Antioxidant Activity in Selected Red Morph Amaranthus Leafy Vegetable. PLoS ONE 2019, 14, 0222517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Oba, S. Nutraceuticals, Antioxidant Pigments, and Phytochemicals in the Leaves of Amaranthus spinosus and Amaranthus viridis Weedy Species. Sci. Rep. 2019, 9, 20413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and Antioxidant Components and Antioxidant Capacity in Green Morph Amaranthus Leafy Vegetable. Sci. Rep. 2020, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S.; Daramy, M.A. Nutrients, Minerals, Antioxidant Pigments and Phytochemicals, and Antioxidant Capacity of the Leaves of Stem Amaranth. Sci. Rep. 2020, 10, 3892. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Nutrients, Minerals, Pigments, Phytochemical, and Radical Scavenging Activity in Amaranthus blitum Leafy Vegetable. Sci. Rep. 2020, 10, 3868. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. The Response of Salinity Stress-Induced A. tricolor to Growth, Anatomy, Physiology, Non-Enzymatic and Enzymatic Antioxidants. Front. Plant Sci. 2020, 11, 559876. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Polyphenol and Flavonoid Profiles and Radical Scavenging Activity in Selected Leafy Vegetable Amaranthus gangeticus. BMC Plant Biol. 2020, 20, 499. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Phenolic Profiles and Antioxidant Activities in Selected Drought-Tolerant Leafy Vegetable Amaranth. Sci. Rep. 2020, 10, 18287. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutritional and Bioactive Constituents and Scavenging Capacity of Radicals in Amaranthus hypochondriacus. Sci. Rep. 2020, 10, 19962. [Google Scholar] [CrossRef]
- Sarker, U.; Hossain, M.N.; Iqbal, M.A.; Oba, S. Bioactive Components and Radical Scavenging Activity in Selected Advance Lines of Salt-Tolerant Vegetable Amaranth. Front. Nutr. 2020, 7, 587257. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutraceuticals, Phytochemicals, and Radical Quenching Ability of Selected Drought-Tolerant Advance Lines of Vegetable Amaranth. BMC Plant Biol. 2020, 20, 564. [Google Scholar] [CrossRef] [PubMed]
- Hasan-Ud-Daula, M.; Sarker, U. Variability, Heritability, Character Association, and Path Coefficient Analysis in Advanced Breeding Lines of Rice (Oryza sativa L.). Genetika 2020, 52, 711–726. [Google Scholar] [CrossRef]
- Hasan, M.J.; Kulsum, M.U.; Majumder, R.R.; Sarker, U. Genotypic Variability for Grain Quality Attributes in Restorer Lines of Hybrid Rice. Genetika 2020, 52, 973–989. [Google Scholar] [CrossRef]
- Rashad, M.M.I.; Sarker, U. Genetic Variations in Yield and Yield Contributing Traits of Green Amaranth. Genetika 2020, 52, 393–407. [Google Scholar] [CrossRef]
- Biswas, A.; Sarker, U.; Banik, B.R.; Rohman, M.M.; Mian, M.A.K. Genetic Divergence Study in Salinity Stress Tolerant Maize (Zea mays L.). Bangladesh J. Agric. Res. 2014, 39, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.G.; Sarker, U.; Banik, B.R. Genetic Variability of Yield and Its Contributing Characters on CIMMYT Maize Inbreds under Drought Stress. Bangladesh J. Agric. Res. 2014, 39, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.G.A.; Sarker, U.; Mian, M.A.K.; Banik, B.R.; Talukder, M.Z.A. Genetic Divergence on Quantitative Characters of Exotic Maize Inbreds (Zea mays L.). Bangladesh J. Plant Breed. Genet. 2013, 26, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Ganapati, R.K.; Rasul, M.G.; Mian, M.A.K.; Sarker, U. Genetic Variability and Character Association of T-Aman Rice (Oryza Sativa L). Intl. J. Plant Biol. Res. 2014, 2, 1–4. [Google Scholar]
- Sarker, U.; Mian, M.A.K. Genetic Variations and Correlations between Floral Traits in Rice. Bangladesh J. Agril. Res. 2004, 29, 553–558. [Google Scholar]
- Biswas, P.S.; Sarker, U.; Bhuiyan, M.A.R.; Khatun, S. Genetic Divergence in Cold Tolerant Irrigated Rice (Oryza Sativa L.). Agriculturists 2006, 4, 15–20. [Google Scholar]
- Sarker, U.; Biswas, P.S.; Prasad, B.; Mian, M.A.K. Correlated Response, Relative Selection Efficiency and Path Analysis in Cold Tolerant Rice. Bangladesh J. Pl. Breed. Genet. 2001, 14, 33–36. [Google Scholar]
- Sarker, U.; Mian, M.A.K. Genetic Variability, Character Association and Path Analysis for Yield and Its Components in Rice. J. Asiat. Soc. Bangladesh Sci. 2003, 29, 47–54. [Google Scholar]
- Ali, M.A.; Sarker, U.; Mian, M.A.K.; Islam, M.A.; Johora, F.-T. Estimation of Genetic Divergence in Boro Rice (Oryza Sativa L.). Intl. J. BioRes. 2014, 16, 28–36. [Google Scholar]
- Karim, D.; Sarkar, U.; Siddique, M.N.A.; Miah, M.A.K.; Hasnat, M.Z. Variability and Genetic Parameter Analysis in Aromatic Rice. Int. J. Sustain. Crop Prod. 2007, 2, 15–18. [Google Scholar]
- Karim, D.; Siddique, M.N.A.; Sarkar, U.; Hasnat, Z.; Sultana, J. Phenotypic and Genotypic Correlation Co-Efficient of Quantitative Characters and Character Association of Aromatic Rice. J. Biosci. Agric. Res. 2014, 1, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.K.; Sarker, U.K.; Roy, P.C.; Islam, A. Character Association in F4 Generation of Rice (Oryza sativa L.). Bangladesh J. Plant Breed. Genet. 2013, 26, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.R.; Sarker, U.; Hossain, M.A.; Huda, K.M.K.; Mian, M.A.K.; Hossain, T.; Zahan, M.S.; Mahmud, M.N.H. Genetic Diversity in Micronutrient Dense Rice and Its Implication in Breeding Program. Ecofriendly Agril. J. 2012, 5, 168–174. [Google Scholar]
- Hasan, M.R.; Sarker, U.; Mian, M.A.K.; Hossain, T.; Mahmud, M.N.H. Genetic Variation in Micronutrient Dense Rice and Its Implication in Breeding for Higher Yield. Eco-Friendly Agril. J. 2012, 5, 175–182. [Google Scholar]
- Siddique, M.N.A.; Sarker, U.; Mian, M.A.K. Genetic diversity in restorer line of rice. In Proceedings of the International Conference on Plant Breeding and Seed for Food Security; Bhuiyan, M.S.R., Rahman, L., Eds.; Plant Breeding and Genetics Society of Bangladesh: Dhaka, Bangladesh, 2009; pp. 137–142. [Google Scholar]
- Nath, J.K.; Sarker, U.; Mian, M.A.K.; Hossain, T. Genetic Divergence in T. Aman Rice. Ann. Bangladesh Agric. 2008, 12, 51–60. [Google Scholar]
- Rahman, M.H.; Sarker, U.; Main, M.A.K. Assessment of Variability of Floral and Yield Traits: I Restorer Lines of Rice. Ann. Bangladesh Agric. 2007, 11, 87–94. [Google Scholar]
- Rahman, M.H.; Sarker, U.; Main, M.A.K. Assessment of Variability of Floral and Yield Traits: II Maintainer Lines of Rice. Ann. Bangladesh Agric. 2007, 11, 95–102. [Google Scholar]
- Ashraf, A.T.M.; Rahman, M.M.; Hossain, M.M.; Sarker, U. Study of Correlation and Path Analysis in the Selected Okra Genotypes. Asian Res. J. Agric. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Ashraf, A.T.M.; Rahman, M.M.; Hossain, M.M.; Sarker, U. Study of the Genetic Analysis of Some Selected Okra Genotypes. Intl. J. Advanced Res. 2020, 8, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, A.T.M.; Rahman, M.M.; Hossain, M.M.; Sarker, U. Performance Evaluation of Some Selected Okra Genotypes. Intl. J. Plant Soil Sci. 2020, 32, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Kayesh, E.; Sharker, M.S.; Roni, M.S.; Sarker, U. Integrated Nutrient Management for Growth, Yield and Profitability of Broccoli. Bangladesh J. Agric. Res. 2019, 44, 13–26. [Google Scholar] [CrossRef]
- Talukder, M.Z.A.; Sarker, U.; Harun-Or-Rashid, M.; Mian, M.A.K.; Zakaria, M. Genetic Diversity of Coconut (Cocos Nucifera L.) in Barisal Region. Ann. Bangladesh Agric. 2015, 19, 13–21. [Google Scholar]
- Talukder, M.Z.A.; Sarker, U.; Khan, A.B.M.M.M.; Moniruzzaman, M.; Zaman, M.M. Genetic Variability and Correlation Coefficient of Coconut (Cocos Nucifera L.) in Barisal Region. Intl. J. BioRes. 2011, 11, 15–21. [Google Scholar]
- Khandaker, L.; Ali, M.B.; Oba, S. Total polyphenols and Antioxidant Activity of Red Amaranth (Amaranthus tricolorL.). As Affected by Different Sunlight Level. J. Jpn. Soc. Hort. Sci. 2008, 77, 395–401. [Google Scholar]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional Quality of Ten Leafy Vegetables Harvested at Two Light Intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef]
- Ali, M.B.; Khandaker, L.; Oba, S. Comparative Study on Functional Components, Antioxidant Activity and Color Parameters of Selected Colored Leafy Vegetables as Affected by Photoperiods. J. Food Agric. Environ. 2009, 7, 392–398. [Google Scholar]
- Jampeetong, A.; Brix, H. Effect of NaCl Salinity on Growth, Morphology, Photosynthesis and Proline Accumulation of Salvinia natans. Aquatic Bot. 2009, 91, 181–186. [Google Scholar] [CrossRef]
- Odjegba, J.V.; Chukwunwike, C.I. Physiological Responses of Amaranthus hybrids L. under Salinity Stress. Indian J. Innov. Dev. 2012, 1, 742–748. [Google Scholar]
- Taffouo, V.D.; Nouck, A.H.; Dibong, S.D.; Amougou, A. Effects of Salinity Stress on Seedlings Growth, Mineral Nutrients and Total Chlorophyll of Some Tomato (Lycopersicum esculentum L.) Cultivars. African J. Biotechnol. 2010, 9, 33. [Google Scholar]
- Hanafy, A.H.; Gad-Mervat, M.A.; Hassam, H.M.; Amin-Mona, A. Improving Growth and Chemical Composition of Mertus communis Grown Under Soil Salinity Conditions Polyamine Foliar Application. Proceed. Minia Egypt J. Agric. Res. Develop. 2002, 22, 1697–1720. [Google Scholar]
- Sehrawat, N.; Yadav, M.; Bhat, K.V.; Sairam, R.K.; Jaiwal, P.K. Effect of Salinity Stress on Mungbean [Vigna radiata (L.) wilczek] During Consecutive Summer and Spring Seasons. J. Agric. Sci. 2015, 60, 23–32. [Google Scholar] [CrossRef]
- Gins, M.S.; Gins, V.K.; Kononkov, P.F. Change in the Biochemical Composition of Amaranth Leaves During Selection for Increased Amaranthine Content. App. Biochem. Microbiol. 2002, 38, 474–479. [Google Scholar] [CrossRef]
- Yarnia, M.; Benam, M.B.K.; Nobari, N. The Evaluation of Grain and Oil Production, Some Physiological and Morphological Traits of Amaranth ‘cv. koniz’ as Influenced by the Salt Stress in Hydroponic Conditions. J. Agric. Food Environ. Sci. 2016, 69, 87–93. [Google Scholar]
- Turkan, I.; Demiral, T. Review: Recent Developments in Understanding Salinity Tolerance. Environ. Exp. Bot. 2009, 67, 2–9. [Google Scholar] [CrossRef]
- Wahid, A.; Ghazanfar, A. Possible Involvement of Some Secondary Metabolites in Salt Tolerance of Sugarcane. J. Plant Physiol. 2006, 163, 723–730. [Google Scholar] [CrossRef]
Treatment | L* | a* | b* | C* |
---|---|---|---|---|
Variety × Salinity stress | ||||
Green tower × Control | 57.7 ± 0.6 b | −26.65 ± 0.4 n | 17.80 ± 0.4 e | 32.05 ± 0.8 c |
Green tower × MSS | 57.19 ± 0.4 c | −25.68 ± 0.3 m | 23.01 ± 0.5 c | 34.48 ± 0.7 a |
Green tower × SSS | 50.78 ± 0.3 d | −23.16 ± 0.3 l | 23.7 ± 0.3 b | 33.14 ± 0.6 b |
Green tower × VSSS | 48.87 ± 0.5 e | −18.717 ± 0.4 j | 23.94 ± 0.4 a | 30.38 ± 0.8 d |
SA3 × Control | 36.04 ± 0.3 i | 8.39 ± 0.5 e | −4.46 ± 0.3 m | 9.50 ± 0.7 j |
SA3 × MSS | 34.59 ± 0.04 j | 13.79 ± 0.4 b | −3.22 ± 0.4 l | 14.16 ± 0.8 h |
SA3 × SSS | 34.41 ± 0.4 j | 15.57 ± 0.4 a | −2.41 ± 0.5 k | 15.76 ± 0.7 g |
SA3 × VSSS | NS | NS | NS | NS |
Red tower × Control | 59.01 ± 0.5 a | −22.66 ± 0.5 k | 20.70 ± 0.3 d | 30.69 ± 0.6 d |
Red tower × MSS | 47.39 ± 0.5 f | −15.88 ± 0.4 i | 17.98 ± 0.4 e | 23.99 ± 0.7 e |
Red tower × SSS | 39.65 ± 0.4 g | −13.25 ± 0.5 h | 15.84 ± 0.4 f | 20.65 ± 0.8 f |
Red tower × VSSS | NS | NS | NS | NS |
SA6 × Control | 34.03 ± 0.5 k | 6.45 ± 0.4 g | 3.53 ± 0.4 j | 8.82 ± 0.6 k |
SA6 × MSS | 34.37 ± 0.3 j | 8.10 ± 0.3 f | 3.49 ± 0.3 i | 9.76 ± 0.7 j |
SA6 × SSS | 34.71 ± 0.2 j | 8.81 ± 0.5 d | 4.21 ± 0.5 h | 11.16 ± 0.8 i |
SA6 × VSSS | 36.97 ± 0.4 h | 9.33 ± 0.3 c | 6.12 ± 0.4 g | 9.89 ± 0.6 j |
Variety | ||||
Green tower | 53.64 ± 0.4 a | −23.55 ± 0.4 d | 22.11 ± 0.5 a | 32.30 ± 0.6 a |
SA3 | 26.26 ± 0.5 d | 9.44 ± 0.3 a | −2.52 ± 0.3 d | 9.77 ± 0.8 c |
Red tower | 36.51± 0.3 b | −12.95 ± 0.5 c | 13.63 ± 0.4 b | 18.80 ± 0.7 b |
SA6 | 35.02 ± 0.4 c | 8.17± 0.4 b | 3.59 ± 0.3 c | 9.25 ± 0.8 d |
Salinity stress | ||||
Control | 46.70 ± 0.3 a | −8.62 ± 0.3 d | 8.64 ± 0.5 b | 11.38 ± 0.6 b |
MSS | 43.38 ± 0.4 b | −4.92 ± 0.4 c | 10.31 ± 0.4 a | 11.42 ± 0.7 b |
SSS | 39.89 ± 0.4 c | −3.01 ± 0.5 b | 10.33 ± 0.3 a | 11.93 ± 0.8 a |
VSSS | 21.46 ± 0.3 d | −2.35 ± 0.3 a | 7.51 ± 0.4 c | 7.87 ± 0.7 c |
Significance | ||||
Variety | * | * | * | * |
Salinity stress | * | * | * | * |
Variety × Salinity stress | * | * | * | * |
Treatment | Chlorophyll a (μg·g−1) | Chlorophyll b (μg·g−1) | Chlorophyll a/b | Total Chlorophyll (μg·g−1) |
---|---|---|---|---|
Variety × Salinity stress | ||||
Green tower × Control | 442.22 ± 0.16 c | 236.30 ± 0.13 b | 1.87 ± 0.02 e | 676.03 ± 0.33 b |
Green tower × MSS | 342.95 ± 0.15 d | 208.11 ± 0.16 c | 1.65 ± 0.04 i | 548.65 ± 0.37 d |
Green tower × SSS | 318.42 ± 0.12 g | 149.93 ± 0. 12 i | 2.12 ± 0.03 c | 471.18 ± 0.38 h |
Green tower × VSSS | 316.68 ± 0.13 g | 136.02 ± 0.14 j | 2.33 ± 0.03 b | 453.41 ± 0.35 i |
SA3 × Control | 456.13 ± 0.12 b | 189.36 ± 0.14 d | 2.41 ± 0.04 a | 646.21 ± 0.35 c |
SA3 × MSS | 323.31 ± 0.14 f | 186.51 ± 0.13 e | 1.73 ± 0.03 h | 511.47 ± 0.34 f |
SA3 × SSS | 202.67 ± 0.13 l | 95.06 ± 0.12 l | 2.13 ± 0.02 c | 298.34 ± 0.36 m |
SA3 × VSSS | NS | NS | NS | NS |
Red tower × Control | 338.15 ± 0.16 e | 185.54 ± 0.11 e | 1.82 ± 0.04 f | 523.47 ± 0.36 e |
Red tower × MSS | 308.67 ± 0.13 h | 168.35 ± 0.13 g | 1.83 ± 0.02 f | 477.28 ± 0.34 g |
Red tower × SSS | 241.14 ± 0.15 j | 147.71 ± 14 i | 1.63 ± 0.03 i,j | 388.14 ± 0.35 k |
Red tower × VSSS | NS | NS | NS | NS |
SA6 × Control | 518.10 ± 0.12 a | 323.91 ± 0.15 a | 1.61 ± 0.02 k | 843.43 ± 0.34 a |
SA6 × MSS | 340.92 ± 0.12 d | 172.86 ± 0.17 f | 1.97 ± 0.03 d | 512.90 ± 0.34 f |
SA6 × SSS | 287.23 ± 0.16 i | 152.62 ± 0.12 h | 1.88 ± 0.03 e | 438.01 ± 0.33 j |
SA6 × VSSS | 238.29 ± 0.15 k | 111.01 ± 0.15 k | 2.15 ± 0.02 c | 348.86 ± 0.36 l |
Variety | ||||
Green tower | 355.07 ± 0.14 a | 182.59 ± 0.13 b | 1.94 ± 0.04 b | 537.32 ± 0.32 a |
SA3 | 245.53 ± 0.13 c | 117.73 ± 0.14 d | 2.09 ± 0.02 a | 364.00 ± 0.31 c |
Red tower | 221.99 ± 0.14 d | 125.40 ± 0.14 c | 1.77 ± 0.03 d | 347.22 ± 0.38 d |
SA6 | 346.14 ± 0.17 b | 190.10 ± 0.14 a | 1.82 ± 0.05 c | 535.80 ± 0.33 b |
Salinity stress | ||||
Control | 438.65 ± 0.16 a | 233.78 ± 0.11 a | 1.88 ± 0.02 c | 672.29 ± 0.37 a |
MSS | 328.97 ± 0.13 b | 183.96 ± 0.15 b | 1.79 ± 0.02 d | 512.57 ± 0.38 b |
SSS | 262.37 ± 0.14 c | 136.33 ± 0.17 c | 1.92 ± 0.03 b | 398.92 ± 0.34 c |
VSSS | 138.74 ± 0. 14 d | 61.76 ± 0.16 d | 2.25 ± 0.04 a | 200.57 ± 0.36 d |
Significance | ||||
Variety | * | * | * | * |
Salinity stress | * | * | * | * |
Variety × Salinity stress | * | * | * | * |
Treatment | Betacyanin (ng·g−1) | Betaxanthin (ng·g−1) | Betalain (ng·g−1) | Total Carotene(μg·g−1) |
---|---|---|---|---|
Variety × Salinity stress | ||||
Green tower × Control | 117.09 ± 0.65 d | 291.10 ± 0.42 g | 407.63 ± 0.53 f | 70.88 ± 0.04 a |
Green tower × MSS | 62.62 ± 0.63 k | 214.80 ± 0.47 k | 277.67 ± 0.51 l | 66.20 ± 0.03 b |
Green tower × SSS | 40.87 ± 0.65 l | 163.53 ± 0.43 l | 205.35 ± 0.52 m | 61.30 ± 0.03 c |
Green tower × VSSS | 38.74 ± 0.68 m | 148.73 ± 0.39 m | 188.25 ± 0.57 n | 36.24 ± 0.04 g |
SA3 × Control | 102.01 ± 0.67 f | 317.73 ± 0.45 d | 418.82 ± 0.58 e | 70.80 ± 0.05 a |
SA3 × MSS | 91.22 ± 0.64 g | 293.18 ± 0.41 f | 385.16 ± 0.55 g | 56.44 ± 0.05 d |
SA3 × SSS | 80.31 ± 0.61 i | 265.50 ± 0.47 h | 347.01 ± 0.59 i | 37.97 ± 0.04 g |
SA3 × VSSS | NS | NS | NS | NS |
Red tower × Control | 136.77 ± 0.62 c | 311.89 ± 0.40 e | 446.98 ± 0.56 d | 63.15 ± 0.05 c |
Red tower × MSS | 73.43 ± 0.62 j | 251.23 ± 0.42 i | 325.73 ± 0.52 j | 24.80 ± 0.03 i |
Red tower × SSS | 63.83 ± 0.64 k | 222.36 ± 0.46 j | 288.21 ± 0.61 k | 20.64 ± 0.04 j |
Red tower × VSSS | NS | NS | NS | NS |
SA6 × Control | 159.76 ± 0.63 a | 388.12 ± 0.49 a | 547.49 ± 0.57 a | 54.34 ± 0.03 e |
SA6 × MSS | 156.38 ± 0.68 b | 368.26 ± 0.48 b | 522.94 ± 0.64 b | 45.46 ± 0.06 f |
SA6 × SSS | 113.83 ± 0.64 e | 340.99 ± 0.47 c | 455.11 ± 0.56 c | 36.12 ± 0.04 g |
SA6 × VSSS | 82.843 ± 0.60 h | 291.35 ± 0.42 g | 373.25 ± 0.59 h | 29.13 ± 0.06 h |
Variety | ||||
Green tower | 64.83 ± 0.67 c | 204.54 ± 0.48 c | 268.28 ± 0.53 c | 58.66 ± 0.06 a |
SA3 | 68.39 ± 0.65 b | 219.10 ± 0.41 b | 288.53 ± 0.59 b | 41.35 ± 0.07 b |
Red tower | 68.51 ± 0.63 b | 196.37 ± 0.44 d | 263.75 ± 0.54 d | 27.15 ± 0.05 c |
SA6 | 128.20 ± 0.67 a | 347.18 ± 0.45 a | 473.86 ± 0.51 a | 41.27 ± 0.03 b |
Salinity stress | ||||
Control | 128.91 ± 0.69 a | 327.21 ± 0.42 a | 458.64 ± 0.55 a | 64.79 ± 0.05 a |
MSS | 95.91 ± 0.63 b | 281.87 ± 0.47 b | 378.71 ± 0.59 b | 48.23 ± 0.04 b |
SSS | 74.71 ± 0.61 c | 248.10 ± 0.45 c | 323.15 ± 0.61 c | 39.01 ± 0.03 c |
VSSS | 30.40 ± 0.61 d | 110.02 ± 0.47 d | 142.11 ± 0.59 d | 16.38 ± 0.04 d |
Significance | ||||
Variety | * | * | * | * |
Salinity stress | * | * | * | * |
Variety × Salinity stress | * | * | * | * |
Treatment | Total Polyphenol Content (µg g−1 GAE dw) | Total Flavonoid Content (µg g−1 QE dw) | Total Antioxidant Activity (%) |
---|---|---|---|
Variety × Salinity stress | |||
Green tower × Control | 48.46 ± 0.05 n | 38.50 ± 0.23 m | 13.74 ± 0.16 f |
Green tower × MSS | 53.76 ± 0.06 m | 44.76 ± 0.27 l | 13.84 ± 0.15 f |
Green tower × SSS | 112.53 ± 0.07 l | 50.28 ± 0.21 k | 16.34 ± 0.12 e |
Green tower × VSSS | 172.38 ± 0.08 k | 52.52 ± 0.28 j | 18.88 ± 0.11 d |
SA3 × Control | 221.66 ± 0.07 i | 53.35 ± 0.25 i,j | 9.61 ± 0.17 g |
SA3 × MSS | 258.57 ± 0.06 e | 81.96 ± 0.23 e | 19.48 ± 0.10 d |
SA3 × SSS | 293.21 ± 0.07 c | 122.69 ± 0.24 b | 20.64 ± 0.14 c |
SA3 × VSSS | NS | NS | NS |
Red tower × Control | 239.89 ± 0.05 g | 54.88 ± 0.21 i | 8.56 ± 0.13 h |
Red tower × MSS | 271.08 ± 0.06 d | 63.76 ± 0.20 h | 9.51 ± 0.16 g |
Red tower × SSS | 319.75 ± 0.06 b | 77.36 ± 0.27 f | 22.28 ± 0.14 b |
Red tower × VSSS | NS | NS | NS |
SA6 × Control | 203.52 ± 0.05 j | 66.80 ± 0.22 g | 4.47 ± 0.12 i |
SA6 × MSS | 235.58 ± 0.08 h | 109.81 ± 0.26 d | 13.81 ± 0.15 f |
SA6 × SSS | 253.99 ± 0.05 f | 114.99 ± 0.26 c | 18.61 ± 0.13 d |
SA6 × VSSS | 337.07 ± 0.05 a | 137.85 ± 0.29 a | 29.95 ± 0.12 a |
Variety | |||
Green tower | 96.78 ± 0.06 d | 46.51 ± 0.23 d | 15.70 ± 0.12 b |
SA3 | 193.36 ± 0.06 c | 64.50 ± 0.26 b | 12.43 ± 0.13 c |
Red tower | 207.68 ± 0.04 b | 49.00 ± 0.25 c | 10.09 ± 0.12 d |
SA6 | 257.54 ± 0.05 a | 107.36 ± 0.29 a | 16.71 ± 0.16 a |
Salinity stress | |||
Control | 209.36 ± 0.04 c | 56.89 ± 0.27 c | 10.38 ± 0.11 d |
MSS | 219.44 ± 0.03 b | 76.45 ± 0.33 b | 14.79 ± 0.15 b |
SSS | 230.18 ± 0.03 a | 89.95 ± 0.28 a | 18.84 ± 0.15 a |
VSSS | 127.36 ± 0.03 d | 44.09 ± 0.27 d | 12.21 ± 0.12 c |
Significance | |||
Variety | * | * | * |
Salinity stress | * | * | * |
Variety × Salinity stress | * | * | * |
Parameters | Chl a (μg·g−1) | Chl b (μg·g−1) | T Chl (μg·g−1) | TCC (μg·g−1) | Betacyanin (ng·g−1) | Betaxanthin (ng·g−1) | Betalain (ng·g−1) | TPC (µg g−1 GAE dw) | TFC (µg g−1 QE dw) | TAA (%) |
---|---|---|---|---|---|---|---|---|---|---|
Chl a | 0.956 ** | 0.994 ** | 0.856 ** | 0.768 ** | 0.807 ** | 0.805 ** | 0.309 * | 0.261 | 0.225 | |
Chl b | 0.982 ** | 0.784 ** | 0.784 ** | 0.794 ** | 0.800 ** | 0.270 | 0.212 | 0.170 | ||
T Chl | 0.838 ** | 0.781 ** | 0.810 ** | 0.810 ** | 0.299 * | 0.246 | 0.206 | |||
TCC | 0.617 ** | 0.645 ** | 0.644 ** | 0.094 | 0.174 | 0.237 | ||||
Betacyanin | 0.948 ** | 0.974 ** | 0.495 ** | 0.499 ** | 0.209 | |||||
Betaxanthin | 0.995 ** | 0.662 ** | 0.650 ** | 0.429 ** | ||||||
Betalain | 0.619 ** | 0.612 ** | 0.368 * | |||||||
TPC | 0.736 ** | 0.617 ** | ||||||||
TFC | 0.724 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.N.; Sarker, U.; Raihan, M.S.; Al-Huqail, A.A.; Siddiqui, M.H.; Oba, S. Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables. Molecules 2022, 27, 1821. https://doi.org/10.3390/molecules27061821
Hossain MN, Sarker U, Raihan MS, Al-Huqail AA, Siddiqui MH, Oba S. Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables. Molecules. 2022; 27(6):1821. https://doi.org/10.3390/molecules27061821
Chicago/Turabian StyleHossain, Md. Nazmul, Umakanta Sarker, Md. Sharif Raihan, Asma A. Al-Huqail, Manzer H. Siddiqui, and Shinya Oba. 2022. "Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables" Molecules 27, no. 6: 1821. https://doi.org/10.3390/molecules27061821
APA StyleHossain, M. N., Sarker, U., Raihan, M. S., Al-Huqail, A. A., Siddiqui, M. H., & Oba, S. (2022). Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables. Molecules, 27(6), 1821. https://doi.org/10.3390/molecules27061821