Insecticidal and Enzyme Inhibition Activities of Leaf/Bark Extracts, Fractions, Seed Oil and Isolated Compounds from Triadica sebifera (L.) Small against Aphis craccivora Koch
Abstract
:1. Introduction
2. Results
2.1. Fatty Acid Composition of SO of T. sebifera
2.2. Structure Elucidation of Isolated Compounds
2.3. Gas Chromatography-Mass Spectrophotometry (GC-MS) Analysis of n-Hexane Fractions
2.4. Residual Toxicity of Leaf/Bark Extracts and SO of T. sebifera against A. craccivora
2.5. Residual Toxicity of the Combination of SO with Leaf/Bark Extract of T. sebifera and Its Synergistic Activity against A. craccivora under Laboratory Conditions
2.6. Residual Toxicity of SO, Leaf/Bark Extracts and Their Binary Mixtures of T. sebifera and Their Synergistic Activity against A. craccivora under Plant Growth Chamber
2.7. Residual Toxicity of Leaf and Bark Fractions of T. sebifera against A. craccivora
2.8. Residual Toxicity of Isolated Compounds of T. sebifera against A. craccivora
2.9. Detoxification Enzyme Activities of LEE, BEE, and SO against A. craccivora
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Leaf/Bark Extracts and Fractions
4.3. Extraction of SO
4.4. Isolation of Compounds
4.5. Preparation of Fatty Acid Methyl Esters (FAMES)
4.6. Gas Chromatography-Mass Spectrophotometry (GC-MS) Analysis
4.7. Test Insect
4.8. Preliminary Screening
4.9. Residual Toxicity of Leaf/Bark Aqueous Ethanolic/Methanolic Extracts under Laboratory Conditions
4.10. Residual Toxicity of Binary Mixtures of Leaf/Bark Extracts and SO under Laboratory Conditions
4.11. Residual Toxicity of Leaf/Bark Extracts and Their Binary Mixtures under Plant Growth Chamber
4.12. Enzyme Inhibition Activities of LEE, BEE, and SO against A. craccivora
4.13. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Laamari, M.; Khelfa, L.; Coeur d’Acier, A. Resistance source to cowpea aphid (Aphis craccivora Koch) in broad bean (Vicia faba L.) Algerian landrace collection. Afr. J. Biotechnol. 2008, 7, 2486–2490. [Google Scholar]
- Fouad, E.A.; Yousef, H.M.A.; Abdallah, I.S.; Kandil, M.A. Resistance monitoring and enzyme activity in three field populations of cowpea aphid (Aphis craccivora) from Egypt. Crop Prot. 2016, 81, 163–167. [Google Scholar] [CrossRef]
- Jaryan, V.; Uniyal, S.K.; Kumar, A.; Gupta, R.C.; Parkash, O.; Singh, R.D. Distribution characteristics of Sapium sebiferum (L.) Roxb. An invasive tree species in Himachal Pradesh, Western Himalaya. Proc. Indian Natl. Sci. Acad. 2013, 79, 215–234. [Google Scholar]
- Breitenbeck, G.A. Chinese tallow trees as a biodiesel feedstock. La. Agric. 2009, 53, 26–27. [Google Scholar]
- Kim, Y.; Welt, B.A.; Talcott, S.T. The impact of packaging materials on the antioxidant phytochemical stability of aqueous infusions of green tea (Camellia sinensis) and yaupon holly (Ilex vomitoria) during cold storage. J. Agric. Food Chem. 2011, 59, 4676–4683. [Google Scholar] [CrossRef]
- Khan, M.; Kumar, S.; Hamal, I.A. Medicinal plants of sewa river catchment area in the northwest Himalaya and its implication for conservation. Ethnobot. Leafl. 2009, 13, 1113–1137. [Google Scholar]
- Duke, J.A.; Ayensu, E.S. Medicinal Plants of China; Reference Publications: Algonac, MI, USA, 1985; ISBN 0-917266-20-4. [Google Scholar]
- Zhou, Y. Studies on the antibacterial activity of extracts from Sapium sebiferum leaves. J. Fujian Forest. Coll. 2007, 27, 231–235. [Google Scholar]
- Joshi, P.; Priya, B.; Gahlot, M. Anti-oxidant, antibacterial and phytochemical studies of leaves extract of Sapium sebiferum L. Int. J. Chem. Sci. 2012, 10, 1805–1814. [Google Scholar]
- Fu, R.; Zhang, Y.; Guo, Y.; Chen, F. Chemical composition, antioxidant and antimicrobial activity of Chinese tallow tree leaves. Ind. Crops Prod. 2015, 76, 374–376. [Google Scholar] [CrossRef]
- Gao, Y.; Ho, G.; He, X.; Chen, C. Studies on in vitro antioxidant activities of leaf extracts of Sapium sebiferum. Food Sci. 2003, 24, 141–145. [Google Scholar]
- Fu, R.; Zhang, Y.T.; Guo, Y.R.; Huang, Q.L.; Peng, T.; Xu, Y.; Tang, L.; Chen, F. Antioxidant and anti-inflammatory activities of the phenolic extracts of Sapium sebiferum (L.) Roxb. leaves. J. Ethnopharmacol. 2013, 147, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Srivastava, S.K.; Aggarwal, K.K.; Ramesh, S.; Kumar, S. Essential oil composition of Zanthoxylum alatum seeds from northern India. Flavour Fragr. J. 2001, 16, 408–410. [Google Scholar] [CrossRef]
- Semnani, K.M.; Saeedi, M.; Akbarzadeh, M. Essential oil composition of Teucrium scordium L. Acta Pharm. 2007, 57, 499–504. [Google Scholar]
- Senatore, F.; Arnold, N.A.; Bruno, M. Volatile components of Centaurea eryngioides Lam. and Centaurea liberica Trev. var. hermonis Boiss. Lam., two Asteraceae growing wild in Lebanon. Nat. Prod. Res. 2005, 19, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Pinkston, D.; Spiteller, G.; Henning, H.; Matthaei, D. High-resolution gas chromatography-mass spectrometry of the methyl esters of organic acids from uremic hemofiltrates. J. Chromatogr. A. 1981, 223, 1–19. [Google Scholar] [CrossRef]
- Rout, P.K.; Misra, R.; Sahoo, S.; Sree, A.; Rao, Y.R. Extraction of kewda (Pandanus fascicularis Lam.) flowers with hexane: Composition of concrete, absolute and wax. Flavour Fragr. J. 2005, 20, 442–444. [Google Scholar] [CrossRef]
- Taiwo, F.O.; Oyedeji, O.; Osundahunsi, M.T. Antimicrobial and antioxidant properties of kaempferol-3-O-glucoside and 1-(4-Hydroxyphenyl)-3-phenylpropan-1-one isolated from the leaves of Annona muricata (Linn.). J. Pharm. Res. Int. 2019, 26, 1–13. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Identification and quantification of major polyphenols in apple pomace. Food Chem. 1997, 59, 87–194. [Google Scholar] [CrossRef]
- Pan, H. A non-covalent dimer formed in electrospray ionization mass spectrometry behaving as a precursor for fragmentations. Rapid Commun. Mass Spectrom. 2008, 22, 3555–3560. [Google Scholar] [CrossRef]
- Chanwitheesuk, A.; Teerawutgulrag, A.; Kilburn, J.D.; Rakariyatham, N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007, 100, 1044–1048. [Google Scholar] [CrossRef]
- Edmonds, M.; Payne, R. Isolation of shikimic acid from star aniseed. J. Chem. Educ. 2005, 82, 599–600. [Google Scholar] [CrossRef]
- Mosayebi, M.; Amin, G.; Arzani, H.; Azarnivand, H.; Maleki, M.; Shafaghat, A. Effect of habitat on essential oil of Achillea filipendula L. in Iran. Asian J. Plant Sci. 2008, 7, 779–781. [Google Scholar] [CrossRef]
- Viña, A.; Murillo, E. Essential oil composition from twelve varieties of basil (Ocimum spp.) grown in Columbia. J. Braz. Chem. Soc. 2003, 14, 744–749. [Google Scholar] [CrossRef]
- Seo, W.H.; Baek, H.H. Identification of characteristic aroma-active compounds from water dropword (Oenanthe javanica DC.). J. Agric. Food Chem. 2005, 53, 6766–6770. [Google Scholar] [CrossRef] [PubMed]
- Andrade, E.H.A.; Santos, A.S.; Zoghbi, M.G.B.; Maia, J.G.S. Volatile constituents of fruits of Astrocarium vulgare Mart. and Bactris gasipaes H.B.K. (Arecaceae). Flavour Fragr. J. 1998, 13, 151–153. [Google Scholar] [CrossRef]
- Woerdenbag, H.J.; Windono, T.; Bos, R.; Riswan, S.; Quax, W.J. Composition of the essential oils of Kaempferia rotunda L. and Kaempferia angustifolia Roscoe rhizomes from Indonesia. Flavour Fragr. J. 2004, 19, 145–148. [Google Scholar] [CrossRef]
- Shen, X.; Gao, Y.; Su, Q.D. Constituents of the essential oil of Rhizoma polygonate. Flavour Fragr. J. 2006, 21, 556–558. [Google Scholar] [CrossRef]
- Senatore, F.; Landolfi, S.; Celik, S.; Bruno, M. Volatile components of Centaurea calcitrapa L. and Centaurea sphaerocephala L. ssp. sphaerocephala, two Asteraceae growing wild in Sicily. Flavour Fragr. J. 2006, 21, 282–285. [Google Scholar] [CrossRef]
- Gómez, E.; Ledbetter, C.A.; Hartsell, P.L. Volatile compounds in apricot, plum, and their interspecific hybrids. J. Agric. Food Chem. 1993, 41, 1669–1676. [Google Scholar] [CrossRef]
- Shiota, H. New esteric components in the volatiles of banana fruit (Musa sapientum L.). J. Agric. Food Chem. 1993, 41, 2056–2062. [Google Scholar] [CrossRef]
- Egolf, L.M.; Jurs, P.C. Quantitative structure-retention and structure-odor intensity relationships for a diverse group of odor-active compounds. Anal. Chem. 1993, 65, 3119–3121. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Q.; Pan, H.; Zeng, T.; Shupe, T.F.; Hsc, C.Y. Extraction and characterization of seed oil from naturally grown chinese tallow trees. J. Am. Oil Chem. Soc. 2013, 90, 459–466. [Google Scholar] [CrossRef]
- Wei, Q.; Fan, W. Compositions of volatile oil from flowers, leaves and stems of Triadica sebifera. J. Essent. Oil Bear. Plants 2020, 23, 633–637. [Google Scholar] [CrossRef]
- Vashist, D.; Ahmad, M. A comparative study of castor and jatropha oil source and its methyl ester test on the diesel engine. Int. J. Eng. Sci. Technol. 2011, 3, 4765–4773. [Google Scholar]
- Fu, R.; Zhang, Y.; Peng, T.; Guo, Y.; Chen, F. Phenolic composition and effects on allergic contact dermatitis of phenolic extracts of Sapium sebiferum (L.) Roxb leaves. J. Ethnopharmacol. 2015, 162, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Peiwen, Q.; Gu, Z.; Liu, Y.; Sikandar, A.; Hussain, D.; Javeed, A.; Shafi, J.; Iqbal, M.F.; An, R.; et al. Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L.). Sci. Rep. 2020, 10, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Madanat, H.M.; Antary, T.M.A.; Zarqa, M.H.A. Toxicity of six ethanol plant extracts against the green peach aphid Myzus persicae SULZER (Homoptera: Aphididae). Fresenius Environ. Bull. 2016, 25, 706–718. [Google Scholar]
- Zerihun, M.; Ele, E. Bioactive compounds and biological assays of different Prosopis juliflora extracts against groundnut aphid. Open Chem. J. 2020, 6, 21–29. [Google Scholar]
- Fenigstein, A.; Eliyahu, M.; Gan-Mor, S.; Veierov, D. Effects of five vegetable oils on the sweetpotato whitefly Bemisia tabaci. Phytoparasitica 2001, 29, 197–206. [Google Scholar] [CrossRef]
- Dotasara, S.K.; Agrawal, N.; Singh, N.; Swami, D. Efficacy of some newer insecticides against mustard aphid Lipaphis erysimi Kalt. in cauliflower. J. Entomol. Zool. Stud. 2017, 5, 654–656. [Google Scholar]
- Adebisi, O.; Dolma, S.K.; Verma, P.K.; Singh, B.; Reddy, S.G.E. Volatile, non-volatile composition and biological activities of Ageratum houstonianum mill. against diamondback moth, Plutella xylostella (L.) and aphid, Aphis craccivora Koch. Indian J. Exp. Biol. 2019, 57, 908–915. [Google Scholar]
- Adebisi, O.; Dolma, S.K.; Verma, P.K.; Singh, B.; Reddy, S.G.E. Volatile, non-volatile composition and insecticidal activity of Eupatorium adenophorum Spreng against diamondback moth, Plutella xylostella (L.), and aphid, Aphis craccivora Koch. Toxin Rev. 2019, 38, 143–150. [Google Scholar] [CrossRef]
- Sanchez, D.O.S.; Franco, G.F.; Montes, D.A.; Cisneros, M.G.V.; Ataida, D.M.A.; Catalan, M.A.M.; Leyva, C.S. Bioactivity of a Linoleic acid–rich fraction of Ricinus communis L. (Euphorbiaceae) leaves against the yellow sugarcane aphid, Sipha flava (Hemiptera: Aphididae). J. Food Prot. 2021, 84, 1524–1527. [Google Scholar] [CrossRef] [PubMed]
- Sotelo-Leyva, C.; Salinas-Sánchez, D.O.; Pena-Chora, G.; Trejo-Loyo, A.G.; Gonzalez-Cortazar, M.; Zamilpa, A. Insecticidal compounds in Ricinus communis L. (Euphorbiaceae) to control Melanaphi ssacchari Zehntner (Hemiptera: Aphididae). Fla. Entomol. 2020, 103, 91–95. [Google Scholar] [CrossRef]
- Dolma, S.K.; Suresh, P.S.; Singh, P.P.; Sharma, U.; Reddy, S.G.E. Insecticidal activity of the extract, fractions, and pure steroidal saponins of Trillium govanianum Wall. ex D. Don for the control of diamondback moth (Plutella xylostella L.) and aphid (Aphis craccivora Koch). Pest Manag. Sci. 2020, 77, 956–962. [Google Scholar] [CrossRef]
- Punia, A.; Chauhan, N.S.; Singh, D.; Kesavan, A.K.; Kaur, S.; Sohal, S.K. Effect of gallic acid on the larvae of Spodoptera litura and its parasitoids Bracon hebetor. Sci. Rep. 2021, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Shen, J.; Zhou, Y.; Wei, Z.P.; Gao, J.M. Insecticidal constituents from Buddleja albiflora Hemsl. Nat. Prod. Res. 2017, 31, 1446–1449. [Google Scholar] [CrossRef]
- Feyereisen, R. Insect CYP Genes and P450 Enzymes. In Insect Molecular Biology and Biochemistry; Lawrence, I.G., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 236–316. [Google Scholar]
- Oakeshott, J.; Claudianos, C.; Campbell, P.M.; Newcomb, R.D.; Russell, R.J. Biochemical genetics and genomics of insect esterases. Compr. Rev. Food Sci. Food Saf. 2005, 5, 309–381. [Google Scholar]
- Park, Y.L.; Tak, J.H. Essential oils for arthropod pest management in agricultural production systems. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Dolma, S.K.; Jayaram, C.S.; Chauhan, N.; Reddy, S.G.E. Effect of Tagetes minuta oil on larval morphology of Plutella xylostella through scanning electron microscopy and mechanism of action by enzyme assay. Toxin Rev. 2021. [Google Scholar] [CrossRef]
- Abdelaal, K.; Essawy, M.; Quraytam, A.; Abdallah, F.; Mostafa, H.; Shoueir, K.; Fouad, H.; Hassan, F.A.S.; Hafez, Y. Toxicity of essential oils nanoemulsion against Aphis craccivora and their inhibitory activity on insect enzymes. Processes 2021, 9, 624. [Google Scholar] [CrossRef]
- Phankaen, Y.; Manaprasertsak, A.; Pluempanupat, W.; Koul, O.; Kainoh, Y.; Bullangpoti, V. Toxicity and repellent action of Coffea arabica against Tribolium castaneum (Herbst) adults under laboratory conditions. J. Stored Prod. Res. 2017, 71, 112–118. [Google Scholar] [CrossRef]
- Stein, S.E. Mass Spectral Database and Software; Version 3.02; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 1990. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Kumari, S.; Dolma, S.K.; Anmol; Sharma, U.; Reddy, S.G.E. Insecticidal activity of extracts, fractions, and pure molecules of Cissampelos pareira Linnaeus against aphid, Aphis craccivora Koch. Molecules 2022, 27, 633. [Google Scholar] [CrossRef] [PubMed]
- Rattan, R.; Reddy, S.G.; Dolma, S.K.; Fozdar, B.I.; Gautam, V.; Sharma, R.; Sharma, U. Triterpenoid saponins from Clematis graveolens Lindl. and evaluation of their insecticidal activity. Nat. Prod. Commun. 2015, 10, 1525–1528. [Google Scholar] [PubMed] [Green Version]
- Houghton, P. Synergy and polyvalence: Paradigms to explain the activity of herbal products. In Evaluation of Herbal Medicinal Products: Perspectives on Quality, Safety and Efficacy; Mukherjee, P.K., Houghton, P., Eds.; Pharmaceutical Press: London, UK, 2009; pp. 85–94. [Google Scholar]
- Bassole, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha × piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
Sr. No. | Compound’s Name | Area (%) | RIa * | RIb ** | Mass Fragmentation |
---|---|---|---|---|---|
1 | 9-hexadecenoic acid, methyl ester (Palmitoleic acid, C6: 1) | 2.13 | 1933 | 1931 [13] | 268 [M+], 236, 207, 194, 152, 138, 123, 97, 74, 69, 55, 41 |
2 | Hexadecanoic acid, methyl ester (Palmitic acid, C16: 0) | 4.99 | 1986 | 1984 [14] | 270 [M+], 239, 227, 199, 185, 171, 143, 129, 101, 87, 74, 57, 41 |
3 | 9,12-octadecadienoic acid (Z, Z), methyl ester (Linoleic acid, C18: 2) | 15.42 | 2092 | 2094 [15] | 294 [M+], 262, 178, 164, 150, 135, 123, 109, 95, 81, 67, 55, 41 |
4 | 9-octadecenoic acid, methyl ester (Oleic acid, C18: 1) | 8.78 | 2100 | 2101 [16] | 296 [M+], 264, 222, 180, 166, 152, 137, 123, 97, 83, 69, 55, 41 |
5 | Octadecanoic acid, methyl ester (Stearic acid, C18: 0) | 1.38 | 2121 | 2128 [17] | 298 [M+], 255, 213, 199, 143, 129, 101, 87, 74, 57, 43, 41 |
Metabolites | Molecular Formula | Area (%) | RIa * | RIb ** | Mass Fragmentation |
---|---|---|---|---|---|
Leaf | |||||
1,8-cineole | C10H18O | 1.61 | 1037 | 1037 [23] | m/z 154 (M+), 139, 125,108, 84, 81, 69, 43, 41 |
Fenchyl acetate | C12H20O2 | 0.70 | 1230 | 1223 [24] | m/z 154 (M+), 136, 121, 108, 95, 80, 69, 43, 41, 27 |
Neophytadiene | C20H38 | 5.87 | 1841 | 1836 [25] | m/z 137 (M+), 123, 109, 95, 82, 68, 43, 41 |
n-hexadecanoic acid | C16H32O2 | 15.61 | 1961 | 1962 [26] | m/z 256 (M+), 227, 213, 199, 185, 171, 157, 143, 129, 115, 98, 85, 73, 60, 43, 41 |
cis, cis, cis-7,10,13-hexadecatrienal | C16H26O | 3.06 | 1992 | 1989 [27] | m/z 264 (M+), 222, 149, 135, 121, 108, 95, 79, 67, 55, 41 |
Octadecanoic acid, ethyl ester | C20H40O2 | 9.85 | 2189 | 2189 [28] | m/z 312 (M+), 269, 213, 157, 143, 129, 115, 101, 88, 70, 57, 43, 41 |
Bark | |||||
Hexanoic acid | C6H12O2 | 0.31 | 984 | 989 [28] | m/z 87 (M+), 73, 60, 43, 41, 40 |
2-decenal | C10H18O | 0.23 | 1263 | 1260 [29] | m/z 121 (M+), 98, 84, 70, 57, 43, 41, 40 |
Ethyl phthalate | C12H17O4 | 28.43 | 1587 | 1585 [30] | m/z 222 (M+), 177, 149, 121, 105, 93, 76, 65, 50 |
1-octadecene | C18H36 | 2.69 | 1803 | 1800 [31] | m/z 125 (M+), 111, 97, 83, 57, 41, 40 |
Galaxolide | C18H26O | 44.73 | 1834 | 1837 [32] | m/z 258 (M+), 243, 213, 185, 171, 157, 143, 128 |
Leaf Extracts | LC50 * (mg/L) | Confidence Limits (mg/L) | Slope ± SE | Chi Square | p-Value |
---|---|---|---|---|---|
LEE 100% (72 h) | 14,100.0 | 11,764.41–17,527.10 | 2.31 ± 0.53 | 0.36 | 0.99 |
LEE 100% (96 h) | 8702.07 | 6880.35–10,137.00 | 3.08 ± 0.52 | 0.61 | 0.99 |
LEE 80% (72 h) | 9590.49 | 7706.54–11,128.43 | 2.91 ± 0.52 | 1.81 | 0.87 |
LEE 80% (96 h) | 6756.42 | 5342.84–7885.95 | 3.97 ± 0.58 | 1.84 | 0.87 |
LEE 50% (72 h) | 38,860.0 | 24,892.46–341,196.32 | 2.07 ± 0.72 | 0.67 | 0.98 |
LEE 50% (96 h) | 28,570.0 | 21,383.79–71,689.83 | 2.51 ± 0.71 | 0.68 | 0.98 |
LME 100% (72 h) | 9627.0 | 6881.53–11,725.61 | 2.07 ± 0.49 | 2.02 | 0.85 |
LME 100% (96 h) | 7528.56 | 5691.95–8931.12 | 3.04 ± 0.52 | 5.07 | 0.41 |
LME 80% (72 h) | 10,800.0 | 8603.89–12,754.79 | 2.45 ± 0.50 | 2.24 | 0.81 |
LME 80% (96 h) | 7120.27 | 5593.04–8326.45 | 3.63 ± 0.55 | 6.95 | 0.22 |
LME 50% (72 h) | 11,540.0 | 9689.45–13,331.76 | 2.86 ± 0.53 | 3.76 | 0.58 |
LME 50% (96 h) | 7579.55 | 6239.59–8676.68 | 4.15 ± 0.58 | 5.80 | 0.33 |
SO (72 h) | 2504.59 | 1675.92–3562.91 | 1.18 ± 0.21 | 0.86 | 0.97 |
SO (96 h) | 850.938 | 533.52–1171.05 | 1.69 ± 0.25 | 3.28 | 0.66 |
Bark extracts | |||||
BEE 100% (72 h) | 8325.46 | 6958.41–9455.76 | 4.05 ± 0.57 | 7.39 | 0.19 |
BEE 100% (96 h) | 5228.89 | 4038.43–6165.80 | 4.88 ± 0.78 | 3.83 | 0.57 |
BEE 80% (72 h) | 7300.57 | 5889.44–8435.86 | 3.97 ± 0.57 | 6.17 | 0.29 |
BEE 80% (96 h) | 5115.98 | 3613.44–6219.77 | 4.04 ± 0.75 | 1.31 | 0.73 |
BEE 50% (72 h) | 10,650.0 | 8244.02–12,743.89 | 2.25 ± 0.50 | 3.73 | 0.59 |
BEE 50% (96 h) | 7098.41 | 5159.65–8546.32 | 2.91 ± 0.52 | 7.32 | 0.20 |
BME 100% (72 h) | 8737.64 | 6586.26–10,377.96 | 2.61 ± 0.50 | 2.12 | 0.83 |
BME 100% (96 h) | 5701.69 | 4147.42–6880.23 | 3.73 ± 0.63 | 2.34 | 0.67 |
BME 80% (72 h) | 9490.58 | 7504.78–11,085.89 | 2.78 ± 0.51 | 0.45 | 0.99 |
BME 80% (96 h) | 5779.72 | 4187.11–7007.96 | 3.55 ± 0.58 | 1.42 | 0.92 |
BME 50% (72 h) | 10,580.0 | 8431.88–12,452.44 | 2.51 ± 0.51 | 1.43 | 0.92 |
BME 50% (96 h) | 5233.81 | 2941.71–6869.58 | 2.51 ± 0.53 | 7.29 | 0.20 |
Azadirachtin (72 h) | 2642.32 | 2013.70–3816.64 | 1.53 ± 0.22 | 0.99 | 0.80 |
Azadirachtin (96 h) | 1174.22 | 973.61–1416.60 | 2.28 ± 0.25 | 5.16 | 0.16 |
Leaf Fractions | LC50 (mg/L) * | Confidence Limits (mg/L) | Slope ± SE | Chi Square | p-Value |
---|---|---|---|---|---|
n-hexane (72 h) | 425.73 | 196.38–679.40 | 1.09 ± 0.21 | 1.55 | 0.82 |
n-hexane (96 h) | 196.61 | 76.21–316.54 | 1.57 ± 0.33 | 2.45 | 0.65 |
Ethyl acetate (72 h) | 838.89 | 558.64–1178.77 | 1.39 ± 0.21 | 3.96 | 0.41 |
Ethyl acetate (96 h) | 367.75 | 230.65–503.57 | 1.88 ± 0.32 | 0.75 | 0.94 |
n-butanol (72 h) | 1527.84 | 1123.04–2093.81 | 1.60 ± 0.22 | 1.14 | 0.89 |
n-butanol (96 h) | 990.22 | 746.43–1294.96 | 1.92 ± 0.25 | 2.68 | 0.61 |
Water (72 h) | 2702.82 | 1799.12–4556.10 | 1.12 ± 0.19 | 1.34 | 0.85 |
Water (96 h) | 864.68 | 643.83–1133.25 | 1.89 ± 0.25 | 2.07 | 0.72 |
Bark fractions | |||||
n-hexane (72 h) | 1659.98 | 1211.70–2310.56 | 1.54 ± 0.21 | 3.62 | 0.46 |
n-hexane (96 h) | 1130.95 | 867.74–1467.86 | 2.02 ± 0.26 | 1.95 | 0.75 |
Ethyl acetate (72 h) | 3629.52 | 2322.33–6984.03 | 1.05 ± 0.19 | 3.60 | 0.46 |
Ethyl acetate (96 h) | 813.45 | 613.57–1052.33 | 2.04 ± 0.27 | 0.80 | 0.94 |
n-butanol (72 h) | 3539.63 | 2343.17–6296.58 | 1.15 ± 0.20 | 1.92 | 0.75 |
n-butanol (96 h) | 1071.81 | 762.69–1472.81 | 1.52 ± 0.22 | 5.26 | 0.26 |
Water 72 h) | 3049.50 | 2087.70–4995.85 | 1.24 ± 0.20 | 5.94 | 0.20 |
Water (96 h) | 915.15 | 684.74–1198.41 | 1.90 ± 0.25 | 2.55 | 0.63 |
Azadirachtin (72 h) | 2642.32 | 2013.70–3816.64 | 1.53 ± 0.22 | 0.99 | 0.80 |
Azadirachtin (96 h) | 1174.22 | 973.61–1416.60 | 2.28 ± 0.25 | 5.16 | 0.16 |
Compounds | LC50 (mg/L) * | Confidence Limits (mg/L) | Slope ± SE | Chi Square | p-Value |
---|---|---|---|---|---|
Kaempferol-3-O-glucoside (72 h) | 4512.54 | 3455.14–6789.22 | 2.02 ± 0.31 | 0.94 | 0.82 |
Kaempferol-3-O-glucoside (96 h) | 3762.69 | 2924.95–5398.97 | 1.95 ± 0.28 | 1.36 | 0.72 |
Quercetin-3-O-glucoside (72 h) | 3068.62 | 2462.99–4093.71 | 2.09 ± 0.28 | 2.21 | 0.53 |
Quercetin-3-O-glucoside (96 h) | 1855.93 | 1550.48–2261.15 | 2.39 ± 0.27 | 2.60 | 0.46 |
Gallic acid (72 h) | 2339.69 | 1928.91–2933.01 | 2.24 ± 0.27 | 2.03 | 0.57 |
Gallic acid (96 h) | 1303.68 | 1118.34–1520.76 | 3.07 ± 0.32 | 1.44 | 0.70 |
Shikimic acid (72 h) | 2826.31 | 2320.31–3606.86 | 2.30 ± 0.29 | 1.68 | 0.64 |
Shikimic acid (96 h) | 1725.09 | 1447.64–2080.49 | 2.47 ± 0.27 | 0.23 | 0.97 |
Azadirachtin (72 h) | 2642.32 | 2013.70–3816.64 | 1.53 ± 0.22 | 0.99 | 0.80 |
Azadirachtin (96 h) | 1174.22 | 973.61–1416.60 | 2.28 ± 0.25 | 5.16 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolma, S.K.; Singh, P.P.; Reddy, S.G.E. Insecticidal and Enzyme Inhibition Activities of Leaf/Bark Extracts, Fractions, Seed Oil and Isolated Compounds from Triadica sebifera (L.) Small against Aphis craccivora Koch. Molecules 2022, 27, 1967. https://doi.org/10.3390/molecules27061967
Dolma SK, Singh PP, Reddy SGE. Insecticidal and Enzyme Inhibition Activities of Leaf/Bark Extracts, Fractions, Seed Oil and Isolated Compounds from Triadica sebifera (L.) Small against Aphis craccivora Koch. Molecules. 2022; 27(6):1967. https://doi.org/10.3390/molecules27061967
Chicago/Turabian StyleDolma, Shudh Kirti, Prithvi Pal Singh, and Sajjalavarahalli G. Eswara Reddy. 2022. "Insecticidal and Enzyme Inhibition Activities of Leaf/Bark Extracts, Fractions, Seed Oil and Isolated Compounds from Triadica sebifera (L.) Small against Aphis craccivora Koch" Molecules 27, no. 6: 1967. https://doi.org/10.3390/molecules27061967
APA StyleDolma, S. K., Singh, P. P., & Reddy, S. G. E. (2022). Insecticidal and Enzyme Inhibition Activities of Leaf/Bark Extracts, Fractions, Seed Oil and Isolated Compounds from Triadica sebifera (L.) Small against Aphis craccivora Koch. Molecules, 27(6), 1967. https://doi.org/10.3390/molecules27061967