Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Rare Metal Earth Oxide Nanoparticles
2.3. Fabrication of MWCNTs/CeO2 and MWCNTs/Yb2O3 Modified-GCE
2.4. Characterizations of REMO Nanoparticles and MWCNT/REMO Composites
2.5. Preparation of the SFX Standard Solutions
2.6. Electrochemical Measurements
3. Results and Discussion
3.1. Characterizations of REMO Solids and MWCNTs/REMO Composites
3.2. Analysis of SFX Using Bare GCE Sensor
3.3. Analysis of SFX Using MWCNTs-REMO Modified GCE Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otten, H. Domagk and the development of the sulphonamides. J. Antimicrob. Chemother. 1986, 17, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Stokstad, E.L.R.; Jukes, T.H. Sulfonamides and Folic Acid Antagonists: A Historical Review. J. Nutr. 1987, 117, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, C.E.; García-Galán, M.J.; Blánquez, P.; Díaz-Cruz, M.S.; Barceló, D.; Caminal, G.; Vicent, T. Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. J. Hazard. Mater. 2012, 213, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Alder, A.C.; McArdell, C.S.; Golet, E.M.; Ibric, S.; Molnar, E.; Nipales, N.S.; Giger, W. Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during wastewater treatment and in ambient waters in Switzerland. In Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues; Daughton, C.G., Jones Lepp, T., Eds.; Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 791, pp. 56–69. [Google Scholar] [CrossRef] [Green Version]
- El-Gendy, A.; El-Shafie, A.S.; Issa, A.; Al-Meer, S.; Al-Saad, K.; El-Azazy, M. Carbon-Based Materials (CBMs) for Determination and Remediation of Antimicrobials in Different Substrates: Wastewater and Infant Foods as Examples. In Carbon-Based Material for Environmental Protection and Remediation; IntechOpen: Rijeka, Croatia, 2020; pp. 103–122. [Google Scholar] [CrossRef]
- Yin, R.; Guo, W.; Du, J.; Zhou, X.; Zheng, H.; Wu, X.; Chang, J.; Ren, N. Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: Performances and mechanisms. J. Chem. Eng. 2017, 317, 632–639. [Google Scholar] [CrossRef]
- El-Azazy, M.; El-Shafie, A.S.; Elgendy, A.; Issa, A.; Al-Meer, S.; Al-Saad, K. A Comparison between Different Agro-Wastes and Carbon Nanotubes for Removal of Sarafloxacin from Wastewater: Kinetics and Equilibrium Studies. Molecules 2020, 25, 5429. [Google Scholar] [CrossRef]
- El-Azazy, M.; El-Shafie, A.S.; Al-Meer, S.; Al-Saad, K.A. Eco-Structured Adsorptive Removal of Tigecycline from Wastewater: Date Pits’ Biochar versus the Magnetic Biochar. Nanomaterials 2021, 11, 30. [Google Scholar] [CrossRef]
- Parab, S.R.; Amritkar, P.N. Development and validation of a procedure for determination of sulfonamide residues in pasteurized milk using modified QuEChERS method and liquid chromatography/tandem mass spectrometry. J. AOAC Int. 2012, 95, 1528–1533. [Google Scholar] [CrossRef]
- Fang, G.Z.; He, J.X.; Wang, S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J. Chromatogr. A 2006, 1127, 12–17. [Google Scholar] [CrossRef]
- Yao, J.; Zeng, X.; Wang, Z. Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: Kinetic study and products identification. J. Chem. Eng. 2017, 330, 345–354. [Google Scholar] [CrossRef]
- Song, Y.; Gao, S.; Tian, J.; Zhang, H. Construction of Ag/g-C3N4 composites with uniform-sized Ag nanoparticles and the application for sulfisoxazole degradation in the presence of visible radiation. J. Environ. Chem. Eng. 2020, 8, 104390. [Google Scholar] [CrossRef]
- Orachorn, N.; Bunkoed, O. Nanohybrid magnetic composite optosensing probes for the enrichment and ultra-trace detection of mafenide and sulfisoxazole. Talanta 2021, 228, 122237. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Baek, M.C.; Kang, W. Quantitative determination of sulfisoxazole and its three N-acetylated metabolites using HPLC–MS/MS, and the saturable pharmacokinetics of sulfisoxazole in mice. J. Pharm. Biomed. Anal. 2016, 129, 332–338. [Google Scholar] [CrossRef]
- Roos, R.W. High pressure liquid chromatographic determination of sulfisoxazole in pharmaceuticals and separation patterns of other sulfonamides. J. AOAC Int. 1981, 64, 851–854. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Li, Z.; Zhong, S.; Wang, W.; Wang, A.; Chen, J. Fabrication of CoFe2O4–graphene nanocomposite and its application in the magnetic solid phase extraction of sulfonamides from milk samples. Talanta 2015, 144, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, Y.; Wang, Y.; Duan, W.; Hu, J.; Zhou, L.; Pu, Q. 7-(Diethylamino) coumarin-3-carboxylic acid as derivatization reagent for 405 nm laser-induced fluorescence detection: A case study for the analysis of sulfonamides by capillary electrophoresis. Talanta 2019, 201, 16–22. [Google Scholar] [CrossRef]
- Rodríguez, N.; Ortiz, M.C.; Sarabia, L.A.; Herrero, A. A multivariate multianalyte screening method for sulfonamides in milk based on front-face fluorescence spectroscopy. Anal. Chim. Acta 2010, 657, 136–146. [Google Scholar] [CrossRef]
- Feldman, J.A.; Patel, V.U. Colorimetric determination of acetyl sulfisoxazole in the presence of its hydrolysis products, sulfisoxazole and acetic acid. J. Pharm. Sci. 1971, 60, 1696–1698. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci. 2017, 495, 61–67. [Google Scholar] [CrossRef]
- Kimmel, D.W.; Leblanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 703. [Google Scholar] [CrossRef] [Green Version]
- Elazazy, M.S.; Shalaby, A.; Elbolkiny, M.N.; Khalil, H.M. Performance and characteristics of new metoclopramide selective membrane electrode. Chin. Pharm. J. 2004, 56, 49–56. [Google Scholar]
- Elazazy, M.S.; Khalil, H.M.; Elbolkiny, M.N.; Shalaby, A. Development of high performance ion-selective electrode for in situ measurements. Chin. Pharm. J. 2013, 55, 491–497. [Google Scholar]
- Vinoth Kumar, J.; Karthik, R.; Chen, S.M.; Balasubramanian, P.; Muthuraj, V.; Selvam, V. A novel cerium tungstate nanosheets modified electrode for the effective electrochemical detection of carcinogenic nitrite ions, electroanalysis. Electroanalysis 2017, 29, 2385–2394. [Google Scholar] [CrossRef]
- Sunder, G.S.S.; Rohanifar, A.; Devasurendra, A.M.; Kirchhoff, J.R. Selective determination of l-DOPA at a graphene oxide/yttrium oxide modified glassy carbon electrode. Electrochim. Acta 2019, 301, 192–199. [Google Scholar] [CrossRef]
- Baytak, A.K.; Teker, T.; Duzmen, S.; Aslanoglu, M. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen. Mater. Sci. Eng. C 2016, 66, 278–284. [Google Scholar] [CrossRef]
- Anvari, L.; Ghoreishi, S.M.; Faridbod, F.; Ganjali, M.R. Electrochemical Determination of Methamphetamine in Human Plasma on a Nanoceria Nanoparticle Decorated Reduced Graphene Oxide (rGO) Glassy Carbon Electrode (GCE). Anal. Lett. 2021, 54, 2509–2522. [Google Scholar] [CrossRef]
- Jahani, P.M.; Javar, H.A.; Mahmoudi-Moghaddam, H. A new electrochemical sensor based on Europium-doped NiO nanocomposite for detection of venlafaxine. Measurement 2021, 173, 108616. [Google Scholar] [CrossRef]
- Kutluay, A.; Aslanoglu, M. Modification of electrodes using conductive porous layers to confer selectivity for the voltammetric detection of paracetamol in the presence of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem. 2013, 185, 398–404. [Google Scholar] [CrossRef]
- Wang, J. Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis 2005, 17, 7–14. [Google Scholar] [CrossRef]
- Elazazy, M.S.; Issa, A.A.; Al-Mashreky, M.; Al-Sulaiti, M.; Al-Saad, K. Application of Fractional Factorial Design for Green Synthesis of Cyano-Modified Silica Nanoparticles: Chemometrics and Multifarious Response Optimization. Adv. Powder Technol. 2018, 29, 1204–1215. [Google Scholar] [CrossRef]
- Al-Saad, K.; Issa, A.A.; Idoudi, S.; Shomar, B.; Al-Ghouti, M.A.; Al-Hashimi, N.; El-Azazy, M. Smart Synthesis of Trimethyl ethoxysilane (TMS) Functionalized Core–Shell Magnetic Nanosorbents Fe3O4@SiO2: Process Optimization and Application for Extraction of Pesticides. Molecules 2020, 25, 4827. [Google Scholar] [CrossRef] [PubMed]
- Haspulat, B.; Sarıbel, M.; Kamış, H. Surfactant assisted hydrothermal synthesis of SnO nanoparticles with enhanced photocatalytic activity. Arab. J. Chem. 2020, 13, 96–108. [Google Scholar] [CrossRef]
- El-Azazy, M.; El-Shafie, A.S.; Morsy, H. Biochar of Spent Coffee Grounds as Per Se and Impregnated with TiO2: Promising Waste-Derived Adsorbents for Balofloxacin. Molecules 2021, 26, 2295. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Tezuka, Y.; Ohshima, T.; Katayama, M.; Ogata, T.; Sotowa, K.I.; Katoh, M.; Sugiyama, S. Formation of cerium carbonate hydroxide and cerium oxide nanostructures by self-assembly of nanoparticles using surfactant template and their catalytic oxidation. Adv. Powder Technol. 2016, 27, 2128–2135. [Google Scholar] [CrossRef]
- Wu, M.Z.; Liu, Y.M.; Dai, P.; Sun, Z.Q.; Liu, X.S. Hydrothermal synthesis and photoluminescence behavior of CeO2 nanowires with the aid of surfactant PVP. Int. J. Miner. Metall. Mater. 2010, 17, 470–474. [Google Scholar] [CrossRef]
- Huang, G.; Chen, T.; Chen, W.; Wang, Z.; Chang, K.; Ma, L.; Huang, F.; Chen, D.; Lee, J.Y. Graphene-like MoS2/graphene composites: Cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 2013, 9, 3693–3703. [Google Scholar] [CrossRef]
- Tang, G.; Tang, H.; Li, C.; Li, W.; Ji, X. Surfactant-assisted hydrothermal synthesis and characterization of WS2 nanorods. Mater. Lett. 2011, 65, 3457–3460. [Google Scholar] [CrossRef]
- Hanifah, M.F.R.; Jaafar, J.; Othman, M.H.D.; Ismail, A.F.; Rahman, M.A.; Yusof, N.; Salleh, W.N.W.; Aziz, F.; Ajid, A.Z.A. Advanced ternary RGO/bimetallic Pt-Pd alloy/CeO2 nanocomposite electrocatalyst by one-step hydrothermal-assisted formic acid reduction reaction for methanol electrooxidation. J. Environ. Chem. Eng. 2021, 9, 104991. [Google Scholar] [CrossRef]
- Kongsat, P.; Kudkaew, K.; Tangjai, J.; Edgar, A.O.; Pongprayoon, T. Synthesis of structure-controlled hematite nanoparticles by a surfactant-assisted hydrothermal method and property analysis. J. Phys. Chem. Solids 2021, 148, 109685. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Azazy, M.; Ahsan, I.; Bensalah, N. Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors. Molecules 2022, 27, 2033. https://doi.org/10.3390/molecules27062033
El-Azazy M, Ahsan I, Bensalah N. Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors. Molecules. 2022; 27(6):2033. https://doi.org/10.3390/molecules27062033
Chicago/Turabian StyleEl-Azazy, Marwa, Insharah Ahsan, and Nasr Bensalah. 2022. "Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors" Molecules 27, no. 6: 2033. https://doi.org/10.3390/molecules27062033
APA StyleEl-Azazy, M., Ahsan, I., & Bensalah, N. (2022). Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors. Molecules, 27(6), 2033. https://doi.org/10.3390/molecules27062033