Schisandra rubriflora Fruit and Leaves as Promising New Materials of High Biological Potential: Lignan Profiling and Effect-Directed Analysis
Abstract
:1. Introduction
2. Results
2.1. TLC Screening Analysis of S. rubriflora Fruit and Leaves Extracts
2.2. Effect-Directed Detection—TLC-DB
2.2.1. DPPH Test
2.2.2. Bacillus subtilis
2.2.3. α-Glucosidase Inhibition Assay
2.2.4. AChE Inhibition Assay
2.2.5. Lipase Inhibition Assay
2.2.6. Tyrosinase Inhibition Assay
2.3. Micro-Preparative TLC
2.4. UHPLC–MS/MS Lignan Targeted Profiling
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Origin and Preparation
4.3. Methods
4.3.1. Thin-Layer Chromatography
4.3.2. Chemical Derivatization
Anisaldehyde
Thymol
NP-PEG Reagent
4.3.3. Effect-Directed Detection
TLC-DPPH
TLC-DB—Bacillus subtilis
TLC-DB—α-Glucosidase Inhibition
TLC-DB—AChE Inhibition
TLC-DB—Lipase Inhibition
TLC-DB—Tyrosinase Inhibition
4.3.4. TLC Micro-Preparative Analysis
4.3.5. Lignan Profiling in Micro-Preparative Fractions
4.3.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Szopa, A.; Ekiert, R.; Ekiert, H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev. 2017, 16, 195–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szopa, A.; Barnaś, M.; Ekiert, H. Phytochemical studies and biological activity of three Chinese Schisandra species (Schisandra sphenanthera, Schisandra henryi and Schisandra rubriflora): Current findings and future applications. Phytochem. Rev. 2019, 18, 109–128. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Monographs on Selected Medicinal Plants. Vol. 3. Fructus Schisandrae; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Chemical Industry Press: Beijing, China, 2005. [Google Scholar]
- European directorate for the quality of medicines schisandra fruit. In European Pharmacopoeia, 9th ed.; Council of Europe: Strasburg, France, 2017; p. 1514.
- Hancke, J.L.; Burgos, R.A.; Ahumada, F. Schisandra chinensis (Turcz.) Baill. Fitoterapia 1999, 70, 451–471. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed. Pharmacother. 2018, 97, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Men, L.; Sun, Y.; Wei, M.; Fan, X. Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), A current review. Eur. J. Pharmacol. 2021, 892, 173796. [Google Scholar] [CrossRef] [PubMed]
- Szopa, A.; Dziurka, M.; Warzecha, A.; Kubica, P.; Klimek-Szczykutowicz, M.; Ekiert, H. Targeted lignan profiling and anti-inflammatory properties of Schisandra rubriflora and Schisandra chinensis extracts. Molecules 2018, 23, 3103. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Liu, G.T. Anti-oxidant activity of dibenzocyclooctene lignans isolated from schisandraceae. Planta Med. 1992, 58, 311–313. [Google Scholar] [CrossRef]
- Chen, M.; Kilgore, N.; Lee, K.H.; Chen, D.F. Rubrisandrins A and B, lignans and related anti-HIV compounds from Schisandra rubriflora. J. Nat. Prod. 2006, 69, 1697–1701. [Google Scholar] [CrossRef]
- Choma, I.M.; Jesionek, W. TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography 2015, 2, 225–238. [Google Scholar] [CrossRef]
- Choma, I.M.; Grzelak, E. Bioautography detection in thin-layer chromatography. J. Chromatogr. A 2011, 1218, 2684–2691. [Google Scholar] [CrossRef]
- Marston, A. Thin-layer chromatography with biological detection in phytochemistry. J. Chromatogr. A 2011, 1218, 2676–2683. [Google Scholar] [CrossRef] [PubMed]
- Kirchert, S.; Morlock, G.E. Orthogonal hyphenation of planar and liquid chromatography for mass spectrometry of biomarkers out of the bioassay matrix (NP-HPTLC-UV/vis/FLD-bioassay-RP/IEX-HPLC-UV/vis-ESI-MS). Anal. Chem. 2020, 92, 9057–9064. [Google Scholar] [CrossRef] [PubMed]
- Jesionek, W.; Móricz, Á.M.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-direct bioautography and LC/MS as complementary methods in identification of antibacterial agents in plant tinctures from the asteraceae family. J. AOAC Int. 2015, 98, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Choma, I.M.; Jesionek, W. Effect-directed detection in chromatography. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–10. [Google Scholar]
- Móricz, Á.M.; Ott, P.G.; Yüce, I.; Darcsi, A.; Béni, S.; Morlock, G.E. Effect-directed analysis via hyphenated high-performance thin-layer chromatography for bioanalytical profiling of sunflower leaves. J. Chromatogr. A 2018, 1533, 213–220. [Google Scholar] [CrossRef]
- Krüger, S.; Hüsken, L.; Fornasari, R.; Scainelli, I.; Morlock, G.E. Effect-directed fingerprints of 77 botanical extracts via a generic high-performance thin-layer chromatography method combined with assays and mass spectrometry. J. Chromatogr. A 2017, 1529, 93–106. [Google Scholar] [CrossRef]
- Sobstyl, E.; Szopa, A.; Ekiert, H.; Gnat, S.; Typek, R.; Choma, I.M. Effect directed analysis and TLC screening of Schisandra chinensis fruits. J. Chromatogr. A 2020, 1618, 460942. [Google Scholar] [CrossRef]
- Marston, A.; Kissling, J.; Hostettmann, K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal. 2002, 13, 51–54. [Google Scholar] [CrossRef]
- Zhongduo, Y.; Xu, Z.; Dongzhu, D.; Zhuwen, S.; Mingjun, Y.; Shuo, L. Modified TLC bioautographic method for screening acetylcholinesterase inhibitors from plant extracts. J. Sep. Sci. 2009, 32, 3257–3259. [Google Scholar] [CrossRef]
- Jamshidi-Aidji, M.; Macho, J.; Mueller, M.B.; Morlock, G.E. Effect-directed profiling of aqueous, fermented plant preparations via high-performance thin-layer chromatography combined with in situ assays and high-resolution mass spectrometry. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 266–273. [Google Scholar] [CrossRef]
- Hassan, A.M.S. TLC bioautographic method for detecting lipase inhibitors. Phytochem. Anal. 2012, 23, 405–407. [Google Scholar] [CrossRef]
- Taibon, J.; Ankli, A.; Schwaiger, S.; Magnenat, C.; Boka, V.I.; Simões-Pires, C.; Aligiannis, N.; Cuendet, M.; Skaltsounis, A.L.; Reich, E.; et al. Prevention of False-Positive Results: Development of an HPTLC Autographic Assay for the Detection of Natural Tyrosinase Inhibitors. Planta Med. 2015, 81, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- Di Hsu, K.; Chan, Y.H.; Chen, H.J.; Lin, S.P.; Cheng, K.C. Tyrosinase-based TLC Autography for anti-melanogenic drug screening. Sci. Rep. 2018, 8, 401. [Google Scholar] [CrossRef]
- Hung, T.M.; Na, M.; Min, B.S.; Ngoc, T.M.; Lee, I.S.; Zhang, X.; Bae, K. Acetylcholinesterase inhibitory effect of lignans isolated from Schizandra chinensis. Arch. Pharm. Res. 2007, 30, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- Mocan, A.; Zengin, G.; Crişan, G.; Mollica, A. Enzymatic assays and molecular modeling studies of Schisandra chinensis lignans and phenolics from fruit and leaf extracts. J. Enzyme Inhib. Med. Chem. 2016, 31, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Adefegha, S.A.; Oboh, G. Acetylcholinesterase (AChE) inhibitory activity, antioxidant properties and phenolic composition of two Aframomum species. J. Basic Clin. Physiol. Pharmacol. 2012, 23, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Uysal, S.; Ceylan, R.; Aktumsek, A. Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Ind. Crops Prod. 2015, 70, 1–6. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, S.K.C.; Zhang, Y. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem. 2017, 214, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Li, L.; Ren, H.Y.; Yang, X.D.; Zhao, J.F.; Li, G.P.; Zhang, H. Bin Rubriflorin A and B, two novel partially saturated dibenzocyclooctene lignans from Schisandra rubriflora. Helv. Chim. Acta 2004, 87, 2943–2947. [Google Scholar] [CrossRef]
- Li, H.M.; Luo, Y.M.; Pu, J.X.; Li, X.N.; Lei, C.; Wang, R.R.; Zheng, Y.T.; Sun, H.D.; Li, R.T. Four new dibenzocyclooctadiene lignans from Schisandra rubriflora. Helv. Chim. Acta 2008, 91, 1053–1062. [Google Scholar] [CrossRef]
- Mu, H.-X.; Li, X.-S.; Fan, P.; Yang, G.-Y.; Pu, J.-X.; Sun, H.-D.; Hu, Q.-F.; Xiao, W.-L. Dibenzocyclooctadiene lignans from the fruits of Schisandra rubriflora and their anti-HIV-1 activities. J. Asian Nat. Prod. Res. 2011, 13, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.L.; Wang, R.R.; Zhao, W.; Tian, R.R.; Shang, S.Z.; Yang, L.M.; Yang, J.H.; Pu, J.X.; Zheng, Y.T.; Sun, H.D. Anti-HIV-1 activity of lignans from the fruits of Schisandra rubriflora. Arch. Pharm. Res. 2010, 33, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.clematis.com.pl/pl (accessed on 4 January 2022).
- Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-642-00573-2. [Google Scholar]
- Grzelak, E.M.; Majer-Dziedzic, B.; Choma, I.M.; Pilorz, K.M. Development of a novel direct bioautography-thin-layer chromatography test: Optimization of growth conditions for gram-positive bacteria, Bacillus subtilis. J. AOAC Int. 2013, 96, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lignans | Part of the Plant | Lignan Contents (mg/100 g DW) | |||||||
---|---|---|---|---|---|---|---|---|---|
Fractions | |||||||||
I | II | III | IV | V | VI | VII | Total Content in All Fractions | ||
6-O-Benzoylgomisin O | Leaves (M) | 0.02 b,c | 0.02 b | 0.02 b,c | 0.02 a | nd * | 0.12 c | 20.96 c | 21.18 c |
Leaves (F) | 0.24 a | 0.05 a,b | 0.05 b | 0.02 a | 0.02 | 4.18 a | 37.91 a | 42.48 a | |
Fruits | 0.05 b | 0.02 b | 0.10 a | 0.02 a | nd | 1.43 b | 32.06 b | 33.68 b | |
Epigomisin O | Leaves (M) | nd | 0.02 | nd | nd | nd | 1.77 c | 0.85 b | 2.65 b,c |
Leaves (F) | 0.05 a | nd | nd | nd | nd | 5.08 b | 0.56 b | 5.68 b | |
Fruits | 0.02 a,b | nd | 0.02 | nd | nd | 6.82 a | 6.22 a | 13.09 a | |
Fragransin A2 | Leaves (M) | 0.02 | tr ** | tr | tr | tr | tr | tr | 0.02 a,b |
Leaves (F) | tr | tr | tr | 0.05 | tr | 0.05 | tr | 0.10 a | |
Fruits | tr | tr | tr | tr | tr | tr | tr | tr | |
Gomisin A | Leaves (M) | nd | 0.05 | 0.01 b | 0.01 b | 0.01 b | 2.15 b | 0.01 a,b | 2.25 b |
Leaves (F) | nd | nd | nd | nd | nd | 5.76 a | 0.05 a | 5.83 a | |
Fruits | 0.02 | nd | 0.09 a | 1.6 a | 0.49 a | 1.85 b,c | 0.02 a,b | 2.52 b | |
Gomisin D | Leaves (M) | 0.05 | tr | 0.02 a | 0.05 a | 0.05 c | 14.04 a | 7.29 a | 21.49 a |
Leaves (F) | tr | tr | tr | tr | 0.12 b | 6.82 b | 4.01 b | 10.95 b | |
Fruits | tr | tr | 0.02 a | 0.02 b | 0.39 a | 3.08 c | 4.49 b | 8.01 b,c | |
Gomisin G | Leaves (M) | nd | nd | nd | nd | nd | 0.12 b,c | 3.08 b | 3.21 b,c |
Leaves (F) | 1.43 a | 0.12 a | 0.15 b | 0.05 b | 0.07 a | 5.17 b | 3.30 b | 10.30 b | |
Fruits | 0.10 b | 0.10 a | 0.34 a | 0.15 a | 0.02 b | 82.47 a | 114.00 a | 197.18 a | |
Gomisin J | Leaves (M) | nd | 0.1 | nd | 0.02 a | 0.02 | 0.17 b | 0.22 b | 0.53 c |
Leaves (F) | 0.07 a | tr | nd | tr | tr | 0.95 b | 0.36 b | 1.38 b | |
Fruits | 0.02 b | tr | 0.02 | 0.02 a | tr | 2.60 a | 8.50 a | 11.17 a | |
Gomisin N | Leaves (M) | 0.13 b,c | 0.17 b | 0.07 c | 0.09 c | 0.04 c | 0.14 c | 8.10 b | 8.74 b,c |
Leaves (F) | 4.41 a | 0.58 a | 0.63 b | 0.29 b | 0.26 a | 1.13 b | 8.70 b | 16.02 b | |
Fruits | 0.27 b | 0.42 a | 1.47 a | 0.57 a | 0.15 b | 30.05 a | 485.51 a | 518.44 a | |
Gomisin O | Leaves (M) | nd | 0.05 a | nd | nd | nd | 1.17 b | 2.89 b | 4.10 b,c |
Leaves (F) | 0.85 a | 0.07 a | 0.10 b | 0.05 b | 0.05 b | 9.74 b | 2.06 b | 12.92 b | |
Fruits | 0.07 b | 0.05 a | 0.22 a | 0.10 a | 0.15 a | 76.06 a | 73.03 a | 149.67 a | |
Licarin A | Leaves (M) | 0.02 | tr | tr | tr | 0 | 0.17 a | 0.22 b | 0.41 a |
Leaves (F) | nd | nd | nd | 0.05 | 0.02 | nd | 0.32 a | 0.39 a | |
Fruits | tr | 0.02 | nd | tr | tr | 0.05 b | 0.19 b | 0.27 b | |
Licarin B | Leaves (M) | 0.10 b | 1.34 a | 0.05 a | 0.15 a | nd | 0.07 b | 0.02 b | 1.72 b |
Leaves (F) | 0.17 a | 0.05 b | 0.05 a | 0.02 b | 0.07 | 0.10 b | 0.02 b | 0.49 c | |
Fruits | 0.19 a | tr | tr | tr | tr | 1.63 a | 1.68 a | 3.50 a | |
Pregomisin | Leaves (M) | tr | tr | tr | tr | tr | tr | tr | tr |
Leaves (F) | tr | tr | tr | tr | tr | tr | tr | tr | |
Fruits | tr | tr | tr | tr | tr | tr | tr | tr | |
Rubriflorin A | Leaves (M) | tr | tr | tr | tr | tr | tr | tr | tr |
Leaves (F) | tr | tr | tr | tr | tr | tr | tr | tr | |
Fruits | tr | tr | tr | tr | tr | tr | tr | tr | |
Rubrisandrin A | Leaves (M) | 0.90 a | 9.08 a | 0.70 a | 1.31 a | 0.90 a | 1.34 a | 0.78 a | 15.01 a |
Leaves (F) | 0.10 b,c | 0.46 b | 0.17 b | 0.46 b | 0.85 a | 0.17 b | 0.22 b | 2.43 b | |
Fruits | 0.15 b | 0.22 c | 0.78 a | 0.51 b | 0.32 b | 0.27 b | 0.80 a | 3.04 b | |
Schisandrin | Leaves (M) | nd | 0.05 a | nd | 0.02 a | nd | 3.25 b | 0.02 b | 3.35 b |
Leaves (F) | nd | 0.02 b | 0.02 a | nd | 0.12 a | 1.51 c | 0.05 a | 1.72 c | |
Fruits | 0.02 | 0.02 b | 0.02 a | 0.02 a | 0.05 b | 6.75 a | 0.02 b | 6.92 a | |
Schisandrin A | Leaves (M) | 0.02 b,c | 0.05 b | 0.02 c | 0.02 c | nd | 0.22 b,c | 1.68 b | 2.02 b,c |
Leaves (F) | 1.46 a | 0.12 a | 0.19 b | 0.07 b | 0.07 a | 1.36 b | 2.50 b | 5.78 b | |
Fruits | 0.07 b | 0.10 a | 0.39 a | 0.15 a | 0.02 b | 23.41 a | 143.14 a | 167.28 a | |
Schisandrin C | Leaves (M) | 0.05 b | tr | nd | 0.07 | nd | tr | 0.27 c | 0.39 b,c |
Leaves (F) | 0.10 a | tr | tr | tr | 0.58 | tr | 0.70 b | 1.38 b | |
Fruits | 0.02 b,c | 0.02 | 0.07 | tr | tr | 0.24 | 10.56 a | 10.93 a | |
Schisanhenol | Leaves (M) | 0.02 c | 0.24 b,c | 0.02 c | 0.02 c | 0.02 c | 0.95 b | 1.46 b | 2.74 b |
Leaves (F) | 5.61 a | 0.49 a | 0.68 b | 0.22 b | 0.24 a | 1.58 b | 1.87 b | 10.69 b | |
Fruits | 0.29 b | 0.32 b | 1.51 a | 0.53 a | 0.15 b | 124.54 a | 327.01 a | 454.34 a | |
Schisantherin A | Leaves (M) | 0.02 c | 0.32 | 0.05 a | 0.02 a | 0.02 a | 55.47 b | 32.47 a | 88.38 b |
Leaves (F) | 0.12 a | nd | nd | nd | 0.02 a | 157.30 a | 17.61 b | 175.05 a | |
Fruits | 0.07 b | nd | 0.02 a,b | 0.02 a | nd | 13.99 c | 15.59 b,c | 29.70 c | |
Schisantherin B | Leaves (M) | tr | 0.01 a | 0.01 a | tr | tr | 5.41 b,c | 4.65 b | 10.09 c |
Leaves (F) | 0.10 a | 0.01 a | tr | 0.01 a | 0.01 | 16.15 a | 4.36 b | 20.63 a | |
Fruits | 0.02 b | 0.01 a | 0.02 a | 0.01 a | tr | 6.54 b | 10.18 a | 16.79 b | |
Wulignan A1 | Leaves (M) | 0.01 a | 0.02 a | tr | tr | tr | 0.02 b | 0.01 b | 0.06 b |
Leaves (F) | 0.01 a | 0.01 a | 0.01 a | 0.01 | tr | 0.03 b | 0.01 b | 0.08 b | |
Fruits | 0.02 a | tr | 0.01 a | tr | 0.03 | 27.30 a | 0.24 a | 27.60 a |
Part of the Plant | Lignan Contents (mg/100 g DW) | |||||||
---|---|---|---|---|---|---|---|---|
Fractions | ||||||||
I | II | III | IV | V | VI | VII | Total Content in All Fractions | |
Leaves (M) | 1.36 b | 11.52 a | 0.97 c | 1.80 b | 1.06 c | 86.58 c | 84.98 b | 188.34 b,c |
Leaves (F) | 14.72 a | 1.98 b | 2.05 b | 1.30 b,c | 2.50 a | 217.08 b | 84.61 b | 324.30 b |
Fruits | 1.40 b | 1.30 b,c | 5.10 a | 3.72 a | 1.77 b | 409.08 a | 1233.24 a | 1654.13 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobstyl, E.; Szopa, A.; Dziurka, M.; Ekiert, H.; Nikolaichuk, H.; Choma, I.M. Schisandra rubriflora Fruit and Leaves as Promising New Materials of High Biological Potential: Lignan Profiling and Effect-Directed Analysis. Molecules 2022, 27, 2116. https://doi.org/10.3390/molecules27072116
Sobstyl E, Szopa A, Dziurka M, Ekiert H, Nikolaichuk H, Choma IM. Schisandra rubriflora Fruit and Leaves as Promising New Materials of High Biological Potential: Lignan Profiling and Effect-Directed Analysis. Molecules. 2022; 27(7):2116. https://doi.org/10.3390/molecules27072116
Chicago/Turabian StyleSobstyl, Ewelina, Agnieszka Szopa, Michał Dziurka, Halina Ekiert, Hanna Nikolaichuk, and Irena Maria Choma. 2022. "Schisandra rubriflora Fruit and Leaves as Promising New Materials of High Biological Potential: Lignan Profiling and Effect-Directed Analysis" Molecules 27, no. 7: 2116. https://doi.org/10.3390/molecules27072116
APA StyleSobstyl, E., Szopa, A., Dziurka, M., Ekiert, H., Nikolaichuk, H., & Choma, I. M. (2022). Schisandra rubriflora Fruit and Leaves as Promising New Materials of High Biological Potential: Lignan Profiling and Effect-Directed Analysis. Molecules, 27(7), 2116. https://doi.org/10.3390/molecules27072116