Structure and Processing Properties of Nine Yam (Dioscorea opposita Thunb) Starches from South China: A Comparison Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition and Molecular Features of Various Yam Starches
2.2. Scanning Electron Microscopy and Particle Size Distribution of Various Yam Starches
2.3. Fourier Transform Infrared Spectrum (FTIR) of Various Yam Starches
2.4. X-ray Diffraction Spectra of Various Yam Starches (XRD)
2.5. The Rheological Properties of Nine Kinds of Yam Starches
2.5.1. Pasting Properties
2.5.2. Dynamic Rheological Properties
2.6. The Thermal Properties of Nine Kinds of Yam Starches (DSC)
2.7. In Vitro Starch Digestion of Various Yam Starches
2.8. The Correlation between the Structures and Properties of Yam Starches
3. Materials and Methods
3.1. Materials
3.2. Starch Isolation
3.3. Chemical Composition
3.4. Gel Permeation Chromatography (GPC)
3.5. Scanning Electron Microscope (SEM) and Particle Size
3.6. Fourier Transform Infrared Spectroscopy (FTIR)
3.7. X-ray Diffraction (XRD)
3.8. Rheological Properties
3.8.1. Pasting Properties
3.8.2. Dynamic Rheological Properties
3.9. Thermal Properties (DSC)
3.10. In Vitro Starch Digestion
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Epping, J.; Laibach, N. An underutilized orphan tuber crop-Chinese yam: A review. Planta 2020, 252, 58. [Google Scholar] [CrossRef] [PubMed]
- Tamiru, M.; Maass, B.L.; Pawelzik, E. Characterizing diversity in composition and pasting properties of tuber flour in yam germplasm (Dioscorea spp.) from Southern Ethiopia. J. Sci. Food. Agric. 2008, 88, 1675–1685. [Google Scholar] [CrossRef]
- Shao, Y.L.; Mao, L.C.; Guan, W.L.; Wei, X.B.; Yang, Y.J.; Xu, F.C.; Li, Y.; Jiang, Q.J. Physicochemical and structural properties of low-amylose Chinese yam (Dioscorea opposita Thunb.) starches. Int. J. Biol. Macromol. 2020, 164, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Hu, Z.; Liu, D.L.; Li, C.F.; Liu, S.X. Composition and Physicochemical Properties of Three Chinese Yam (Dioscorea opposita Thunb.) Starches: A Comparison Study. Molecules 2019, 24, 2973. [Google Scholar] [CrossRef] [Green Version]
- Zaidul, I.S.M.; Norulaini, N.A.N.; Omar, A.K.M.; Yamauchi, H.; Noda, T. RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohyd. Polym. 2007, 69, 784–791. [Google Scholar] [CrossRef]
- N’Da Kouamé, V.; Handschin, S.; Derungs, M.; Amani, G.N.G.; Conde-Petit, B. Thermal properties of new varieties of yam starches. Starch-Stärke 2011, 63, 747–753. [Google Scholar] [CrossRef]
- Zhu, F. Isolation, composition, structure, properties, modifications, and uses of yam starch. Compr. Rev. Food Sci. Food Saf. 2015, 14, 357–386. [Google Scholar] [CrossRef]
- Perez, J.; Arteaga, M.; Andrade, R.; Durango, A.; Salcedo, J. Effect of yam (Dioscorea spp.) starch on the physicochemical, rheological, and sensory properties of yogurt. Heliyon 2021, 7, e05987. [Google Scholar] [CrossRef]
- Engmann, F.N.; Sanful, R.E. Evaluation of the physico-chemical, functional and sensory attributes of instant fufu developed from bitter yam (Dioscorea dumetorum). Int. J. Food Sci Nutr. 2019, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.R.; Chaves Ribeiro, A.E.; Gondim, Í.C.; Alves dos Santos, E.; Resende de Oliveira, É.; Mendes Coutinho, G.S.; Soares Júnior, M.S.; Caliari, M. Isolation and characterization of yam (Dioscorea alata L.) starch from Brazil. Lwt-Food Sci. Technol. 2021, 149, 111843. [Google Scholar] [CrossRef]
- Chen, X.T.; Mao, X.H.; Jiang, Q.Q.; Wang, T.T.; Li, X.; Gao, W.Y. Study on the physicochemical properties andin vitrodigestibility of starch from yam with different drying methods. Int. J. Food Sci. Tech. 2016, 51, 1787–1792. [Google Scholar] [CrossRef]
- Huang, H.H.; Jiang, Q.Q.; Chen, Y.L.; Li, X.; Mao, X.H.; Chen, X.T.; Huang, L.Q.; Gao, W.Y. Preparation, physico–chemical characterization and biological activities of two modified starches from yam (Dioscorea Opposita Thunb.). Food Hydrocoll. 2016, 55, 244–253. [Google Scholar] [CrossRef]
- Mao, X.H.; Lu, J.; Huang, H.H.; Gao, X.X.; Zheng, H.; Chen, Y.L.; Li, X.; Gao, W.Y. Four types of winged yam (Dioscorea alata L.) resistant starches and their effects on ethanol-induced gastric injury in vivo. Food Hydrocoll. 2018, 85, 21–29. [Google Scholar] [CrossRef]
- Mali, S.; Grossmann, M.V.E.; Garcia, M.A.; Martino, M.N.; Zaritzky, N.E. Microstructural characterization of yam starch films. Carbohyd. Polym. 2002, 50, 379–386. [Google Scholar] [CrossRef]
- Narvaez-Gomez, G.; Figueroa-Florez, J.; Salcedo-Mendoza, J.; Perez-Cervera, C.; Andrade-Pizarro, R. Development and characterization of dual-modified yam (Dioscorea rotundata) starch-based films. Heliyon 2021, 7, e06644. [Google Scholar] [CrossRef]
- Tappiban, P.; Ying, Y.N.; Pang, Y.H.; Sraphet, S.; Srisawad, N.; Smith, D.R.; Wu, P.; Triwitayakorn, K.; Bao, J.S. Gelatinization, pasting and retrogradation properties and molecular fine structure of starches from seven cassava cultivars. Int. J. Biol. Macromol. 2020, 150, 831–838. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Wang, N.; Yu, J.L.; Wang, S.J.; Wang, S.; Copeland, L. Insights into structure-function relationships of starch from foxtail millet cultivars grown in China. Int. J. Biol. Macromol. 2020, 155, 1176–1183. [Google Scholar] [CrossRef]
- Yong, H.M.; Wang, X.C.; Sun, J.; Fang, Y.; Liu, J.; Jin, C.H. Comparison of the structural characterization and physicochemical properties of starches from seven purple sweet potato varieties cultivated in China. Int. J. Biol. Macromol. 2018, 120, 1632–1638. [Google Scholar] [CrossRef]
- Otegbayo, B.; Oguniyan, D.; Akinwumi, O. Physicochemical and functional characterization of yam starch for potential industrial applications. Starch-Stärke 2014, 66, 235–250. [Google Scholar] [CrossRef]
- Jiang, Q.Q.; Gao, W.Y.; Shi, Y.P.; Li, X.; Wang, H.Y.; Huang, L.Q.; Xiao, P.G. Physicochemical properties and in vitro digestion of starches from different Dioscorea plants. Food Hydrocoll. 2013, 32, 432–439. [Google Scholar] [CrossRef]
- Wang, D.; Fan, D.C.; Ding, M.; Ge, P.Z.; Zhou, C.Q. Characteristics of different types of starch in starch noodles and their effect on eating quality. Int. J. Food Prop. 2015, 18, 2472–2486. [Google Scholar] [CrossRef]
- Perez, E.; Rolland-Sabate, A.; Dufour, D.; Guzman, R.; Tapia, M.; Raymundez, M.; Ricci, J.; Guilois, S.; Pontoire, B.; Reynes, M.; et al. Isolated starches from yams (Dioscorea sp.) grown at the Venezuelan Amazons: Structure and functional properties. Carbohyd. Polym. 2013, 98, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Rolland-Sabaté, A.; Georges Amani, N.G.; Dufour, D.; Guilois, S.; Colonna, P. Macromolecular characteristics of ten yam (Dioscorea spp) starches. J. Sci. Food Agr. 2003, 83, 927–936. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Nunez-Santiago, M.C.; Alvarez-Ramirez, J.; Bello-Perez, L.A. Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars. Carbohyd. Polym. 2015, 124, 17–24. [Google Scholar] [CrossRef]
- Martinez Villadiego, K.; Arias Tapia, M.J.; Useche, J.; Ledesma, Y.; Leyton, A. Thermal and morphological characterization of native and plasticized starches of sweet potato (Ipomoea batatas) and diamante yam (Dioscorea rotundata). J. Polym. Environ. 2020, 29, 871–880. [Google Scholar] [CrossRef]
- Liu, X.X.; Liu, H.M.; Fan, L.Y.; Qin, G.Y.; Wang, X.D. Effect of various drying pretreatments on the structural and functional properties of starch isolated from Chinese yam (Dioscorea opposita Thumb.). Int. J. Biol. Macromol. 2020, 153, 1299–1309. [Google Scholar] [CrossRef]
- Wang, S.J.; Gao, W.Y.; Liu, H.Y.; Chen, H.X.; Yu, J.G.; Xiao, P.G. Studies on the physicochemical, morphological, thermal and crystalline properties of starches separated from different Dioscorea opposita cultivars. Food Chem. 2006, 99, 38–44. [Google Scholar]
- Cheetham, N.W.H.; Tao, L.P. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohyd. Polym. 1998, 36, 277–284. [Google Scholar] [CrossRef]
- Gallant, D.J.; Bouchet, B.; Baldwin, P.M. Microscopy of starch: Evidence of a new level of granule organization. Carbohyd. Polym. 1997, 32, 177–191. [Google Scholar] [CrossRef]
- Tappiban, P.; Sraphet, S.; Srisawad, N.; Wu, P.; Han, H.X.; Smith, D.R.; Bao, J.S.; Triwitayakorn, K. Effects of cassava variety and growth location on starch fine structure and physicochemical properties. Food Hydrocoll. 2020, 108, 106074. [Google Scholar] [CrossRef]
- Lin, Z.X.; Geng, D.H.; Qin, W.Y.; Huang, J.R.; Wang, L.L.; Liu, L.Y.; Tong, L.T. Effects of damaged starch on glutinous rice flour properties and sweet dumpling qualities. Int. J. Biol. Macromol. 2021, 181, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Donaldben, N.S.; Tanko, O.O.; Hussaina, T.O. Physico-chemical properties of starches from two varieties of sweet potato and yam tubers available in Nigeria. AS Food Sci. J. 2020, 14, 28–38. [Google Scholar] [CrossRef]
- Jayakody, L.; Hoover, R.; Liu, Q.; Donner, E. Studies on tuber starches. II. molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohyd. Polym. 2007, 69, 148–163. [Google Scholar] [CrossRef]
- Abera, G.; Woldeyes, B.; Dessalegn Demash, H.; Miyake, G.M. Comparison of physicochemical properties of indigenous Ethiopian tuber crop (Coccinia abyssinica) starch with commercially available potato and wheat starches. Int. J. Biol. Macromol. 2019, 140, 43–48. [Google Scholar] [CrossRef]
- Zhu, F.; Hao, C.Y. Physicochemical properties of Maori potato starch affected by molecular structure. Food Hydrocoll. 2019, 90, 248–253. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, Y.T.; Xu, F.; Wu, G.; Tan, L.H. Molecular structure of starch isolated from jackfruit and its relationship with physicochemical properties. Sci. Rep. 2017, 7, 13423. [Google Scholar] [CrossRef]
- Lovera, M.; Perez, E.; Laurentin, A. Digestibility of starches isolated from stem and root tubers of arracacha, cassava, cush-cush yam, potato and taro. Carbohyd. Polym. 2017, 176, 50–55. [Google Scholar] [CrossRef]
- Aprianita, A.; Vasiljevic, T.; Bannikova, A.; Kasapis, S. Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. J. Food Sci. Technol. 2014, 51, 3669–3679. [Google Scholar] [CrossRef] [Green Version]
- Amruthmahal, A.; Asna, U.; Shashikala, P. In vitro starch digestibility and nutritionally important starch fractions in cereals and their mixtures. Starch-Stärke 2003, 55, 94–99. [Google Scholar]
- Zhu, L.J.; Liu, Q.Q.; Wilson, J.D.; Gu, M.H.; Shi, Y.C. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohyd. Polym. 2011, 86, 1751–1759. [Google Scholar] [CrossRef]
- Kong, X.L.; Chen, Y.L.; Zhu, P.; Sui, Z.Q.; Corke, H.; Bao, J.S. On the relationships among genetic, structural, and functional properties of rice starch. J. Agric. Food Chem. 2015, 63, 6241–6275. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.H.; Qi, L.; Xu, C.; Shen, Y.; Wang, H.W.; Zhang, H. Understanding how the cooking methods affected structures and digestibility of native and heat-moisture treated rice starches. J. Cereal Sci. 2020, 95, 103085. [Google Scholar] [CrossRef]
- Riley, C.K.; Wheatley, A.O.; Asemota, H.N. Isolation and characterization of starches from eight Dioscorea alata cultivars grown in Jamaica. Afr. J. Biotechnol. 2006, 5, 1528–1536. [Google Scholar]
- Zhang, G.Y.; Ao, Z.H.; Hamaker, B.R. Slow digestion property of native cereal starches. Biomacromolecules 2006, 7, 3252–3258. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, L.; Ye, Y.; Gao, Q.Y. Effect of salts on the gelatinization process of Chinese yam (Dioscorea opposita) starch with digital image analysis method. Food Hydrocoll. 2015, 51, 468–475. [Google Scholar] [CrossRef]
Samples | Moisture (%) | AM (%) | Lipid Content (%) | Protein Content (%) | Mw (107 g/mol) | Rg (nm) | DI |
---|---|---|---|---|---|---|---|
GY11 | 9.62 ± 0.05 b | 16.61 ± 0.49 c | 0.16 ± 0.02 e | 0.27 ± 0.01 b | 5.87 ± 0.02 g | 178.26 ± 0.05 i | 3.00 ± 0.03 e |
GY5 | 7.54 ± 0.02 e | 15.66 ± 0.32 d | 0.20 ± 0.01 c | 0.29 ± 0.00 a | 6.71 ± 0.08 e | 192.79 ± 0.09 f | 1.42 ± 0.06 h |
GY2 | 7.94 ± 0.05 d | 28.70 ± 0.89 a | 0.23 ± 0.02 b | 0.25 ± 0.00 c | 4.42 ± 0.09 h | 181.51 ± 0.04 h | 3.25 ± 0.08 d |
GXPY | 9.28 ± 0.04 c | 11.38 ± 0.26 f | 0.18 ± 0.01 d | 0.20 ± 0.01 d | 7.18 ± 0.03 b | 200.31 ± 0.05 e | 1.38 ± 0.04 i |
LCY | 7.21 ± 0.11 f | 4.83 ± 0.12 g | 0.14 ± 0.01 e | 0.10 ± 0.01 h | 6.67 ± 0.05 f | 186.55 ± 0.07 g | 3.87 ± 0.03 c |
SFY | 10.01 ± 0.52 a | 13.16 ± 0.22 e | 0.48 ± 0.01 a | 0.14 ± 0.00 f | 8.35 ± 0.04 a | 228.60 ± 0.04 a | 4.31 ± 0.04 b |
MPY | 10.11 ± 0.04 a | 15.56 ± 0.34 d | 0.03 ± 0.01 g | 0.07 ± 0.01 i | 6.99 ± 0.07 d | 213.01 ± 0.08 c | 2.04 ± 0.02 f |
SYPY | 7.99 ± 0.10 d | 23.54. ± 0.94 b | 0.03 ± 0.00 g | 0.16 ± 0.01 e | 5.83 ± 0.07 g | 222.91 ± 0.07 b | 1.73 ± 0.05 g |
ASY | 5.86 ± 0.05 g | 11.41 ± 0.26 f | 0.09 ± 0.00 f | 0.13 ± 0.00 g | 7.05 ± 0.03 c | 205.61 ± 0.04 d | 4.96 ± 0.04 a |
Samples | PT/(℃) | PV/(cp) | TV/(cp) | FV/(cp) | SB/(cp) | BD/(cp) |
---|---|---|---|---|---|---|
GY11 | 75.37 ± 042 f | 4226.67 ± 42.03 f | 2589.67 ± 32.19 g | 3655.00 ± 41.22 f | 1065.33 ± 32.62 e | 1637.00 ± 26.46 c |
GY5 | 79.85 ± 0.48 d | 4119.67 ± 28.36 g | 3204.33 ± 28.54 e | 5028.00 ± 18.52 d | 1823.67 ± 10.02 c | 915.33 ± 11.72 e |
GY2 | 75.32 ± 0.51 f | 4114.00 ± 41.39 g | 2453.33 ± 71.67 h | 3432.00 ± 38.43 g | 979.67 ± 37.07 e | 1661.67 ± 87.46 c |
GXPY | 76.50 ± 0.48 e | 5034.00 ± 14.53 d | 3927.33 ± 29.96 b | 5413.00 ± 26.51 c | 1485.67 ± 22.90 d | 1106.67 ± 21.50 d |
LCY | 79.50 ± 0.48 d | 6145.67 ± 14.84 a | 3473.33 ± 30.35 d | 4534.00 ± 105.67 e | 1060.67 ± 100.55 e | 2672.33 ± 15.57 a |
SFY | 84.37 ± 0.06 a | 4679.33 ± 18.34 e | 3746.33 ± 7.02 c | 6458.67 ± 27.68 b | 2712.33 ± 20.84 a | 933.00 ± 24.27 e |
MPY | 83.40 ± 0.05 b | 5194.67 ± 76.96 c | 2985.67 ± 25.72 f | 3711.00 ± 26.23 f | 725.33 ± 12.86 f | 2209.00 ± 58.97 b |
SYPY | 81.77 ± 0.06 c | 2405.33 ± 27.06 h | 1247.67 ± 24.19 i | 1335.67 ± 16.92 h | 88.00 ± 13.00 g | 1157.67 ± 36.23 d |
ASY | 81.70 ± 0.00 c | 5558.00 ± 20.95 b | 4687.67 ± 10.21 a | 6975.00 ± 79.30 a | 2287.33 ± 86.64 b | 870.33 ± 22.74 e |
Samples | DSC | ||||
---|---|---|---|---|---|
To/(℃) | Tp/(℃) | Tc/(℃) | Tc–To/(℃) | ΔH/(J/g) | |
GY11 | 88.25 ± 1.28 a | 96.51 ± 2.74 ab | 103.42 ± 1.92 b | 15.17 ± 0.74 cd | 28.30 ± 0.96 b |
GY5 | 84.69 ± 0.64 b | 96.17 ± 2.76 b | 103.47 ± 3.84 b | 18.78 ± 4.44 b | 27.55 ± 1.25 b |
GY2 | 84.66 ± 0.63 b | 94.95 ± 1.05 bc | 101.22 ± 1.14 bc | 16.56 ± 0.97 bcd | 28.13 ± 0.39 b |
GXPY | 87.68 ± 0.91 a | 94.37 ± 0.67 bc | 107.03 ± 1.19 a | 19.35 ± 0.27 b | 24.93 ± 0.80 cd |
LCY | 85.20 ± 1.55 b | 99.18 ± 0.44 a | 108.55 ± 0.86 a | 23.35 ± 1.92 a | 31.23 ± 1.29 a |
SFY | 88.59 ± 1.26 a | 94.16 ± 1.09 bc | 102.04 ± 2.11 bc | 13.44 ± 1.20 d | 29.09 ± 2.16 b |
MPY | 85.28 ± 0.49 b | 94.07 ± 0.28 bc | 102.87 ± 0.69 b | 17.59 ± 1.12 bc | 23.08 ± 1.02 de |
SYPY | 87.96 ± 1.15 a | 94.48 ± 2.11 bc | 101.61 ± 0.43 bc | 13.65 ± 0.74 d | 29.01 ± 1.67 b |
ASY | 84.12 ± 0.51 b | 93.62 ± 2.08 bc | 101.79 ± 0.558 bc | 17.67 ± 0.78 bc | 26.79 ± 1.34 bc |
Samples | RDS/(%) | SDS/(%) | RS/(%) |
---|---|---|---|
GY11 | 3.37 ± 0.40 a | 1.17 ± 0.20 h | 95.46 ± 0.46 b |
GY5 | 0.25 ± 0.04 fg | 4.35 ± 0.23 d | 95.40 ± 0.22 b |
GY2 | 1.05 ± 0.19 c | 3.48 ± 0.24 f | 95.48 ± 0.32 b |
GXPY | 0.70 ± 0.12 de | 1.87 ± 0.10 g | 97.43 ± 0.21 a |
LCY | 1.47 ± 0.04 b | 4.24 ± 0.39 de | 94.28 ± 0.30 c |
SFY | 0.50 ± 0.08 ef | 6.06 ± 0.50 b | 93.45 ± 0.55 de |
MPY | 1.00 ± 0.08 c | 3.85 ± 0.05 ef | 95.15 ± 0.13 b |
SYPY | 0.81 ± 0.12 cd | 5.30 ± 0.25 c | 93.90 ± 0.25 cd |
ASY | 0.19 ± 0.03 g | 6.71 ± 0.20 a | 93.10 ± 0.18 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Li, Y.; Su, X.; Wang, F.; Li, Q.; Xia, H. Structure and Processing Properties of Nine Yam (Dioscorea opposita Thunb) Starches from South China: A Comparison Study. Molecules 2022, 27, 2254. https://doi.org/10.3390/molecules27072254
Zou J, Li Y, Su X, Wang F, Li Q, Xia H. Structure and Processing Properties of Nine Yam (Dioscorea opposita Thunb) Starches from South China: A Comparison Study. Molecules. 2022; 27(7):2254. https://doi.org/10.3390/molecules27072254
Chicago/Turabian StyleZou, Jinhao, Yan Li, Xiaojun Su, Feng Wang, Qingming Li, and Huiping Xia. 2022. "Structure and Processing Properties of Nine Yam (Dioscorea opposita Thunb) Starches from South China: A Comparison Study" Molecules 27, no. 7: 2254. https://doi.org/10.3390/molecules27072254
APA StyleZou, J., Li, Y., Su, X., Wang, F., Li, Q., & Xia, H. (2022). Structure and Processing Properties of Nine Yam (Dioscorea opposita Thunb) Starches from South China: A Comparison Study. Molecules, 27(7), 2254. https://doi.org/10.3390/molecules27072254