Antioxidant, Antimicrobial, and Insecticidal Properties of a Chemically Characterized Essential Oil from the Leaves of Dittrichia viscosa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants Material and Essential Oil Extraction
2.2. GC–MS Analysis
2.3. DPPH Radical Scavenging Activity
2.4. Test of Total Antioxidant Capacity (TAC)
2.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.6. Antimicrobial Activity
2.6.1. Microbial Strains
2.6.2. Disk Diffusion Method
2.6.3. Minimum Inhibitory Concentration (MIC) Assay
2.7. Insecticidal Activity of EOD on C. maculatus
2.7.1. Insect
2.7.2. Assessment of EOD Toxicity by Ingestion of Chickpea Grains
2.7.3. EOD Toxicity Using an Inhalation Test
2.8. Statistical Analysis
3. Results and Discussion
3.1. Yield and Chemical Composition of EO
3.2. Antioxidant Activity of EOD
3.3. Antimicrobial Activity
3.4. Insecticidal Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Murugesan, R.; Vasuki, K.; Kaleeswaran, B.; Santhanam, P.; Ravikumar, S.; Alwahibi, M.S.; Soliman, D.A.; Mohsen Ahmed Almunqedhi, B.; Alkahtani, J. Insecticidal and Repellent Activities of Solanum torvum (Sw.) Leaf Extract against Stored Grain Pest, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. King Saud Univ. Sci. 2021, 33, 101390. [Google Scholar] [CrossRef]
- Tuda, M.; Chou, L.Y.; Niyomdham, C.; Buranapanichpan, S.; Tateishi, Y. Ecological Factors Associated with Pest Status in Callosobruchus (Coleoptera: Bruchidae): High Host Specificity of Non-Pests to Cajaninae (Fabaceae). J. Stored Prod. Res. 2005, 41, 31–45. [Google Scholar] [CrossRef]
- De Alves, M.S.; Campos, I.M.; de Brito, D.D.M.C.; Cardoso, C.M.; Pontes, E.G.; de Souza, M.A.A. Efficacy of Lemongrass Essential Oil and Citral in Controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a Post-Harvest Cowpea Insect Pest. Crop Prot. 2019, 119, 191–196. [Google Scholar] [CrossRef]
- Banga, K.S.; Kotwaliwale, N.; Mohapatra, D.; Giri, S.K.; Babu, V.B. Bioacoustic Detection of Callosobruchus chinensis and Callosobruchus maculatus in Bulk Stored Chickpea (Cicer arietinum) and Green Gram (Vigna radiata). Food Control 2019, 104, 278–287. [Google Scholar] [CrossRef]
- Abdelli, M.; Moghrani, H.; Aboun, A.; Maachi, R. Algerian mentha pulegium, L. Leaves Essential Oil: Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities. Ind. Crops Prod. 2016, 94, 197–205. [Google Scholar] [CrossRef]
- Oyedeji, O.A.; Afolayan, A.J.; Eloff, J.N. Comparative Study of the Essential Oil Composition and Antimicrobial Activity of Leonotis leonurus and L. ocymifolia in the Eastern Cape, South Africa. S. Afr. J. Bot. 2005, 71, 114–116. [Google Scholar] [CrossRef] [Green Version]
- De Ribeiro, I.A.T.A.; da Silva, R.; da Silva, A.G.; Milet-Pinheiro, P.; Paiva, P.M.G.; do Navarro, D.M.A.F.; da Silva, M.V.; Napoleão, T.H.; dos Correia, M.T.S. Chemical Characterization and Insecticidal Effect against Sitophilus zeamais (Maize weevil) of Essential Oil from Croton Rudolphianus Leaves. Crop Prot. 2020, 129, 105043. [Google Scholar] [CrossRef]
- Noshad, M.; Hojjati, M.; Alizadeh Behbahani, B. Black Zira Essential Oil: Chemical Compositions and Antimicrobial Activity against the Growth of Some Pathogenic Strain Causing Infection. Microb. Pathog. 2018, 116, 153–157. [Google Scholar] [CrossRef]
- Soriano, A.; Stefani, S.; Pletz, M.W.; Menichetti, F. Antimicrobial Stewardship in Patients with Acute Bacterial Skin and Skin-Structure Infections: An International Delphi Consensus. J. Glob. Antimicrob. Resist. 2020, 22, 296–301. [Google Scholar] [CrossRef]
- Abirami, S.; Priyalakshmi, M.; Soundariya, A.; Samrot, A.V.; Saigeetha, S.; Emilin, R.R.; Dhiva, S.; Inbathamizh, L. Antimicrobial Activity, Antiproliferative Activity, Amylase Inhibitory Activity and Phytochemical Analysis of Ethanol Extract of Corn (Zea Mays L.) Silk. Curr. Res. Green Sustain. Chem. 2021, 4, 100089. [Google Scholar] [CrossRef]
- El-Hilaly, J.; Hmammouchi, M.; Lyoussi, B. Ethnobotanical Studies and Economic Evaluation of Medicinal Plants in Taounate Province (Northern Morocco). J. Ethnopharmacol. 2003, 86, 149–158. [Google Scholar] [CrossRef]
- Jouad, H.; Haloui, M.; Rhiouani, H.; El Hilaly, J.; Eddouks, M. Ethnobotanical Survey of Medicinal Plants Used for the Treatment of Diabetes, Cardiac and Renal Diseases in the North Centre Region of Morocco (Fez–Boulemane). J. Ethnopharmacol. 2001, 77, 175–182. [Google Scholar] [CrossRef]
- Bellakhdar, J. Propositions Pour l’avancement Des E´tudes Sur La Me´decine Traditionnelle et La Pharmacope´e Au Maghreb. In Proceedings of the 1er Colloque International Sur Les Plantes Me´dicinales Du Marocy, Rabat, Morocco, 15–17 May 1985; pp. 285–294. [Google Scholar]
- Ait-Sidi-Brahim, M.; Markouk, M.; Larhsini, M. Chapter 5—Moroccan Medicinal Plants as Antiinfective and Antioxidant Agents. In New Look to Phytomedicine; Ahmad Khan, M.S., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 91–142. ISBN 978-0-12-814619-4. [Google Scholar]
- Bouyahya, A.; Abrini, J.; Et-Touys, A.; Bakri, Y.; Dakka, N. Indigenous Knowledge of the Use of Medicinal Plants in the North-West of Morocco and Their Biological Activities. Eur. J. Integr. Med. 2017, 13, 9–25. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Grigore, A.; Pinto, D.C.G.A.; Silva, A.M.S. The Genus Inula and Their Metabolites: From Ethnopharmacological to Medicinal Uses. J. Ethnopharmacol. 2014, 154, 286–310. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Sahu, P.M.; Sharma, M.K. Anti-Inflammatory and Antimicrobial Activities of Triterpenoids from Strobilanthes Callosus Nees. Phytomedicine 2002, 9, 355–359. [Google Scholar] [CrossRef]
- Messaoudi, M.; Chahmi, N.; El-Mzibri, M.; Gmouh, S.; Amzazi, S.; Benbacer, L.; El-Hassouni, M. Cytotoxic Effect and Chemical Composition of Inula viscosa from Three Different Regions of Morocco. Eur. J. Med. Plants 2016, 16, 1–9. [Google Scholar] [CrossRef]
- Alomar, Ò.; Goula, M.; Albajes, R. Colonisation of Tomato Fields by Predatory Mirid Bugs (Hemiptera: Heteroptera) in Northern Spain. Agric. Ecosyst. Environ. 2002, 89, 105–115. [Google Scholar] [CrossRef]
- PCrez-Alonso, M.J.; Velasco-Negueruela, A.; Concepci, M. Composition of the Volatile Oil from the Aerial Parts of Inula viscosa (L.) Aiton. 3. Flavor Fragr. J. 1996, 11, 349–351. [Google Scholar] [CrossRef]
- Haoui, I.E.; Derriche, R.; Madani, L.; Oukali, Z. Extraction of Essential Oil from Inula viscosa (L.) Leaves: Composition, Antifungal Activity and Kinetic Data. J. Essent. Oil Bear. Plants 2016, 19, 108–118. [Google Scholar] [CrossRef]
- Haoui, I.E.; Derriche, R.; Madani, L.; Oukali, Z. Analysis of the Chemical Composition of Essential Oil from Algerian Inula viscosa (L.) Aiton. Arab. J. Chem. 2015, 8, 587–590. [Google Scholar] [CrossRef] [Green Version]
- Madani, L.; Derriche, R.; Haoui, I.E. Essential Oil of Algerian Inula Viscosa Leaves. J. Essent. Oil Bear. Plants 2014, 17, 164–168. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential Oils as Additives in Biodegradable Films and Coatings for Active Food Packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; Lyoussi, B.; Derwich, E. Original Research Article Chemical Constituents, In Vitro Antibacterial Properties and Antioxidant Activity of Essential Oils from Marrubium vulgare L. Leaves. Trop. J. Nat. Prod. Res. 2021, 5, 661–667. [Google Scholar]
- Mssillou, I.; Agour, A.; El Ghouizi, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition, Antioxidant Activity, and Antifungal Effects of Essential Oil from Laurus nobilis L. Flowers Growing in Morocco. J. Food Qual. 2020, 2020, e8819311. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on Products of Browning Reaction. Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Agour, A.; Mssillou, I.; Saghrouchni, H.; Bari, A.; Lyoussi, B.; Derwich, E. Chemical Composition, Antioxidant Potential and Antimicrobial Properties of the Essential Oils of Haplophyllum tuberculatum (Forsskal) A. Juss from Morocco. Trop. J. Nat. Prod. Res. 2021, 4, 1108–1115. [Google Scholar] [CrossRef]
- Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and Antioxidant Properties of the Essential Oils and Methanol Extract from Mentha longifolia L. Ssp. Longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- De Dutra, K.A.; de Oliveira, J.V.; do Navarro, D.M.A.F.; Barbosa, D.R.E.S.; Santos, J.P.O. Control of Callosobruchus Maculatus (FABR.) (Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. with Essential Oils from Four Citrus spp. Plants. J. Stored Prod. Res. 2016, 68, 25–32. [Google Scholar] [CrossRef]
- Allali, A.; Rezouki, S.; Mostafa, S.; Dalale, M.; Noureddine, E.; Mohamed, F. GC-MS Analysis of Essential Oil Composition and Insecticidal Activity of Syzygium Aromaticum against Callosobruchus Maculatus of Chickpea. Trop. J. Nat. Prod. Res. 2021, 5, 844–849. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: New York, NY, USA, 1971; Volume 60, p. 1432. [Google Scholar] [CrossRef]
- Gharred, N.; Dbeibia, A.; Falconieri, D.; Hammami, S.; Piras, A.; Dridi-Dhaouadi, S. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oils from Flowers, Leaves and Aerial Parts of Tunisian Dittrichia Viscosa. J. Essent. Oil Res. 2019, 31, 582–589. [Google Scholar] [CrossRef]
- Blanc, M.-C.; Bradesi, P.; Gonçalves, M.J.; Salgueiro, L.; Casanova, J. Essential Oil of Dittrichia viscosa ssp. Viscosa: Analysis by 13C-NMR and Antimicrobial Activity. Flavour Fragr. J. 2006, 21, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Miguel, G.; Faleiro, L.; Cavaleiro, C.; Salgueiro, L.; Casanova, J. Susceptibility of Helicobacter Pylori to Essential Oil of Dittrichia viscosa subsp. Revoluta. Phytother. Res. 2008, 22, 259–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGimpsey, J.A.; Douglas, M.H.; Klink, J.W.V.; Beauregard, D.A.; Perry, N.B. Seasonal Variation in Essential Oil Yield and Composition from Naturalized Thymus vulgaris L. in New Zealand. Flavour Fragr. J. 1994, 9, 347–352. [Google Scholar] [CrossRef]
- Patel, R.P.; Singh, R.; Rao, B.R.R.; Singh, R.R.; Srivastava, A.; Lal, R.K. Differential Response of Genotype × environment on Phenology, Essential Oil Yield and Quality of Natural Aroma Chemicals of Five Ocimum Species. Ind. Crops Prod. 2016, 87, 210–217. [Google Scholar] [CrossRef]
- Karan, T.; Yıldız, I.; Aydın, A.; Erenler, R. Inhibition of Various Cancer Cells Proliferation of Bornyl Acetate and Essential Oil from Inula graveolens (Linnaeus) Desf. Rec. Nat. Prod. 2018, 12, 273–283. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.Y.; Hong, C.Y.; Gwak, K.S.; Park, M.J.; Smith, D.; Choi, I.G. Whitening and antioxidant activities of bornyl acetate and nezukol fractionated from Cryptomeria japonica essential oil. Int. J. Cosmet. Sci. 2013, 35, 484–490. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, R.; Chen, H.; Jia, P.; Bao, L.; Tang, H. Bornyl Acetate Has an Anti-Inflammatory Effect in Human Chondrocytes via Induction of IL-11. IUBMB Life 2014, 66, 854–859. [Google Scholar] [CrossRef]
- Fraternale, D.; Giamperi, L.; Bucchini, A.; Ricci, D. Essential Oil Composition and Antioxidant Activity of Aerial Parts of Grindelia Robusta from Central Italy. Fitoterapia 2007, 78, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Park, I.-K.; Lee, S.-G.; Choi, D.-H.; Park, J.-D.; Ahn, Y.-J. Insecticidal Activities of Constituents Identified in the Essential Oil from Leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). J. Stored Prod. Res. 2003, 39, 375–384. [Google Scholar] [CrossRef]
- Pichette, A.; Larouche, P.-L.; Lebrun, M.; Legault, J. Composition and Antibacterial Activity of Abies balsamea Essential Oil. Phytother. Res. 2006, 20, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Al-Farhan, K.; Warad, I.; Al-Resayes, S.; Fouda, M.; Ghazzali, M. Synthesis, Structural Chemistry and Antimicrobial Activity of −(−) Borneol Derivative. Open Chem. 2010, 8, 1127–1133. [Google Scholar] [CrossRef]
- Feng, Y.-X.; Zhang, X.; Wang, Y.; Chen, Z.-Y.; Lu, X.-X.; Du, Y.-S.; Du, S.-S. The Potential Contribution of Cymene Isomers to Insecticidal and Repellent Activities of the Essential Oil from Alpinia Zerumbet. Int. Biodeterior. Biodegrad. 2021, 157, 105138. [Google Scholar] [CrossRef]
- Madhuri, K.; Naik, P.R. Ameliorative Effect of Borneol, a Natural Bicyclic Monoterpene against Hyperglycemia, Hyperlipidemia and Oxidative Stress in Streptozotocin-Induced Diabetic Wistar Rats. Biomed. Pharmacother. 2017, 96, 336–347. [Google Scholar] [CrossRef]
- Tabanca, N.; Kırımer, N.; Demirci, B.; Demirci, F.; Başer, K.H.C. Composition and Antimicrobial Activity of the Essential Oils of Micromeria cristata Subsp. Phrygia and the Enantiomeric Distribution of Borneol. J. Agric. Food Chem. 2001, 49, 4300–4303. [Google Scholar] [CrossRef] [PubMed]
- Baydar, H.; Baydar, N.G. The Effects of Harvest Date, Fermentation Duration and Tween 20 Treatment on Essential Oil Content and Composition of Industrial Oil Rose (Rosa damascena Mill.). Ind. Crops Prod. 2005, 21, 251–255. [Google Scholar] [CrossRef]
- da Silva de Souza, T.; da Silva Ferreira, M.F.; Menini, L.; de Lima Souza, J.R.C.; Parreira, L.A.; Cecon, P.R.; Ferreira, A. Essential Oil of Psidium guajava: Influence of Genotypes and Environment. Sci. Hortic. 2017, 216, 38–44. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekkara, F.A.; Benhammou, N.; Panovska, T.K. Oil and Ethanolic Extract of Inula viscosa. Adv. Food Sci. 2008, 30, 132. [Google Scholar]
- Qneibi, M.; Hanania, M.; Jaradat, N.; Emwas, N.; Radwan, S. Inula viscosa (L.) Greuter, Phytochemical Composition, Antioxidant, Total Phenolic Content, Total Flavonoids Content and Neuroprotective Effects. Eur. J. Integr. Med. 2021, 42, 101291. [Google Scholar] [CrossRef]
- Cerretani, L.; Bendini, A. Chapter 67—Rapid Assays to Evaluate the Antioxidant Capacity of Phenols in Virgin Olive Oil. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: San Diego, CA, USA, 2010; pp. 625–635. ISBN 978-0-12-374420-3. [Google Scholar]
- Mitić, V.D.; Ilić, M.D.; Stankov Jovanović, V.P.; Djordjevic, A.S.; Marković, M.S.; Stojanović, G.S. Volatiles Composition and Antioxidant Activity Inula Oculus-Christi L. from Serbia. Nat. Prod. Res. 2020, 34, 2698–2701. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Yu, Y.; Zhou, S.; Liu, W.; Tian, S.; Cao, S. Antioxidant Activity and Free Radical-Scavenging Capacity of Gynura divaricata Leaf Extracts at Different Temperatures. Pharmacogn. Mag. 2011, 7, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Aissa, I.; Znati, M.; Zardi-Bergaoui, A.; Flamini, G.; Ascrizzi, R.; Ben Jannet, H. GC and GC-MS Integrated Analyses and in Vitro Antibacterial, Anticholinesterase, Anti-Tyrosinase, and Anti-5-Lipoxygenase Potential of Inula viscosa Root Fractionated Essential Oil. S. Afr. J. Bot. 2019, 125, 386–392. [Google Scholar] [CrossRef]
- Mohti, H.; Taviano, M.F.; Cacciola, F.; Dugo, P.; Mondello, L.; Marino, A.; Crisafi, G.; Benameur, Q.; Zaid, A.; Miceli, N. Inula viscosa (L.) Aiton Leaves and Flower Buds: Effect of Extraction Solvent/Technique on Their Antioxidant Ability, Antimicrobial Properties and Phenolic Profile. Nat. Prod. Res. 2020, 34, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Zarga, M.H.A.; Mahasneh, A.M. Antiproliferative, Antimicrobial and Apoptosis Inducing Effects of Compounds Isolated from Inula Viscosa. Molecules 2012, 17, 3291–3303. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D.N. The Role of Structure and Molecular Properties of Terpenoids in Determining Their Antimicrobial Activity. Flavour Fragr. J. 1999, 14, 322–332. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid. Based Complement. Alternat. Med. 2016, 2016, e3012462. [Google Scholar] [CrossRef]
- Yıldırım, E.; Emsen, B.; Kordalı, S. İnsecticidal Effects of Monoterpenes on Sitophilus zeamais motschulsky (Coleoptera: Curculionidae). J. Appl. Bot. Food Qual. 2013, 86, 198–204. [Google Scholar] [CrossRef]
- López, M.D.; Pascual-Villalobos, M.J. Mode of Inhibition of Acetylcholinesterase by Monoterpenoids and Implications for Pest Control. Ind. Crops Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yamafuji, C. Inhibition of Acetylcholinesterase Activity by Bicyclic Monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef]
- Haouel Hamdi, S.; Abidi, S.; Sfayhi, D.; Dhraief, M.Z.; Amri, M.; Boushih, E.; Hedjal-Chebheb, M.; Larbi, K.M.; Mediouni Ben Jemâa, J. Nutritional Alterations and Damages to Stored Chickpea in Relation with the Pest Status of Callosobruchus maculatus (Chrysomelidae). J. Asia-Pac. Entomol. 2017, 20, 1067–1076. [Google Scholar] [CrossRef]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Singh, P.; Dubey, N.K. Botanicals as Eco Friendly Biorational Alternatives of Synthetic Pesticides against Callosobruchus Spp. (Coleoptera: Bruchidae)—A Review. J. Food Sci. Technol. 2015, 52, 1239–1257. [Google Scholar] [CrossRef] [PubMed]
- Grauso, L.; Cesarano, G.; Zotti, M.; Ranesi, M.; Sun, W.; Bonanomi, G.; Lanzotti, V. Exploring Dittrichia viscosa (L.) Greuter Phytochemical Diversity to Explain Its Antimicrobial, Nematicidal and Insecticidal Activity. Phytochem. Rev. 2020, 19, 659–689. [Google Scholar] [CrossRef]
- Lampiri, E.; Agrafioti, P.; Levizou, E.; Athanassiou, C.G. Insecticidal Effect of Dittrichia viscosa Lyophilized Epicuticular Material against Four Major Stored-Product Beetle Species on Wheat. Crop Prot. 2020, 132, 105095. [Google Scholar] [CrossRef]
- Gueribis, F.; Zermane, N.; Khalfi-Habess, O.; Siafa, A.; Cimmino, A.; Boari, A.; Evidente, A. Bioefficacy of Compounds from Dittrichia viscosa (Asteraceae) as Protectant of Chickpea Seeds against the Cowpea Seed Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae). J. Plant Dis. Prot. 2019, 126, 437–446. [Google Scholar] [CrossRef]
Peak | Compounds | Formula | CAS | RI Literature | RI Observed | RT * | EO (%) |
---|---|---|---|---|---|---|---|
1 | α-Pinene | C10H16 | 7785-70-8 | 939 | 939 | 12.71 | 0.76 |
2 | Isodrimenin | C15H22O2 | 13466-78-9 | 1942 | 1941 | 14.13 | 1.79 |
3 | 3-Carene | C10H16 | 13466-78-9 | 1011 | 1011 | 14.35 | 0.79 |
4 | Santolina triene | C10H16 | 2153-66-4 | 908 | 907 | 14.61 | 0.28 |
5 | Caryophyllene oxide | C15H24O | 1139-30-6 | 1587 | 1587 | 16.12 | 5.73 |
6 | Andrographolide | C20H30O5 | 5508-58-7 | 1674 | 1674 | 16.15 | 1.20 |
7 | γ-Himachalene | C15H24 | 53111-25-4 | 1451 | 1450 | 17.16 | 0.45 |
8 | τ-Muurolol | C15H26O | 19435-97-3 | 1642 | 1642 | 17.56 | 1.09 |
9 | τ-Cadinol | C15H26O | 481-34-5 | 1640 | 1642 | 17.98 | 0.56 |
10 | Camphene | C10H16 | 79-92-5 | 953 | 953 | 18.95 | 2.78 |
11 | Epizonarene | C15H24 | 41702-63-0 | 1501 | 1500 | 19.35 | 0.90 |
12 | Isoborneol | C10H18O | 124-76-5 | 1160 | 1160 | 20.74 | 1.05 |
13 | Farnesyl bromide | C15H25Br | 28290-41-7 | 1902 | 1901 | 21.18 | 1.28 |
14 | Fenchyl acetate | C12H20O2 | 4057-31-2 | 1220 | 1220 | 21.95 | 0.74 |
15 | Borneol | C10H18O | 507-70-0 | 1173 | 1170 | 23.15 | 9.33 |
16 | Thujopsene | C15H24 | 470-40-6 | 1431 | 1431 | 23.35 | 2.25 |
17 | Limonene | C10H16O | 138-86-3 | 1029 | 1027 | 24.26 | 0.85 |
18 | γ-Elemene | C15H24 | 29873-99-2 | 1432 | 1432 | 25.24 | 0.26 |
19 | Isoledene | C15H24 | 95910-36-4 | 1374 | 1370 | 25.58 | 0.27 |
20 | Caryophyllene | C15H24 | 87-44-5 | 1424 | 1420 | 26.23 | 0.68 |
21 | Humulen-(v1) | C15H24 | 6753-98-6 | 1608 | 1608 | 26.58 | 0.42 |
22 | Naphthalene | C10H8 | 91-20-3 | 1181 | 1180 | 27.68 | 3.25 |
23 | Isoaromadendrene epoxide | C15H24O | 22029-76-1 | 1460 | 1460 | 28.32 | 0.19 |
24 | a-Bulnesene | C10H8 | 3691-12-1 | 1509 | 1508 | 28.74 | 1.00 |
25 | Bicyclosesquiphellandrene | C15H24 | 54324-03-7 | 1522 | 1520 | 29.37 | 0.89 |
26 | Spathulenol | C15H24O | 523-47-7 | 1578 | 1578 | 30.04 | 1.19 |
27 | bornyl acetate | C12H20O2 | 1617-68-1 | 1288 | 1280 | 31.32 | 41.00 |
28 | Naphthalen-2-ol | C10H8O | 93-0R-3 | 1447 | 1447 | 32.77 | 0.56 |
29 | α-Cadinol | C15H26O | 481-34-5 | 1654 | 1654 | 33.58 | 1.12 |
30 | Ledol | C15H26O | 577-27-5 | 1602 | 1600 | 34.18 | 1.09 |
31 | 11-Hexadecynal | C15H24O | 86426-73-5 | 1503 | 1500 | 34.32 | 0.57 |
32 | α-amorphene | C15H24 | 20085-19-2 | 1484 | 1480 | 35.02 | 6.60 |
33 | Longifolenaldehyde | C15H24 | 19890-84-7 | 1614 | 1610 | 26.28 | 0.38 |
34 | Aristolene epoxide | C15H24O | 30824-67-0 | 1291 | 1290 | 37.14 | 0.44 |
35 | Isoaromadendrene epoxide | C15H24O | 7459-33-8 | 1641 | 1640 | 38.63 | 0.44 |
36 | Aromadendrene oxide-(2) | C15H24O | 28474-90-0 | 1628 | 1628 | 39.69 | 0.22 |
37 | Caryophyllenol | C15H24O | 4752-56-1 | 1572 | 1572 | 42.48 | 2.49 |
38 | 9-cis-Retinal | C20H28O | 630-02-4 | 2800 | 2800 | 43.16 | 0.92 |
39 | Verbenol | C10H16O | 630-02-4 | 1141 | 1140 | 48.77 | 0.49 |
40 | Pentacosane | C25H52 | 630-03-5 | 2500 | 2500 | 51.96 | 0.73 |
41 | Lupan-3-ol, acetate | C32H54O2 | 7683-64-9 | 2815 | 2815 | 54.79 | 0.43 |
Total | 97.46% |
DPPH IC50 (mg/mL) | FRAP EC50 (mg/mL) | |
---|---|---|
EOD | 1.290 ± 0.055 | 35.585 ± 2.52 |
BHT | 0.007 ± 0.001 | 1.256 ± 0.164 |
Ascorbic acid | 0.001 ± 0.001 | 0.764 ± 0.125 |
Dilution Series of Essential Oil | |||||||
---|---|---|---|---|---|---|---|
1/10 | 1/20 | 1/40 | 1/80 | 1/160 | 1/320 | 1/640 | |
TAC (mg AAE/g E) | 192.1 ± 0.8 | 190.1 ± 0.1 | 166.4 ± 0.6 | 152.8 ± 0.1 | 108.4 ± 0.4 | 77.2 ± 1.0 | 39.8 ± 0.7 |
Inhibition Zone Diameter (mm) | |||||
---|---|---|---|---|---|
Microorganisms | Antibiotics | ||||
EOD | Streptomycin | Tetracycline | Imazalil | Fluconazole | |
Gram-negative | |||||
E. coli | 9.5 ± 0.5 | Resistant | 18.5 ± 1.5 | NA | NA |
P. aeruginosa | Resistant | Resistant | 13.2 ± 0.5 | NA | NA |
K. pneumoniae | Resistant | Resistant | 15.0 ± 0.7 | NA | NA |
Gram-positive | |||||
S. aureus | 31.0 ± 1.5 | 9.5 ± 0.2 | 17.0 ± 1.2 | NA | NA |
Fungus | |||||
C. albicans | 20.4 ± 0.5 | NA | NA | 45.7 ± 1.2 | 21.0 ± 1.0 |
Yeast | |||||
S. Cerevisiae | 28.0 ± 1.0 | NA | NA | 47.0 ± 2.5 | 27.5 ± 0.5 |
Microorganisms | Minimal Inhibitory Concentration (mg/mL) | ||||
---|---|---|---|---|---|
Antibiotics | |||||
EOD | Streptomycin | Tetracycline | Imazalil | Fluconazole | |
Gram-negative | |||||
E. coli | 0.406 | 0.250 | 0.250 | NA | NA |
P. aeruginosa | 1.625 | Resistant | 0.250 | NA | NA |
K. pneumoniae | 0.406 | 0.003 | 0.062 | NA | NA |
Gram-positive | |||||
S. aureus | 0.101 | 0.062 | 0.003 | NA | NA |
Fungus | |||||
C. albicans | 0.203 | NA | NA | 0.050 | 0.400 |
Yeast | |||||
S. cerevisiae | 3.250 | NA | NA | 0.010 | 0.200 |
Treatment | LC50 | LC95 |
---|---|---|
Inhalation test | 7.79 ± 0.29 | 14.36 ± 1.37 |
Ingestion test | 14.46 ± 2.13 | 55.01 ± 8.46 |
Dose of EOD (µL) | Number of Eggs Laid | Reduction of Eggs Laid (%) | Percentage of Adult Emergence | Reduction of Emergence (%) |
---|---|---|---|---|
Control (0) | 184.67 ± 23.43 a | - | 111.67 ± 6.51 a | - |
1 | 93.67 ± 9.61 ab | 49.28 ± 5.20 a | 75.33 ± 6.51 ab | 32.53 ± 5.82 ab |
5 | 65.0 ± 6.00 ab | 64.80 ± 3.24 ab | 51.67 ± 9.07 ab | 53.73 ± 8.12 a |
10 | 32.33 ± 7.02 abc | 82.49 ± 3.80 ab | 21.67 ± 6.11 abc | 80.59 ± 5.47 ab |
20 | 15.33 ± 3.51 abc | 91.69 ± 1.90 ab | 9.67 ± 2.31 ab | 91.34 ± 2.06 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mssillou, I.; Agour, A.; Allali, A.; Saghrouchni, H.; Bourhia, M.; El Moussaoui, A.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.M.; Giesy, J.P.; et al. Antioxidant, Antimicrobial, and Insecticidal Properties of a Chemically Characterized Essential Oil from the Leaves of Dittrichia viscosa L. Molecules 2022, 27, 2282. https://doi.org/10.3390/molecules27072282
Mssillou I, Agour A, Allali A, Saghrouchni H, Bourhia M, El Moussaoui A, Salamatullah AM, Alzahrani A, Aboul-Soud MAM, Giesy JP, et al. Antioxidant, Antimicrobial, and Insecticidal Properties of a Chemically Characterized Essential Oil from the Leaves of Dittrichia viscosa L. Molecules. 2022; 27(7):2282. https://doi.org/10.3390/molecules27072282
Chicago/Turabian StyleMssillou, Ibrahim, Abdelkrim Agour, Aimad Allali, Hamza Saghrouchni, Mohammed Bourhia, Abdelfattah El Moussaoui, Ahmad Mohammad Salamatullah, Abdulhakeem Alzahrani, Mourad A. M. Aboul-Soud, John P. Giesy, and et al. 2022. "Antioxidant, Antimicrobial, and Insecticidal Properties of a Chemically Characterized Essential Oil from the Leaves of Dittrichia viscosa L." Molecules 27, no. 7: 2282. https://doi.org/10.3390/molecules27072282
APA StyleMssillou, I., Agour, A., Allali, A., Saghrouchni, H., Bourhia, M., El Moussaoui, A., Salamatullah, A. M., Alzahrani, A., Aboul-Soud, M. A. M., Giesy, J. P., Lyoussi, B., & Derwich, E. (2022). Antioxidant, Antimicrobial, and Insecticidal Properties of a Chemically Characterized Essential Oil from the Leaves of Dittrichia viscosa L. Molecules, 27(7), 2282. https://doi.org/10.3390/molecules27072282