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Abstract: Ionic liquids (ILs) are recognized as an environmentally friendly alternative to replacing
volatile molecular solvents. Knowledge of vaporization thermodynamics is crucial for practical
applications. The vaporization thermodynamics of five ionic liquids containing a pyridinium cation
and the [NTf2] anion were studied using a quartz crystal microbalance. Vapor pressure-temperature
dependences were used to derive the enthalpies of vaporization of these ionic liquids. Vaporiza-
tion enthalpies of the pyridinium-based ionic liquids available in the literature were collected and
uniformly adjusted to the reference temperature T = 298.15 K. The consistent sets of evaluated
vaporization enthalpies were used to develop the “centerpiece”-based group-additivity method
for predicting enthalpies of vaporization of ionic compounds. The general transferability of the
contributions to the enthalpy of vaporization from the molecular liquids to the ionic liquids was
established. A small, but not negligible correction term was supposed to reconcile the estimated
results with the experiment. The corrected “centerpiece” approach was recommended to predict the
vaporization enthalpies of ILs.

Keywords: ionic liquids; vapor pressure measurements; enthalpy of vaporization; structure–
property relationships

1. Introduction

Volatile molecular solvents are widely used in the chemical industry for extraction,
recrystallization or as a reaction medium. The separation of solvents from chemicals is
usually performed by evaporation or distillation [1–7]. It is inevitable that a significant
amount of volatile solvents will be lost into the atmosphere and pollute nature. The
extremely low-volatility ionic solvents, on the other hand, do not have this disadvantage
and are considered to be a substitute for molecular solvents in many technical applications.
Chemical processes are usually carried out at elevated temperatures where vapor pressures
cannot be considered negligible. Therefore, a reliable knowledge of the vaporization
thermodynamics is essential to avoid material losses or to reveal the limits of thermal
stability [8–10].

Obtaining the proper vapor measurements of ionic liquids (ILs) are a challenging
task because, at low temperatures, the vapor pressure is too low to be measured, but at
high temperatures the decomposition processes can occur and falsify the result. For this
reason, the experimental results for the vaporization thermodynamics of ionic liquids
should be validated before they can be considered as reliable. [8–10] It is evident that a
better understanding of transition enthalpies also helps to elucidate macroscopic fluid
phenomena, and thus promote industrial applications.

Structure–property relationships are a very useful diagnostic tool to establish the
internal consistency of available experimental data. They are suitable for predicting at least
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the level of the property being measured when the data is known for similarly shaped
molecules [11].

Unfortunately, only very few vapor pressures and vaporization enthalpies are avail-
able for ionic liquids [12]. This work contributes with six new datasets on the vaporization
thermodynamics of pyridinium-based ionic liquids with bis(trifluoromethylsulfonyl)imide
anion (see Figure 1) and the investigation of the interplay of structure–property relation-
ships in ionic liquids, and leads to the development of a new general approach to predict
vaporization enthalpies of ionic liquids using the available knowledge on the vaporization
thermodynamics of molecular liquids. In our previous studies, we found that ionic liquids
containing the [NTf2] anion are best suited for vapor pressure measurements because of
their remarkable thermal stability. The pyridinium-based ionic liquids are used as the first
part to understand structure–property relationships in ionic liquids. The similar study of
the imidazolium ILs is ongoing.

Molecules 2022, 27, x FOR PEER REVIEW 2 of 15 
 

 

the level of the property being measured when the data is known for similarly shaped 
molecules [11]. 

Unfortunately, only very few vapor pressures and vaporization enthalpies are avail-
able for ionic liquids [12]. This work contributes with six new datasets on the vaporization 
thermodynamics of pyridinium-based ionic liquids with bis(trifluoromethylsulfonyl)im-
ide anion (see Figure 1) and the investigation of the interplay of structure–property rela-
tionships in ionic liquids, and leads to the development of a new general approach to pre-
dict vaporization enthalpies of ionic liquids using the available knowledge on the vapori-
zation thermodynamics of molecular liquids. In our previous studies, we found that ionic 
liquids containing the [NTf2] anion are best suited for vapor pressure measurements be-
cause of their remarkable thermal stability. The pyridinium-based ionic liquids are used 
as the first part to understand structure–property relationships in ionic liquids. The simi-
lar study of the imidazolium ILs is ongoing. 

 
Figure 1. Structures of pyridinium-based ionic liquids studied in this work using a quartz crystal 
microbalance (QCM) with R = alkyl chain C3, C4, C6, and C8 and R1 = Me and CN. For brevity, the 
cations of ILs measured in this work are named as follows: [1-C8-Py] for of 1-octyl-pyridinium; [3-
Me-1-C3-Py] for of 3-methyl-1-propyl-pyridinium; [3-CN-1-C6-Py] for 3-cyano-1-hexyl-pyridinium; 
[4-CN-1-C6-Py] for 4-cyano-1-hexyl-pyridinium; and [3-CN-1-C8-Py] for the 3-cyano-1-octyl-pyri-
dinium cation connected with the bis(trifluoromethylsulfonyl)imide anion (abbreviation: [NTf2]). 

The main idea of this work is demonstrated in Figure 2. As a matter of fact, in our 
previous work, we showed that the general regularities revealed for molecular liquids can 
be transferred to ionic liquids [13]. 

 

(a)

 

(b)

Figure 2. Assessment of the enthalpy of vaporization ∆lg𝐻mo (298.15 K) in molecular (a) and in ionic 
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dicted with the help of a simple contribution, ∆୪𝐻mo (H→R1), representing the replacement 
of an H atom in pyridine with any substituents (see Figure 2a). It was found that, for pyr-
idinium-based ionic liquids, the same numerical values for the contributions ∆୪𝐻mo (H→R1) can be used to estimate their vaporization enthalpies ∆lg𝐻mo (298.15 K) as 
given in Figure 2b. 

Figure 1. Structures of pyridinium-based ionic liquids studied in this work using a quartz crystal
microbalance (QCM) with R = alkyl chain C3, C4, C6, and C8 and R1 = Me and CN. For brevity, the
cations of ILs measured in this work are named as follows: [1-C8-Py] for of 1-octyl-pyridinium; [3-Me-
1-C3-Py] for of 3-methyl-1-propyl-pyridinium; [3-CN-1-C6-Py] for 3-cyano-1-hexyl-pyridinium; [4-
CN-1-C6-Py] for 4-cyano-1-hexyl-pyridinium; and [3-CN-1-C8-Py] for the 3-cyano-1-octyl-pyridinium
cation connected with the bis(trifluoromethylsulfonyl)imide anion (abbreviation: [NTf2]).

The main idea of this work is demonstrated in Figure 2. As a matter of fact, in our
previous work, we showed that the general regularities revealed for molecular liquids can
be transferred to ionic liquids [13].
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Figure 2. Assessment of the enthalpy of vaporization ∆g
l Ho

m(298.15 K) in molecular (a) and in ionic
liquids (b).

Indeed, the vaporization enthalpies of, e.g., pyridine derivatives, can be reliably
predicted with the help of a simple contribution, ∆g

l Ho
m(H→R1), representing the re-

placement of an H atom in pyridine with any substituents (see Figure 2a). It was found
that, for pyridinium-based ionic liquids, the same numerical values for the contributions
∆g

l Ho
m(H→R1) can be used to estimate their vaporization enthalpies ∆g

l Ho
m(298.15 K) as

given in Figure 2b.
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In this work, we ascertain and generalize this finding based on the available data
on vaporization enthalpies of pyridinium ionic liquids with the help of complementary
measurements of six new ionic liquids.

2. Materials and Methods

The samples of alkyl-pyridinium-based ionic liquids with the bis(trifluoromethylsulfonyl)
imide anion of 99% purity were of commercial origin (see Table S1) and were used as
received. Before starting the experiment, however, a sample of an IL was placed in an
open cavity of the thermostatted block and subjected to vacuum (10−5 Pa) for conditioning.
The quartz crystal microbalance (QCM) [14] was used for vapor pressure measurements
at different temperatures. A sample of an IL was placed in an open cavity (Langmuir
evaporation) of the thermostatted block inside the set-up. The standard molar enthalpies of
vaporization, ∆g

l Ho
m, were derived from the temperature dependences of vapor pressures.

A concise description of the L-QCM (Langmuir quartz crystal microbalance) method and
data treatment is presented in the Supporting Information.

3. Results and Discussion
3.1. Experimental Vaporization Thermodynamics of Pyridinium Based ILs

The original experimental vapor pressures of Ils at different temperatures are collected
in Table S2. They were used to derive the standard molar enthalpies of vaporization
∆g

l Ho
m(Tav), which are referenced to the average temperatures Tav. These results are shown

in Table 1, column 5. For thermochemical calculations, the vaporization enthalpies are
used to adjust to the reference temperature T = 298.15 K. The ∆g

l Ho
m(298.15 K) values are

calculated according to the Kirchhoff’s equation:

∆g
l Ho

m(298.15 K) = ∆g
l Ho

m(Tav)+∆Co
p,m× (Tav − 298.15 K) (1)

Table 1. Results of L-QCM studies of pyridinium-based ionic liquids (in kJ·mol−1) a.

Ionic Liquids Trange Tav ∆
g
l Go

m(Tav) ∆
g
l Ho

m(Tav) b ∆Co
p,m

c ∆
g
l Ho

m(298.15 K) d

K K kJ·mol−1 kJ·mol−1 J·mol−1·K−1 kJ·mol−1

[1-C8-Py][NTf2] 383.2–430.4 406.2 76.5 ± 1.5 142.4 ± 1.0 −100 153.2 ± 2.4
[3-Me-1-C3-Py][NTf2] 357.9–407.5 385.2 71.7 ± 1.5 126.3 ± 1.0 −70 132.4 ± 1.6
[3-CN-1-C4-Py][NTf2] e 400.3–448.1 424.8 78.5 ± 1.5 141.8 ± 1.0 −75 151.2 ± 2.1
[3-CN-1-C6-Py][NTf2] 402.9–450.6 426.2 79.6 ± 1.5 151.3 ± 1.0 −84 162.1 ± 2.4
[4-CN-1-C6-Py][NTf2] 405.4–448.1 427.5 78.3 ± 1.5 147.9 ± 1.0 −81 158.4 ± 2.3
[3-CN-1-C8-Py][NTf2] 407.9–455.7 434.8 79.7 ± 1.5 152.9 ± 1.0 −91 165.3 ± 2.7

a Uncertainties of vaporization enthalpy (∆g
l Ho

m) and Gibbs free energy of vaporization (∆g
l Go

m) are the expanded
uncertainties (0.95 level of confidence, k = 2). b Vaporization enthalpy measured in the specified temperature
range (see Table S1) and referenced to the average temperature Tav. c The heat capacity differences were derived
from an empirical equation: ∆Co

p,m = −0.126 × Co
p,m(liq) exp − 1.5 (with R2 = 0.987). The heat capacity values

Co
p,m(liq) exp are compiled in Table S3. d Vaporization enthalpies ∆g

l Ho
m(Tav) were treated using Equation (1),

with the help of heat capacity differences from column 5 to evaluate the enthalpy of vaporization at 298.15 K. The
final uncertainties of vaporization enthalpy are expanded, taking into account the uncertainty of the heat capacity
difference ∆g

l Co
p,m assigned to be of ± 20 J·K−1·mol−1. e From Ref. [13].

The value ∆g
l Co

p,m = Co
p,m(g) − Co

p,m(liq) is the difference between the molar heat
capacities of the gaseous Co

p,m(g) and the liquid phase Co
p,m(liq), respectively. The required

∆g
l Co

p,m values are presented in Table 1, column 6.
The compilation of experimental thermodynamic data of pyridinium-based ILs mea-

sured using the L-QCM technique is presented in Table 1. The ∆g
l Ho

m(298.15 K)-values
for methyl- and cyano-substituted pyridinium-based ILs were measured for the first time
(except for [3-CN-1-C4-Py][NTf2] data reported in our previous work [13]). To investigate
the structure–property relationships, we also compiled (see Tables 2 and 3) the vaporiza-



Molecules 2022, 27, 2321 4 of 14

tion enthalpies of the pyridinium-based ILs connected to the [NTf2] anion available in
the literature.

Table 2. Compilation of the enthalpies of vaporization ∆g
l Ho

m for [1-Cn-Py][NTf2] available in
the literature.

IL M a Tav ∆
g
l Ho

m(Tav) b ∆Co
p,m

c ∆
g
l Ho

m(298.15 K) d Ref.

K kJ·mol−1 J·mol−1·K−1 kJ·mol−1

[1-C2-Py][NTf2] L-QCM 400.6 125.3 ± 1.0 −61 131.5 ± 1.6 [15]
K-QCM 498.6 120.1 ± 1.2 132.4 ± 2.8 [16]

131.7± 1.4 e average

[1-C3-Py][NTf2] L-QCM 398.2 128.0 ± 1.0 −66 134.6 ± 1.7 [15]
K-QCM 504.5 124.1 ± 1.0 137.7 ± 2.9 [16]

135.4± 1.5 e average

[1-C4-Py][NTf2] L-QCM 399.5 131.1 ± 1.0 −70 138.2 ± 1.7 [15]
553.0 119.8 ± 2.2 137.6 ± 4.2 [17]

K-QCM 506.8 121.9 ± 1.7 136.5 ± 3.4 [16]
137.8± 1.4 e average

[1-C5-Py][NTf2] L-QCM 400.6 134.2 ± 1.0 −73 141.7 ± 1.8 [15]

[1-C6-Py][NTf2] L-QCM 405.7 137.3 ± 1.0 −77 145.6 ± 1.9 [15]
TPD 440.0 138.6 ± 4.0 −77 149.5 ± 3.0 [18]

146.1± 1.8 e average

[1-C8-Py][NTf2] L-QCM 406.2 142.4 ± 1.0 −100 153.2 ± 2.4 Table 1
a Method: K-QCM—Knudsen effusion cell combined with a quartz crystal microbalance; L-QCM—Langmuir
evaporation from the open surface combined with the quartz crystal microbalance; TPD—temperature-programed
desorption line-of-sight mass spectrometry at a ultra-high vacuum. b Vaporization enthalpies measured in the
specified temperature range and referenced to the average temperature Tav. c The heat capacity differences
were derived in our previous work [15] from the experimental volumetric properties. d Vaporization enthalpies
∆g

l Ho
m(Tav) were treated using Equation (1), with help of the heat capacity differences from column 5 to evaluate

the enthalpies of vaporization at 298.15 K. The final uncertainties of vaporization enthalpies are expanded, taking
into account the uncertainty of the heat capacity difference ∆g

l Co
p,m assigned to be of± 20 J·K−1·mol−1. e Weighted

mean value. Values in bold are recommended for further thermochemical calculations. Uncertainty of the
vaporization enthalpy U(∆g

l Ho
m) is the expanded uncertainty (0.95 level of confidence, k = 2).

Table 3. Compilation of the enthalpies of vaporization ∆g
l Ho

m for [2-Et-Cn-Py][NTf2] evaluated in
this work from the data available in the literature [19].

Ionic Liquid Tav
a ∆

g
l Ho

m(Tav) b ∆Co
p,m

c ∆
g
l Ho

m(298.15 K) d

K kJ·mol−1 J·mol−1·K−1 kJ·mol−1

[2-Et-1-C2-Py][NTf2] 508.0 124.6 ± 1.4 −73 139.9 ± 3.4
[2-Et-1-C3-Py][NTf2] 510.4 121.0 ± 0.8 −76 137.2 ± 3.3
[2-Et-1-C4-Py][NTf2] 503.0 122.3 ± 0.6 −80 138.7 ± 3.3
[2-Et-1-C5-Py][NTf2] 510.5 127.3 ± 1.4 −84 145.1 ± 3.8
[2-Et-1-C6-Py][NTf2] 505.5 128.3 ± 0.6 −88 146.5 ± 3.7
[2-Et-1-C7-Py][NTf2] 508.2 131.4 ± 2.8 −92 150.7 ± 4.8
[2-Et-1-C8-Py][NTf2] 505.5 138.5 ± 1.7 −96 158.4 ± 4.3
[2-Et-1-C9-Py][NTf2] 522.8 139.7 ± 1.3 −100 162.1 ± 4.7
[2-Et-1-C10-Py][NTf2] 520.4 144.5 ± 1.6 −104 167.5 ± 4.9

a Average temperature of the K-QCM experiments. b Vaporization enthalpies measured [19] in the specified
temperature range and referenced to the average temperature Tav. c The heat capacity differences were derived
from an empirical equation: ∆Co

p,m = −0.126 × Co
p,m(liq) exp − 1.5 (with R2 = 0.987). The heat capacity values

Co
p,m(liq) exp are compiled in Table S3. d Vaporization enthalpies ∆g

l Ho
m(Tav) were treated using Equation (1),

with the help of the heat capacity differences from column 5 to evaluate the enthalpies of vaporization at 298.15 K.
The final uncertainties of the vaporization enthalpy are expanded, taking into account the uncertainty of the heat
capacity difference ∆g

l Co
p,m assigned to be of ± 20 J·K−1·mol−1.
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3.2. Comparison of the Vaporization Enthalpies Derived from the Theoretical and
Empirical Methods

Taking into account the difficulties of experimental measurements of the extremely
low vapor pressures, the vaporization enthalpies should be compared to results obtained
from other methods (see Tables 4 and 5).

Table 4. Comparison of the experimental and theoretical vaporization enthalpies ∆g
l Ho

m(298.15 K) of
[1-CnPy][NTf2] (in kJ·mol−1).

Method [1-C2Py] [1-C3Py] [1-C4Py] [1-C6Py] [1-C8Py]

GAFF [20] - 125.0 - - -
CL&P FF original [21] - - 167.0 - -
CL&P FF refined [21] - - 141.0 - -
MD [22] - - 137.3 - -
COSMO-therm [23] - - - 142.0 -
COSMO-RS [24] 143.9 ± 10 143.1 ± 10 145.8 ± 10 - -
Empiric [25] - - 154.0 153.0 -
γ∞

1 based (see text) [26] - - 139.0 ± 4.2 147.5 ± 4.4 153.6 ± 4.6
Experiment a 131.7± 1.4 135.4± 1.9 137.8± 1.4 146.1± 1.8 153.2± 2.4

a Experimental data on ∆g
l Ho

m(298.15 K, [1-CnPy][NTf2]) were obtained from Table 2. The extended uncertainty
with k = 2 and confidence level 0.95 is presented.

Table 5. Comparison of the experimental, empirical, and theoretical vaporization enthalpies
∆g

l Ho
m(298.15 K) of [Alkyl-1-Cn-Py][NTf2] (in kJ·mol−1).

Method Method ∆
g
l Ho

m(T,K) Ref.

[3-Me-1-C2-Py][NTf2] CRDS a 172 ± 35 [27]
additivity 131.2 ± 1.6 Table S5

[2-Et-1-C2-Py][NTf2] COSMO-RS 143.2 ± 10 [24]
K-QCM 139.9 ± 3.4 Table 3

additivity 132.5 ± 1.6 Table S5

[3-Me-1-C3-Py][NTf2] COSMO-RS 138.6 ± 10 [24]
additivity 134.9 ± 1.7 Table S5
L-QCM 132.4± 1.6 Table 1

[4-Me-1-C3-Py][NTf2] COSMO-RS 143.4 ± 10 [24]
additivity 135.2 ± 1.7 Table S5

[4-Me-1-C4-Py][NTf2] γ∞
1 based 135.7 ± 3.0 Table S6

additivity 137.6 ± 1.6 Table S5
a Measured by CRDS (cavity ring-down laser absorption spectroscopy). The experimental value ∆g

l Ho
m

(419 K) = 162 ± 35 kJ·mol−1 [27] was adjusted to the reference temperature T = 298.15 K, with the help of
∆Co

p,m = −85 J·mol−1·K−1, derived as shown in Table S3.

3.2.1. Molecular Dynamic (MD)

A number of different MD simulation methods were used to calculate the vaporization
enthalpies of ionic liquids [20–23] with varying degrees of success (see Table 4). The
General AMBER Force Field (GAFF) [20] failed to predict the enthalpy of the vaporization
of [1-C3-Py][NTf2] properly. Additionally, the original CL&P FF method [21] heavily
overestimates the vaporization enthalpy of [1-C4-Py][NTf2]. However, after the refinement
of this method [21], an acceptable agreement with the experiment was achieved for [1-C4-
Py][NTf2] (see Table 4). Borodin [22] used a version of the MD simulation package Lucretius
for MD simulations, which includes many-body polarization simulations. His result for the
vaporization enthalpy of [1-C4-Py][NTf2] is in excellent agreement with the experiment.
The empirical force fields are usually parametrized with experimental thermodynamic
and structural data. Hence, our new experimental results on vaporization enthalpies
for pyridinium-based series can be used for the development, re-parametrization, and
validation of modern MD methods [10,28,29].
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3.2.2. COSMO

The quantum-chemistry-based model, COSMO with modifications COSMOtherm [23]
and COSMO-RS [24], was used for the prediction of the thermochemical properties of
ILs. However, as shown in Table 4, the ∆g

l Ho
m(298.15 K) values calculated by the origi-

nal COSMO-RS [24] are systematically (of about 10 kJ·mol−1) higher, compared to the
experimental result. In contrast, the result for [1-C6-Py][NTf2] predicted by the modified
COSMOtherm is in agreement with the experiment (see Table 4).

3.2.3. CRDS Method

Gas-phase electronic absorption spectroscopy was successfully used for studies of 3-
Me-1-ethylpyridinium and 1-butyl-3-methylimidazolium cations connected with the [NTf2]
anion [27]. The vapor pressures at 400–430 K were derived from the measured absorbance.
The vaporization enthalpy determined for [3-Me-C2-Py][NTf2] using the CRDS (cavity
ring-down laser absorption spectroscopy) method is presented in Table 5 and is evidently
too high.

3.2.4. Gas Chromatographic Method (GC)

This method is based on the experimental infinite dilution activity coefficients γ∞
1

derived from the retention times of various solutes measured by gas chromatography using
the IL as the solute [12]. The necessary details are presented in the Supporting Information.
Ban et al. [26] used this method and reported the vaporization enthalpies, ∆g

l Ho
m(298.15 K),

of [1-Cn-Py][NTf2] with alkyl chain n = 4,6 and 8), which are compiled in Table 4 and they
appear to be reasonable, in comparison to other methods. We used the original data for
γ∞

1 for [4-Me-1-C4-Py][NTf2], measured by Domanska and Marciniak [30], and derived,
∆g

l Ho
m(298.15 K) = 135.7 ± 3.0 kJ·mol−1 (see Table 5), which meets the level expectation.

3.2.5. Empirical Model

In an empirical approach developed by Licence and Jones [25], the ∆g
l Ho

m(298.15 K)-
value is decomposed into the Coulombic and van der Waals contributions from the cation
and anion. Unfortunately, a very limited experimental data set on vaporization enthalpies
was used for the parameterization of this approach. As can be seen from Table 4, the
vaporization enthalpy ∆g

l Ho
m(298.15 K) = 154 kJ·mol−1 estimated by this model for [1-

C4-Py][NTf2] is practically equal to ∆g
l Ho

m(298.15 K) = 153 kJ·mol−1 estimated for [1-C6-
Py][NTf2], in contrast to the established growth trend of the vaporization enthalpy, with
increasing chain-length dependence within the homologous series. Apparently, this method
needs further development, but unfortunately no update since 2014 has been found in the
literature.

3.3. Validation of the Vaporization Enthalpies

The comparison of the experimental enthalpies of vaporization with those derived
from theoretical and empirical methods of the previous section was not sufficient to validate
the available enthalpies of vaporization of the pyridinium-based ILs. The consistency of
the complete data set could be checked using structure–property correlations, e.g., chain-
length dependence, or using the correlation between the vaporization enthalpy and surface
tension of the ILs.

3.3.1. Structure–Property Correlations: Chain-Length Dependence

The linear correlation of ∆g
l Ho

m(298.15 K) values with the number of carbon atoms
in the alkyl chain within the homologue series of ionic liquids is a well-established phe-
nomenon, e.g., for the series [Cnmim][NTf2] [31] or [N(R)4][NTf2] [32]. We also correlated
the ∆g

l Ho
m(298.15 K) values for the [1-Cn-Py][NTf2] series (evaluated in Table 2) with the
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number of carbon atoms, n, in the alkyl chain attached to the cation nitrogen atom. The
following correlation was obtained (see Table S8):

∆g
l Ho

m(298.15 K)/ kJ·mol−1 = 124.2 + 3.60 × n
(

with R2 = 0.9958
)

(2)

The relatively high correlation coefficient R2 is evidence of a good consistency of
experimental data approximated by Equation (2).

The surface tension σ298 (surface tension at the reference temperature T = 298.15 K) as
a thermophysical property is directly related to the vaporization enthalpy ∆g

l Ho
m(298.15 K).

Is the chain-length dependence of σ298 linear for pyridinium ionic liquids [1-Cn-Py][NTf2]?
The compilation of the experimental σ298 values available in the literature is presented
in Table 6.

Table 6. Surface tension, σ298(exp), and chain-length dependence for the [1-Cn-Py][NTf2] series (in
mN·m−1).

Ionic Liquid NC σ298(exp) σ298(est) a ∆ b

[1-C2-Py][NTf2] 2 37.4 [33] 37.2 0.2
[1-C3-Py][NTf2] 3 35.4 [34] 35.9 −0.5
[1-C4-Py][NTf2] 4 34.8 [35] 34.5 0.3
[1-C5-Py][NTf2] 5 - 33.1 -
[1-C6-Py][NTf2] 6 31.7 [36] 31.7 0.0
[1-C8-Py][NTf2] 8 - 29.0 -

a Estimated from the chain-length dependence according to Equation (3). b The difference between columns 3 and 4.

Using this data, a robust linear correlation with the alkyl chain length attached to the
N atom of the cation was established according to Equation (3):

σ298(est) = −1.37 × NC +40.0 (with R2 = 0.980) (3)

This correlation we used to estimate the σ298(est) values for [1-C5-Py][NTf2] and [1-C8-
Py][NTf2] is required for the correlation with the vaporization enthalpies in Section 3.3.2.

3.3.2. Correlation of the Vaporization Enthalpies with the Surface Tension

In this work, we correlated ∆g
l Ho

m(298.15 K) for the [1-Cn-Py][NTf2] series with the
surface tensions σ298 from Table 7, column 2. The results are presented in Table 7, column 4.

Table 7. Surface tension σ298 for [1-Cn-Py][NTf2] series available in the literature and the correlation
of the vaporization enthalpies ∆g

l Ho
m(298.15 K) with the surface tension.

Ionic Liquid σ298 ∆
g
l Ho

m(298.15 K)exp
a ∆

g
l Ho

m(298.15 K)calc
b ∆ c

mN·m−1 kJ·mol−1 kJ·mol−1

[1-C2-Py][NTf2] 37.4 [33] 131.7 ± 1.4 131.0 0.7
[1-C3-Py][NTf2] 35.4 [34] 135.4 ± 1.5 136.2 −0.8
[1-C4-Py][NTf2] 34.8 [35] 137.8 ± 1.4 137.8 0.0
[1-C5-Py][NTf2] 33.1 d 141.7 ± 1.8 142.2 −0.5
[1-C6-Py][NTf2] 31.7 [36] 146.1 ± 1.8 145.9 0.2
[1-C8-Py][NTf2] 29.0 d 153.2 ± 2.4 153.0 0.2

a Experimental data from Table 1. b Estimated using Equation (4). c Difference between columns 3 and 4. d Values
have been derived from the chain-length dependence in Table 6.

A good linear correlation has been found to be:

∆g
l Ho

m(298.15 K)/kJ·mol−1 = 228.9− 2.62 × σ298

(
with R2 = 0.995

)
(4)
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for the [1-Cn-Py][NTf2] series. As shown in Table 7, the differences between the experimen-
tal and estimated values do not exceed 1 kJ·mol−1, demonstrating the consistency of the
data set of the unsubstituted pyridinium-based ILs.

Can we also use σ298 values to prove the consistency of the evaporation data for
Me- and CN-substituted pyridinium ILs? To test this, we carefully collected the sur-
face tension data of methyl-substituted (see Table 8) and cyano-substituted (see Table 9)
pyridinium-based ILs and correlated these values with the vaporization enthalpies evalu-
ated in Tables 1 and 2.

Table 8. Experimental values of the surface tension σ298(exp) for the [1-Cn-Py][NTf2] and [Me-1-
Cn-Py][NTf2] series available in the literature and the correlation of the vaporization enthalpies
∆g

l Ho
m(298.15 K) with the surface tension.

Ionic Liquid σ298(exp) ∆
g
l Ho

m(298.15 K)exp
a ∆

g
l Ho

m(298.15 K)calc
b ∆ c

mN·m−1 kJ·mol−1 kJ·mol−1

[1-C2-Py][NTf2] 37.4 [33] 131.7 ± 1.4 130.2 1.5
[1-C3-Py][NTf2] 35.4 [34] 135.4 ± 1.5 135.7 −0.3
[1-C4-Py][NTf2] 34.8 [35] 137.8 ± 1.4 137.3 0.5
[1-C5-Py][NTf2] 33.1 [Table 6] 141.7 ± 1.8 141.9 −0.2
[1-C6-Py][NTf2] 31.7 [36] 146.1 ± 1.8 145.7 0.4
[1-C8-Py][NTf2] 29.0 [Table 6] 153.2 ± 2.4 153.1 0.1
[2-Me-1-C2-Py][NTf2] 38.5 [37] - 127.2 -
[2-Me-1-C3-Py][NTf2] 36.9 [37] - 131.6 -
[3-Me-1-C3-Py][NTf2] 35.8 [38] 132.4 ± 1.6 134.6 −2.2
[4-Me-1-C3-Py][NTf2] 35.2 [34] - 136.2 -
[2-Me-1-C4-Py][NTf2] 36.3 [35] - 133.2 -
[3-Me-1-C4-Py][NTf2] 35.5 [35] - 135.4 -
[4-Me-1-C4-Py][NTf2] 35.0 [35] - 136.8 -

a Experimental data from Tables 1 and 2. b Estimated from Equation (5), the assessed expanded uncertainty of
± 2.0 kJ·mol−1 (with k = 2 and confidence level 0.95). c Difference between columns 3 and 4.

Table 9. Experimental values of the surface tension σ298(exp) for the [CN-1-Cn-Py][NTf2] series
available in the literature and the correlation of the vaporization enthalpies ∆g

l Ho
m(298.15 K) with the

surface tension.

Ionic Liquid σ298(exp) ∆
g
l Ho

m(298.15 K)exp
a ∆

g
l Ho

m(298.15 K)calc
b ∆ c

mN·m−1 kJ·mol−1 kJ·mol−1

[3-CN-1-C4-Py][NTf2] 32.00 [35] 151.0 ± 2.1 151.5 −0.5
[3-CN-1-C6-Py][NTf2] 29.37 [35] 162.1 ± 2.4 162.4 −0.3
[4-CN-1-C6-Py][NTf2] 30.60 [35] 158.4 ± 2.3 157.3 1.1
[3-CN-1-C8-Py][NTf2] 28.65 [35] 165.3 ± 2.7 165.4 −0.1

a Experimental data from Table 1. b Estimated from Equation (6), with the assessed expanded uncertainty of
± 2.0 kJ·mol−1 (with k = 2 and confidence level 0.95). c Difference between columns 3 and 4.

The following linear correlations were established:

for [Me-1-Cn-Py][NTf2] : ∆g
l Ho

m(298.15 K) = −2.72 × σ298(exp) + 232.1
(

with R2 = 0.980
)

(5)

for [CN-1-Cn-Py][NTf2] : ∆g
l Ho

m(298.15 K) = −4.16 × σ298(exp) + 284.5
(

with R2 = 0.986
)

(6)

As shown in Tables 7 and 8, the differences between the experimental and estimated
values are mostly below 1 kJ·mol−1, which also demonstrates the sufficient consistency of
the data set of the substituted pyridinium-based ILs evaluated in this work. This dataset
can now be used to develop a methodology to predict the enthalpies of ILs, which are
difficult to access experimentally.
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3.4. Group Additivity to Predict the Vaporization Enthalpies of Ionic Liquids Using Contributions
from Molecular Liquids

The enthalpy of vaporization is generally a measure of the intensity of intermolecular
interactions that hold molecules together in the liquid state. When Van der Waals forces
and hydrogen bonding prevail over molecular liquids, the additional strong Coulomb
interactions are specific to ionic liquids. This makes the ionic liquids (or molten salts)
extremely low volatile, with vaporization enthalpies between 120 and 180 kJ·mol−1 [31].
Group additivity (GA) methods are successfully used to predict vaporization enthalpies of
molecular liquids. In conventional GA methods, the vaporization enthalpies of molecules
are split up into smallest possible groups in order to obtain well-defined contributions.
The prediction is then based on the idea of “LEGO® bricks”, where the energetics of the
molecule of interest are collected from the appropriate type and number of bricks. A
comprehensive system of group contributions (or increments) covers the major classes of
organic compounds [39]. Using the same method for ionic liquids composed of large organic
cations and large organic/inorganic anions is impractical, due to too many “bricks” and a
very limited amount of available experimental enthalpies of vaporization. To overcome
these limitations, we developed a general approach to estimate the vaporization enthalpies
based on a so-called “centerpiece” molecule [40,41]. This approach is closely related to
the broadly used group additivity (GA) methods [39,42]. The idea of the “centerpiece”
approach is to start the prediction with a potentially large “core” molecule that can generally
mimic the structure of the molecule of interest, but, at the same time, must has a reliable
enthalpy of vaporization. The ionic liquids are predestined for such an approach. The
visualization of the “centerpiece” approach for R-substituted [C2-Py][NTf2] ionic liquid is
presented in Figure 3 as an example.
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Figure 3. The visualization of the “centerpiece” approach for the [1-C2-Py][NTf2] substituted with
methyl or cyano substituent (left). Estimation of ∆g

l Ho
m(298.15 K) values for [R-1-C2-Py][NTf2] (right).

Indeed, [1-C2-Py][NTf2] as the “centerpiece” model already bears the main energetic
contributions to the vaporization enthalpy, due to the sum of the Coulomb and Van der
Waals interactions present in the liquid phase. Such a bulk contribution is unique to [1-C2-
Py][NTf2] as the “centerpiece” molecule and can hardly be captured by any other method.
This special feature of the “centerpiece” approach significantly increases the reliability of
the property prediction for similarly shaped molecules, e.g., [R-1-C2-Py][NTf2] (see Figure 3,
right), where substituent (with contribution ∆g

l Ho
m(H→R) to the vaporization enthalpy)

is simply attached to the aromatic ring of the cation (see Figure 3, left),. For this reason,
the ∆g

l Ho
m(298.15 K) estimated using the “centerpiece” approach for the [R-1-C2-Py][NTf2]

ionic liquids can be ad hoc regarded as reliable, since the “main” contribution to the
vaporization energetics from the [1-C2-Py][NTf2] is already well established and consistent
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with the results available for the [1-Cn-Py][NTf2] series (R = alkyl with n= 1–6) [15]. It
is quite evident that the contributions, ∆g

l Ho
m(H→R), for the “appending” to the [1-C2-

Py][NTf2] “centerpiece” are comparatively small and affordable for a reliable assessment.
As a matter of fact, in our recent work [13], we have shown that the ∆g

l Ho
m(H→Me) and

∆g
l Ho

m(H→CN) contributions derived from the molecular liquids (substituted pyridines
and quinolines) are generally transferrable to ionic liquids. The numerical values for these
contributions are presented in Table 10.

Table 10. Specific “transfer” contribution, ∆g
l Ho

m (H→R1) derived [13] from vaporization enthalpies
of substituted pyridines or quinolines. R = Me, CN, or Et (at 298.15 K in kJ·mol−1) a.

R1 ∆
g
l Ho

m(H→R1) b

2-methyl- 2.3 ± 0.2
3-methyl- 4.4 ± 0.3
4-methyl- 4.7 ± 0.3
2-cyano- 18.4 ± 0.4
3-cyano- 15.6 ± 0.7
4-cyano- 13.8 ± 0.8
2-ethyl- 5.7 ± 0.2 b

a Uncertainties are expanded uncertainties (0.95 level of confidence, k = 2). b Calculated as the difference between
∆g

l Ho
m(298.15 K) = 45.9 ± 0.4 kJ·mol−1 for 2-ethyl-pyridine [13] and ∆g

l Ho
m(298.15 K) = 40.2 ± 0.2 kJ·mol−1 for

pyridine [43].

Let us consider the prediction of the vaporization enthalpy for [3-Me-1-C3-Py][NTf2] as
an example (see Table 11). The [1-C3-Py][NTf2] with ∆g

l Ho
m(298.15 K) = 135.4± 1.5 kJ·mol−1

was used as the “centerpiece”. Contribution ∆g
l Ho

m(H→Me) = 4.4 ± 0.3 kJ·mol−1 from
Table 9 was appended to the aromatic ring in the three position to construct the desired
IL. The resulting value ∆g

l Ho
m(CP) = 138.9 ± 1.6 kJ·mol−1 is in fair agreement with the

experimental result from the QCM study ∆g
l Ho

m(exp) = 132.4 ± 1.6 kJ·mol−1. Similarly,
we used the “centerpiece” approach to estimate the ∆g

l Ho
m(CP) values for the collection

of the ionic liquids (see Table 11), where reliable experimental vaporization enthalpies
were available.

Even a quick look at the results presented in Table 11 can reveal that the “centerpiece”
approach of about 5 kJ·mol−1 systematically overestimates the vaporization enthalpies, if
we directly take the ∆g

l Ho
m(H→R) contributions from molecular liquids to the ionic liquids.

It is thus evident that the overestimation is quite independent of the type and position of
the substituent on the aromatic ring. Moreover, two ionic liquids, [3-Me-1-C4-Py][BF4] and
[3-Me-1-C4-Py][BF4], with the [BF4] anion of a totally different nature, also show the same
trend as the [NTf2] ionic liquids (see the final two lines in Table 11). One of the plausible
explanations for this observation is that the ∆g

l Ho
m(H→R) contributions are derived from

molecular liquids. For vaporizing molecular liquids, all types of interaction need to be
overcome for bringing the monomer molecules into the gas phase. This situation is different
for ionic liquids, which evaporate as ion pairs. Thus, an attractive cation–anion Coulomb
interaction, hydrogen bonding between both ions and, in particular, a dispersion interaction
within the ion pair are taken into the gas phase. The overestimation of the vaporization
enthalpies in the order of 5 kJ·mol−1 by applying the “centerpiece” is in the order of the
derived dispersion energies between the cations and anions in an ion pair [44–48]. Indeed,
such a contribution should be more or less constant for all types of ionic liquids, and
only marginally dependent on the nature of the cation and anion, as demonstrated in the
present paper.

Admittedly, these forces play only a subordinate role in ionic liquids. Thus, a direct
transfer of the ∆g

l Ho
m(H→R) contributions from the molecular to the ionic liquids evidently

requires a systematic correction. Considering the common nature of the systematics ob-
served for the ILs in Table 11, we propose the application of the “centerpiece” approach to
ILs, along with the correction term ∆ = (−4.9 ± 0.8) kJ·mol−1 (see Table 11), to predict the
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∆g
l Ho

m(298.15 K) values of the broad range of ionic liquids using a comprehensive collection
of ∆g

l Ho
m(H→R) contributions available from molecular liquids.

Such a straightforward procedure facilitates a rapid diagnostic of the experimental
or theoretical vaporization enthalpies already available in the literature. For example, in
Table 5, we collect the results for five ionic liquids of the [Alkyl-1-C3-Py][NTf2] series.
The ∆g

l Ho
m(298.15 K) values for this series were of a different quality. Nonetheless, our

calculations using the “corrected-centerpiece” approach allows for a reliable estimate of the
“expected” level of vaporization enthalpy for each species in Table 5, to detect the “sick”
data and help to improve the experimental and theoretical methods. A prime example to
support this idea is the calculation for [3-Me-1-C2-Py][NTf2] (see Table 5, line 3 and Table S5).
The “corrected-centerpiece” result ∆g

l Ho
m(298.15 K) = 131.2 ± 1.6 kJ·mol−1 makes it clear

that the ∆g
l Ho

m(298.15 K) = 172 ± 35 kJ·mol−1 measured by the CRDS method is definitely
an error, even taking into account the extremely significant uncertainties. However, by
having such a convenient tool as the “corrected-centerpiece” approach, it might be possible
to improve the measuring technique, provided that the level of the “expected” vaporization
enthalpy is preliminarily assessed.

Table 11. Calculation of the vaporization enthalpies, ∆g
l Ho

m, of alkyl- and cyano-substituted
pyridinium-based ILs using the “centerpiece approach” (at 298.15 K in kJ·mol−1) a.

IL ∆
g
l Ho

m(H→R1) b ∆
g
l Ho

m(CP) c ∆
g
l Ho

m(CP)
d ∆

g
l Ho

m(exp) ∆ e

[3-Me-1-C3-Py][NTf2] 4.4 ± 0.3 135.4 ± 1.5 138.9 ± 1.6 132.4 ± 1.6 [Table 1] −6.5 ± 2.3
[2-Me-1-C2-Py][NTf2] 2.3 ± 0.2 131.7 ± 1.4 134.0 ± 2.4 127.2 ± 2.0 [Table 1] −6.8 ± 3.2
[2-Me-1-C3-Py][NTf2] 2.3 ± 0.2 135.4 ± 1.5 137.7 ± 2.5 131.6 ± 2.0 [Table 7] −6.1 ± 3.2
[3-Me-1-C3-Py][NTf2] 4.4 ± 0.3 135.4 ± 1.5 139.8 ± 2.5 134.6 ± 2.0 [Table 7] −5.2 ± 3.2
[4-Me-1-C3-Py][NTf2] 4.7 ± 0.3 135.4 ± 1.5 140.1 ± 2.5 136.2 ± 2.0 [Table 7] −3.9 ± 3.2
[2-Me-1-C4-Py][NTf2] 2.3 ± 0.2 137.8 ± 1.4 140.1 ± 2.4 133.2 ± 2.0 [Table 7] −6.9 ± 3.2
[3-Me-1-C4-Py][NTf2] 4.4 ± 0.3 137.8 ± 1.4 142.2 ± 2.5 135.4 ± 2.0 [Table 7] −6.8 ± 3.2
[4-Me-1-C4-Py][NTf2] 4.7 ± 0.3 137.8 ± 1.4 142.5 ± 2.5 136.8 ± 2.0 [Table 7] −5.7 ± 3.2
[3-CN-1-C4-Py][NTf2] 15.6 ± 0.7 137.8 ± 1.4 153.4 ± 2.6 151.2 ± 2.1 [Table 1] −2.2 ± 3.4
[3-CN-1-1-C6-Py][NTf2] 15.6 ± 0.7 146.1 ± 1.8 161.7 ± 3.1 162.1 ± 2.4 [Table 1] 0.4 ± 3.9
[4-CN-1-C6-Py][NTf2] 13.8 ± 0.8 146.1 ± 1.8 159.9 ± 3.0 158.4 ± 2.3 [Table 1] −1.5 ± 3.8
[3-CN-1-C8-Py][NTf2] 15.6 ± 0.7 153.2 ± 2.4 168.8 ± 3.7 165.3 ± 2.7 [Table 1] −3.5 ± 4.6
[2-Et-1-C3-Py][NTf2] 5.7 ± 0.2 135.4 ± 1.5 141.1 ± 3.6 137.2 ± 3.3 [Table 3] −3.9 ± 4.9
[2-Et-1-C4-Py][NTf2] 5.7 ± 0.2 137.8 ± 1.4 143.5 ± 3.6 138.7 ± 3.3 [Table 3] −4.8 ± 4.9
[2-Et-1-C5-Py][NTf2] 5.7 ± 0.2 141.7 ± 1.8 147.4 ± 4.2 145.1 ± 3.8 [Table 3] −2.3 ± 5.7
[2-Et-1-C6-Py][NTf2] 5.7 ± 0.2 146.1 ± 1.8 151.8 ± 4.1 146.5 ± 3.7 [Table 3] −5.3 ± 5.5
[2-Et-1-C7-Py][NTf2] 5.7 ± 0.2 149.4 ± 2.0 e 155.1 ± 5.2 150.7 ± 4.8 [Table 3] −4.4 ± 7.1
[2-Et-1-C8-Py][NTf2] 5.7 ± 0.2 153.2 ± 2.4 158.9 ± 4.9 158.4 ± 4.3 [Table 3] −0.5 ± 6.5
[3-Me-1-C4-Py][BF4] 4.4 ± 0.3 149.9 ± 2.3 [31] 154.3 ± 3.3 149.5 ± 2.3 [31] −4.8 ± 4.0
[4-Me-1-C4-Py][BF4] 4.7 ± 0.3 149.9 ± 2.3 [31] 154.6 ± 3.0 148.9 ± 2.1 [31] −5.7 ± 3.8

average: −4.9± 0.8 f

a Uncertainties of the vaporization enthalpy (∆g
l Ho

m) are the expanded uncertainties (0.95 level of confidence,
k = 2). b From Table 9. c Enthalpies of vaporization of the “centerpiece” molecules from Tables 1–3. d Calculated
as the sum of columns 2 and 3. e Calculated as the difference of columns 5 and 4. f Weighted mean value (the
uncertainty was taken as the weighing factor).

4. Conclusions

The structure–property correlations have proven to be a useful diagnostic tool for
predicting the vaporization enthalpies for ILs. The general transferability of the group
contributions derived from molecular liquids to estimate the vaporization enthalpies of
ionic liquids was demonstrated. It was shown that, with the “centerpiece” approach, it is
possible to estimate the appropriate level of vaporization enthalpy. The further refinement
of this approach with the small, but not negligible, correction term has helped brought
the estimated results into agreement with the experiment. The corrected “centerpiece”
approach was recommended to predict the vaporization enthalpies of ILs. The application
of this approach to imidazolium-based ILs will be explored in the upcoming studies.
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Supplementary Materials: The following supporting information can be downloaded at: https:
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