Smart Titanium Wire Used for the Evaluation of Hydrophobic/Hydrophilic Interaction by In-Tube Solid Phase Microextraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Evaluation of Surface Wettability for the Prepared Wires
2.3. Extraction Efficiency for the Polar Compounds
2.4. Optimization of Extraction Conditions
2.5. Method Evaluation and Application to Real Samples
2.6. Extraction Efficiency for Non-Polar Target Compounds
3. Materials and Methods
3.1. Materials and Reagents
3.2. Apparatus
3.3. Standard Solution and Real Samples
3.4. Preparation of Ti Wires with Different Surface Wettabilities
3.5. Extraction and Analysis Procedure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kataoka, H.; Ishizaki, A.; Saito, K. Recent progress in solid-phase microextraction and its pharmaceutical and biomedical applications. Anal. Methods 2016, 8, 5773–5788. [Google Scholar] [CrossRef]
- Kataoka, H. SPME techniques for biomedical analysis. Bioanalysis 2015, 7, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Ise, M.; Narimatsu, S. Automated on-line in tube solid-phase microextraction coupled with high performance liquid chromatography for the analysis of bisphenol A, alkylphenols, and phthalate esters in foods contacted with plastics. J Sep. Sci. 2002, 25, 77–85. [Google Scholar] [CrossRef]
- Wen, Y.; Zhou, B.-S.; Xu, Y.; Jin, S.-W.; Feng, Y.-Q. Analysis of estrogens in environmental waters using polymer monolith in-polyether ether ketone tube solid-phase microextraction combined with high-performance liquid chromatography. J. Chromatogr. A 2006, 1133, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Müller, V.; Cestari, M.; Palacio, S.M.; De Campos, S.D.; Muniz, E.C.; De Campos, E. Silk Fibro in nanofibers electrospun on glass fiber as a potential device for solid phase microextraction. J. Appl. Polym. Sci. 2015, 132, 41717. [Google Scholar] [CrossRef]
- Lord, H.L.; Pawliszyn, J. Method optimization for the analysis of amphetamines in urine by solid-phase microextraction. Anal. Chem. 1997, 69, 3899–3906. [Google Scholar] [CrossRef]
- Fernandez-Amado, M.; Prieto-Blanco, M.C.; Lopez-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Strengths and weaknesses of in-tube solid-phase microextraction: A scoping review. Anal. Chim. Acta. 2016, 906, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H. Recent developments and applications of microextraction techniques in drug analysis. Anal. Bioanal. Chem. 2010, 396, 339–364. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Ishizaki, A.; Kataoka, H.; Chromatogr, J. Biomonitoring method for the determination of polycyclic aromatic hydrocarbons in hair by online in-tube solid-phase microextraction coupled with high performance liquid chromatography and fluorescence detection. J. Chromatogr. B 2015, 1000, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Augusto, F.; Carasek, E.; Silva, R.G.C.; Rivellino, S.R.; Batista, A.D.; Martendal, E. New sorbents for extraction and microextraction techniques. J. Chromatogr. A 2010, 1217, 2533–2542. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.-L.; Wang, T.-E.; Li, Y.; Wang, X.-M.; Du, X.-Z. Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta 2015, 144, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Djozan, D.; Assadi, Y.; Haddadi, S.H. Anodized aluminum wire as a solid-phase microextraction fiber. Anal. Chem. 2001, 73, 4054–4058. [Google Scholar] [CrossRef] [PubMed]
- Sungkaew, S.; Thammakhet, C.; Thavarungkul, P.; Kanatharana, P. A new polyethylene glycol fiber prepared by coating porous zinc electrodeposited onto silver for solid-phase microextraction of styrene. Anal. Chim. Acta 2010, 664, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Djozan, D.; Abdollahi, L. Anodized Zinc Wire as a solid-phase microextraction fiber. Chromatographia 2003, 57, 799–804. [Google Scholar] [CrossRef]
- Bagheri, H.; Mir, A.; Babanezhad, E. An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water. Anal. Chim. Acta 2005, 532, 89–95. [Google Scholar] [CrossRef]
- Hashemi, P.; Shamizadeh, M.; Badiei, A.; Poor, P.Z.; Ghiasvand, A.R.; Yarahmadi, A. Amino ethyl-functionalized nanoporous silica as a novel fiber coating for solid-phase microextraction. Anal. Chim. Acta 2009, 646, 1–5. [Google Scholar] [CrossRef]
- Zheng, J.; Liang, Y.; Liu, S.; Ding, Y.; Shen, Y.; Luan, T.; Zhu, F.; Jiang, R.; Wu, D.; Ouyang, G. Ordered mesoporous polymers in situ coated on a stainless steel wire for a highly sensitive solid phase microextraction fiber. Nanoscale 2015, 7, 11720–11726. [Google Scholar] [CrossRef]
- Alotaibi, A.M.; Williamson, B.A.D.; Sathasivam, D.; Kafizas, A. Enhanced photocatalytic and antibacterial ability of Cu-doped anatase TiO2 thin films: Theory and experiment. ACS Appl. Mater. 2020, 12, 15348–15361. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-T.; Huang, W.; Lu, W.; Yuan, B.-F.; Feng, Y.-Q. TiO2-based solid phase extraction strategy for highly effective elimination of normal ribonucleosides before detection of 2′-deoxynucleosides/low-abundance 2′-O-modified ribonucleosides. Anal. Chem. 2013, 85, 10512–10518. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, S.-Y.; Yan, Y.; Wang, L.; Guo, G.-S.; Wang, X.-Y. GO-META-TiO2 composite monolithic columns for in-tube solid-phase microextraction of phosphopeptides. Talanta 2019, 192, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Zhang, W.; Peng, T.-Y.; Chen, J.-N.; Yang, F. Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J. Phys. Chem. C 2011, 115, 17213–17219. [Google Scholar] [CrossRef]
- Hussain, M.; Ceccarelli, R.; Marchisio, D.L.; Fino, D.; Russo, N.; Geobaldo, F. Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. Chem. Eng. J. 2010, 157, 45–51. [Google Scholar] [CrossRef]
- Mu, Q.-H.; Li, Y.-G.; Zhang, Q.-H.; Wang, H.-Z. Template-free formation of vertically oriented TiO2 nanorods with uniform distribution for organics-sensing application. J. Hazard. Mater. 2011, 188, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-Y.; Peng, H.-L.; Zou, Z.-M.; Zhang, P.; Zhai, X.-F.; Zhang, Y.-M.; Liu, C.-W.; Liu, D.; Gui, J.-Z. Diethylenediamine-assisted template-free synthesis of a hierarchical TiO2 sphere-in-sphere with enhanced photocatalytic performance. Dalton Trans. 2018, 47, 16502–16508. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.-D.; Lu, J.-X.; Liu, J.-F.; Jiang, G.-B. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber. Anal. Chim. Acta 2008, 611, 56–61. [Google Scholar] [CrossRef]
- Liu, H.-M.; Wang, D.-A.; Ji, L.; Li, J.-B.; Liu, S.-J.; Liu, X.; Jiang, S.-X. A novel TiO2 nanotube array/Ti wire incorporated solid-phase microextraction fiber with high strength, efficiency and selectivity. J. Chromatogr. A 2010, 1217, 1898–1903. [Google Scholar] [CrossRef]
- Li, Y.; Ma, M.-G.; Zhang, M.; Yang, Y.-X.; Wang, X.-M.; Du, X.-Z. In Situ anodic growth of rod-like TiO2 coating on a Ti wire as a selective solid-phase microextraction fiber. RSC Adv. 2014, 4, 53820–53827. [Google Scholar] [CrossRef]
- Wang, F.-X.; Zheng, J.; Qiu, J.-L.; Liu, S.-Q.; Chen, G.-S.; Tong, Y.-X.; Zhu, F.; Ouyang, G.-F. In situ hydrothermally grown TiO2@C core–shell nanowire coating for highly sensitive solid phase microextraction of polycyclic aromatic hydrocarbons. ACS Appl. Mater. 2017, 9, 1840–1846. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-L.; Li, Y.; Jiang, D.-Q.; Yan, X.-P. Hydrofluoric acid etched stainless steel wire for solid-phase microextraction. Anal. Chem. 2009, 81, 4971–4977. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.C.; Dougherty, D.A. The cation−π interaction. Chem. Rev. 1997, 97, 1303–1324. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-S.; Wang, J.-P.; Thomas, D.F.; Chen, A.-C. Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity. Langmuir 2008, 24, 3503–3509. [Google Scholar] [CrossRef] [PubMed]
- Young, T. An essay on the cohesion of fluids philosophical transactions. R. Soc. London 1805, 95, 65–87. [Google Scholar]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surface. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Xu, W.; Song, J.; Sun, J.; Lu, Y.; Yu, Z. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Appl. Mater. 2011, 3, 4404–4414. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Song, J.-L.; Liu, X.; Xu, W.-J.; Xing, Y.-J. Preparation of superoleophobic and superhydrophobic titanium surfaces via an environmentally friendly electrochemical etching method. ACS Sustain. Chem. Eng. 2013, 1, 102–109. [Google Scholar] [CrossRef]
- Qin, L.; Jie, Z.; Lei, S.; Pan, Q. A smart “strider” can float on both water and oils. ACS Appl. Mater. 2014, 6, 21355–21362. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Y.; Sun, M.; Ji, X.-P.; Han, S.; Wang, X.-Q.; Tian, Y.; Feng, J.-J. Carbonized cotton fibers via a facile method for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbon. J. Sep. Sci. 2019, 42, 2155–2162. [Google Scholar] [CrossRef]
- Baktash, M.Y.; Bagheri, H. A Superhydrophobic Silica aerogel with high surface area for needle trap microextraction of chlorobenzenes. Microchim. Acta 2017, 184, 2151–2156. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X.; Li, Y.-K.; Xu, L. Hydrophobic melamine foam as the solvent holder for liquid–liquid microextraction. Talanta 2019, 191, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.-B.; Kou, X.-X.; Liu, Y.; Zhu, F.; Xu, J.-Q.; Ouyang, G.-F. Facile construction of superhydrophobic hybrids of metal-organic framework grown on nanosheet for high-performance extraction of benzene homologues. Talanta 2020, 211, 120706. [Google Scholar] [CrossRef] [PubMed]
- Movafaghi, S.; Wang, W.; Metzger, A.; Williams, D.D.; Williams, J.D.; Kota, A.K. Tunable superomniphobic surfaces for sorting droplets by surface tension. Lab Chip 2016, 16, 3204–3209. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-K.; Huang, J.-Y.; Cui, Z.-Q.; Ge, M.-Z.; Zhang, K.-Q. Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 2016, 12, 2203–2224. [Google Scholar] [CrossRef] [PubMed]
Analytes | LODs (μg/L) | LOQs (μg/L) | Linear Ranges (μg/L) | R2 | EF | Extraction Repeatability (n = 3, RSD%) a | Preparation Repeatability (n = 3, RSD%) b | |
---|---|---|---|---|---|---|---|---|
Intraday | Interday | |||||||
Bisphenol A | 0.097 | 0.323 | 0.5–10.0 | 0.9857 | 20 | 2.0 | 4.6 | 10.4 |
Estradiol | 0.135 | 0.450 | 0.5–10.0 | 0.9886 | 33 | 2.1 | 4.8 | 8.9 |
Ethynyl estradiol | 0.131 | 0.437 | 0.5–10.0 | 0.9886 | 28 | 1.3 | 3.2 | 5.2 |
Estrone | 0.079 | 0.263 | 0.5–10.0 | 0.9867 | 177 | 0.8 | 4.5 | 14.3 |
Diethylstilbestrol | 0.132 | 0.440 | 0.5–10.0 | 0.9794 | 43 | 1.7 | 4.0 | 2.3 |
Hexestrol | 0.092 | 0.307 | 0.5–10.0 | 0.9910 | 154 | 0.9 | 2.9 | 9.4 |
Analytes | Bisphenol A | Estradiol | Ethynyl Estradiol | Estrone | Diethylstilbestrol | Hexestrol |
---|---|---|---|---|---|---|
Recovery (5 μg/L, %) | 76.2 5.0 | 89.4 0.2 | 86.6 1.6 | 78.4 | 91.1 1.5 | 82.7 2.4 |
Recovery (10 μg/L, %) | 87.7 5.3 | 76.4 0.6 | 74.6 0.8 | 75.3 | 73.2 4.4 | 87.4 2.4 |
Tap water (μg/L) | Not detected | Not detected | Not detected | Not detected | Not detected | Not detected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, N.; Lu, Z.; Chen, N.; Cui, C.; Chen, X. Smart Titanium Wire Used for the Evaluation of Hydrophobic/Hydrophilic Interaction by In-Tube Solid Phase Microextraction. Molecules 2022, 27, 2353. https://doi.org/10.3390/molecules27072353
Zhang Y, Wang N, Lu Z, Chen N, Cui C, Chen X. Smart Titanium Wire Used for the Evaluation of Hydrophobic/Hydrophilic Interaction by In-Tube Solid Phase Microextraction. Molecules. 2022; 27(7):2353. https://doi.org/10.3390/molecules27072353
Chicago/Turabian StyleZhang, Yuping, Ning Wang, Zhenyu Lu, Na Chen, Chengxing Cui, and Xinxin Chen. 2022. "Smart Titanium Wire Used for the Evaluation of Hydrophobic/Hydrophilic Interaction by In-Tube Solid Phase Microextraction" Molecules 27, no. 7: 2353. https://doi.org/10.3390/molecules27072353
APA StyleZhang, Y., Wang, N., Lu, Z., Chen, N., Cui, C., & Chen, X. (2022). Smart Titanium Wire Used for the Evaluation of Hydrophobic/Hydrophilic Interaction by In-Tube Solid Phase Microextraction. Molecules, 27(7), 2353. https://doi.org/10.3390/molecules27072353