Effects of Extraction Methods on Phenolic Content in the Young Bamboo Culm Extracts of Bambusa beecheyana Munro
Abstract
:1. Introduction
2. Results
2.1. Extraction of Bambusa beecheyana Culms
2.2. Isolation and Purification of p-Coumaric Acid (4), and 4-Methoxycinnamic Acid (5)
2.3. NMR Analysis of p-Coumaric Acid (4) and 4-Methoxycinnamic Acid (5)
2.4. Contents of Bioactive Markers, p-Coumaric Acid (4), and 4-Methoxycinnamic Acid (5) in the Exctracts of Bambusa beecheyana
2.5. Total Phenolic Content (TPC)
2.6. Total Flavonoid Content (TFC)
2.7. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity
2.8. Potential Bioactive Markers from Bambusa beecheyana Extracts
3. Discussions
4. Materials and Methods
4.1. Raw Material
4.2. Extraction Method of Bambusa beecheyana Culm
4.3. Total Phenolic Content
4.4. Total Flavonoid Content
4.5. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Scavenging Activity Assay
4.6. UHPLC-ESI-QTOF-MS/MS Analysis
4.7. Isolation of Bioactive Compounds Using Preparative HPLC
4.8. Quantification and Optimization of Compounds (4) and (5)
4.8.1. Preparation of Standard Solutions
4.8.2. Chromatographic Conditions
4.9. Analytical Data
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liese, W.; Kohl, M. Bamboo—The Plants and Its Uses; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Zhou, B.-Z.; Fu, M.-Y.; Xie, J.-Z.; Yang, X.-S.; Li, Z.-C. Ecological functions of bamboo forest: Research and application. J. For. Res. 2005, 16, 143–147. [Google Scholar]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Silva, M.F.; Menis-Henrique, M.E.; Felisberto, M.H.; Goldbeck, R.; Clerici, M.T. Bamboo as an eco-friendly material for food and biotechnology industries. Curr. Opin. Food Sci. 2020, 33, 124–130. [Google Scholar] [CrossRef]
- Nirmala, C.; David, E.; Sharma, M.L. Changes in nutrient components during ageing of emerging juvenile bamboo shoots. Int. J. Food Sci. Nutr. 2007, 58, 612–618. [Google Scholar] [CrossRef]
- Nongdam, P.; Tikendra, L. The nutritional facts of bamboo shoots and their usage as important traditional foods of northeast India. Int. Sch. Res. Not. 2014, 2014, 679073. [Google Scholar] [CrossRef]
- Visuphaka, K. The role of bamboo as a potential food source in Thailand. In Proceedings of the 2nd International Bamboo Workshop, Hangzhou, China, 6–14 October 1985. [Google Scholar]
- Satya, S.; Bal, L.M.; Singhal, P.; Naik, S.N. Bamboo shoot processing: Food quality and safety aspect (a review). Trends Food Sci. Technol. 2010, 21, 181–189. [Google Scholar] [CrossRef]
- Yılmaz, F.M.; Görgüç, A.; Uygun, Ö.; Bircan, C. Steviol glycosides and polyphenols extraction from Stevia rebaudiana Bertoni leaves using maceration, microwave-, and ultrasound-assisted techniques. Sep. Sci. Technol. 2021, 56, 936–948. [Google Scholar] [CrossRef]
- Zannou, O.; Pashazadeh, H.; Ibrahim, S.A.; Koca, I.; Galanakis, C.M. Green and Highly Extraction of Phenolic Compounds and Antioxidant Capacity from Kinkeliba (Combretum micranthum G. Don) by Natural Deep Eutectic Solvents (NADESs) using Maceration, Ultrasound-assisted Extraction and Homogenate-assisted Extraction. Arab. J. Chem. 2022, 15, 103752. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Pande, H.; Kumar, B.; Varshney, V.K. Phenolic composition and antioxidant capacity of biomass residue (leaves) generated from Bambusa tulda plantations. Waste Biomass Valorization 2017, 8, 2349–2362. [Google Scholar] [CrossRef]
- Macwan, C.; Patel, H.V.; Kalia, K. A comparative evaluation of in vitro antioxidant properties of Bamboo Bambusa arundinacea leaves extracts. J. Cell Tissue Res. 2010, 10, 2413. [Google Scholar]
- Kong, C.K.; Tan, Y.N.; Chye, F.Y.; Sit, N.W. Nutritional composition and biological activities of the edible shoots of Bambusa vulgaris and Gigantochloa ligulata. Food Biosci. 2020, 36, 100650. [Google Scholar] [CrossRef]
- Wani, M.A.; Prasad, S.; Prakash, O. Qualitative phytochemical analysis of various parts of bamboo (Bambusa balcooa) for possible therapeutic usages in bovine reproductive disorders. J. Pharmacogn. Phytochem. 2019, 8, 217–221. [Google Scholar]
- Tripathi, Y.C.; Jhumka, Z.; Anjum, N. Evaluation of total polyphenol and antioxidant activity of leaves of Bambusa nutans and Bambusa vulgaris. J. Pharm. Res. 2015, 9, 271–277. [Google Scholar]
- Lai, M.; Lü, B. Extraction techniques and applications: Biological, medical and environmental, forensics. In Comprehensive Sampling and Sample Preparation; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Pande, H.; Kumar, B.; Varshney, V.K. HPLC-ESI-QTOF-MS analysis of phenolic compounds, antioxidant capacity and α-glucosidase inhibitory effect of Bambusa nutans leaves. Indian J. Chem. 2018, 57B, 988–996. [Google Scholar]
- Idris, F.N.; Mohd Nadzir, M. Comparative studies on different extraction methods of Centella asiatica and extracts bioactive compounds effects on antimicrobial activities. Antibiotics 2021, 10, 457. [Google Scholar] [CrossRef]
- Haldipur, A.C.; Srividya, N. A comparative evaluation of in vitro antihyperglycemic potential of Bamboo seed rice (Bambusa arundinacea) and Garudan samba (Oryza sativa): An integrated metabolomics, enzymatic and molecular docking approach. J. Cereal Sci. 2021, 99, 103200. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Gunia-Krzyżak, A.; Słoczyńska, K.; Popiół, J.; Koczurkiewicz, P.; Marona, H.; Pękala, E. Cinnamic acid derivatives in cosmetics: Current use and future prospects. Int. J. Cosmet. Sci. 2018, 40, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Tsuyama, T.; Shimada, N.; Motoda, T.; Matsushita, Y.; Kijidani, Y.; Fukushima, K.; Kamei, I. Lignification in developing culms of bamboo Sinobambusa tootsik. J. Wood Sci. 2017, 63, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.C.; Reis, M.B.; Coelho, G.D.; Gastaldello, G.H.; Peti, A.P.F.; Rodrigues, D.M.; Bastos, J.K.; Campo, V.L.; Sorgi, C.A.; Faccioli, L.H.; et al. Baccharin and p-coumaric acid from green propolis mitigate inflammation by modulating the production of cytokines and eicosanoids. J. Ethnopharmacol. 2021, 278, 114255. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, N.; Arshad, U.; Yaqoob, N.; Khan, J.; Khan, A.; Saleem, K.; Rashid, M.; Rafiq, N.; Ahmad, R.; Javaid, I.; et al. Structure-based experimental and theoretical analysis of Ricinus communis for their HepG2 human carcinoma cell line inhibitors. Process Biochem. 2021, 104, 152–160. [Google Scholar] [CrossRef]
- Rodrigues, M.P.; Tomaz, D.C.; de Souza, L.A.; Onofre, T.S.; de Menezes, W.A.; Almeida-Silva, J.; Suarez-Fontes, A.M.; de Almeida, M.R.; da Silva, A.M.; Bressan, G.C.; et al. Synthesis of cinnamic acid derivatives and leishmanicidal activity against Leishmania braziliensis. Eur. J. Med. Chem. 2019, 183, 111688. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Bandonienė, D.; Murkovic, M.; Pfannhauser, W.; Venskutonis, P.; Gruzdienė, D. Detection and activity evaluation of radical scavenging compounds by using DPPH free radical and on-line HPLC-DPPH methods. Eur. Food Res. Technol. 2002, 214, 143–147. [Google Scholar] [CrossRef]
- Phongpaichit, S.; Nikom, J.; Rungjindamai, N.; Sakayaroj, J.; Hutadilok-Towatana, N.; Rukachaisirikul, V.; Kirtikara, K. Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunol. Med. Microbiol. 2007, 51, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.; Dunshea, F.R. LC-MS/MS-QTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef]
- Li, B.; Fan, S.; Hu, J.; Ma, Y.; Feng, Y.; Wang, F.; Wang, X.; Niu, L. Phytochemical Analysis Using UPLC-MS/MS Combined with Network Pharmacology Methods to Explore the Biomarkers for the Quality Control of Lingguizhugan Decoction. Evid.-Based Complementary Altern. Med. 2021, 2021, 7849032. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.J.; Zhou, N.; Cai, N.; Xu, J.H.; Wang, Q.B.; Li, J.J.; Liu, Q.; Lin, P.C.; Shang, X.Y. Rapid characterizaiton of chemical constituents of the tubers of Gymnadenia conopsea by UPLC–Orbitrap–MS/MS Analysis. Molecules 2020, 25, 898. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.A.; Durst, F. Function and evolution of plant cytochrome P450. Recent Adv. Phytochem. 2000, 34, 151–190. [Google Scholar]
- Azmir, J.; Zaidul IS, M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar AK, M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Sim, Y.Y.; Ong WT, J.; Nyam, K.L. Effect of various solvents on the pulsed ultrasonic assisted extraction of phenolic compounds from Hibiscus cannabinus L. leaves. Ind. Crops Prod. 2019, 140, 111708. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzgaia, N.; Lee, S.Y.; Rukayadi, Y.; Abas, F.; Shaari, K. Antioxidant Activity, α-Glucosidase Inhibition and UHPLC–ESI–MS/MS Profile of Shmar (Arbutus pavarii Pamp). Plants 2021, 10, 1659. [Google Scholar] [CrossRef]
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.Y.O.; Lima, G.P.P. Phenolic compounds: Functional properties, impact of processing and bioavailability. In Phenolic Compounds: Biological Activity; IntechOpen: London, UK, 2017; pp. 1–24. [Google Scholar]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- Bendary, E.; Francis, R.R.; Ali HM, G.; Sarwat, M.I.; El Hady, S. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann. Agric. Sci. 2013, 58, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Shin, H.J. Screening of Scalp Cosmetic Material of Domestic Phyllostachys bambusoides Stem Extract. In Proceedings of the 2020 KSBB Fall Meeting and International Symposium: Hybrid Conference, Seoul, South Korea, 21–23 October 2020. [Google Scholar]
- Ilham, A.M.; Vimala, S.; Rashih, A.A.; Rohana, S.; Jamaluddin, M.; Juliza, M. Antioxidant and antityrosinase properties of Malaysian bamboo leaf extracts. J. Trop. For. Sci. 2008, 20, 123–131. [Google Scholar]
- De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem. 2011, 18, 1672–1703. [Google Scholar] [CrossRef]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Rychlicka, M.; Rot, A.; Gliszczyńska, A. Biological Properties, Health Benefits and Enzymatic Modifications of Dietary Methoxylated Derivatives of Cinnamic Acid. Foods 2021, 10, 1417. [Google Scholar] [CrossRef]
- He, W.; Jiang, S.; Zhang, Q.; Pan, M. Isolation and characterization of cellulose nanofibers from Bambusa rigida. BioResources 2013, 8, 5678–5689. [Google Scholar] [CrossRef] [Green Version]
- Chukwumah, Y.; Walker, L.T.; Verghese, M. Peanut skin color: A biomarker for total polyphenolic content and antioxidative capacities of peanut cultivars. Int. J. Mol. Sci. 2009, 10, 4941–4952. [Google Scholar] [CrossRef] [PubMed]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos TC, D.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Zu, Y.; Li, C.; Fu, Y.; Zhao, C. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J. Pharm. Biomed. Anal. 2006, 41, 714–719. [Google Scholar] [CrossRef]
Sample | Dry Yield (%) | p-Coumaric Acid (4) (mg/g) | %RSD | 4-Methoxycinnamic Acid (5) (mg/g) | %RSD |
---|---|---|---|---|---|
Maceration | |||||
BBER * | 1.06 ± 0.0004 | 0.00059 ± 1.67 × 10−11 | 0.0000056 | 0.00278 ± 1.67 × 10−11 | 0.0000012 |
BBMR * | 1.20 ± 0.0028 | 0.00039 ± 1.67 × 10−11 | 0.0000086 | 0.00093 ± 2.17 × 10−10 | 0.0000474 |
BBHR * | 2.00 ± 0.0204 | ND * | ND * | ND * | ND * |
Soxhlet | |||||
BBES * | 4.12 ± 0.0010 | 0.00035 ± 1.67 × 10−11 | 0.0000096 | 0.00081 ± 1.17 × 10−10 | 0.0000283 |
BBMS * | 5.09 ± 0.0011 | 0.00035 ± 6.67 × 10−11 | 0.0000039 | 0.00069 ± 2.17 × 10−10 | 0.0000065 |
BBHS * | 4.35 ± 0.0007 | ND * | ND * | ND * | ND * |
Ultrasonic-assisted | |||||
BBEU20 * | 2.06 ± 0.0052 | ND * | ND * | 0.00002 ± 6.67 × 10−11 | 0.0005000 |
BBEU40 * | 2.93 ± 0.0045 | ND * | ND * | 0.00007 ± 1.67 × 10−11 | 0.0000455 |
BBEU60 * | 1.13 ± 0.0019 | 0.00035 ± 1.67 × 10−11 | 0.0000094 | 0.00032 ± 1.67 × 10−11 | 0.0000103 |
BBMU20 * | 1.85 ± 0.0034 | ND * | ND * | 0.00023 ± 6.44× 10−7 | 0.1446180 |
BBMU40 * | 2.84 ± 0.0027 | 0.00035 ± 1.67 × 10−11 | 0.0000094 | 0.00087 ± 2.17 × 10−10 | 0.0000502 |
BBMU60 * | 2.42 ± 0.0014 | 0.00035 ± 1.67 × 10−11 | 0.00000096 | 0.00062 ± 2.17 × 10−10 | 0.0000681 |
BBHU20 * | 6.64 ± 0.0035 | ND * | ND * | ND * | ND * |
BBHU40 * | 8.81 ± 0.0025 | ND * | ND * | ND * | ND * |
BBHU60 * | 7.77 ± 0.0011 | ND * | ND * | ND * | ND * |
Compounds | Regression Equation | Correlation Coefficient (R2) | Linear Range (mg/mL) | Detection Limit (mg/mL) | Quantitation Limit (mg/mL) | Purity (%) |
---|---|---|---|---|---|---|
p-coumaric acid (4) | y = 4 × 107×−14.4 | 0.9924 | 0.000000–0.000008 | 1.10 × 10−7 | 3.32 × 10−7 | 99 |
4-methoxycinnamic acid (5) | y = 8 × 107× + 14.5 | 0.9835 | 0.000000–0.000008 | 5.48 × 10−7 | 1.66 × 10−7 | 96 |
Extracts | TPC (mg GAE/g) | TFC (mg QE/g) | DPPH (IC50 µg/mL) |
---|---|---|---|
Cold maceration | |||
BBER | 44.50 ± 0.03 a,b | 28.22 ± 0.03 1 | 95.93 ± 0.02 I |
BBMR | 60.15 ± 0.03 a | 27.73 ± 0.05 1 | 63.32 ± 0.04 I |
BBHR | 40.30 ± 0.02 b | 12.38 ± 0.04 2 | 1931.38 ± 0.01 II |
Soxhlet | |||
BBES | 97.25 ± 0.02 a | 40.00 ± 0.01 1 | 87.12 ± 0.03 I |
BBMS | 107.65 ± 0.01 a | 48.89 ± 0.05 2 | 40.43 ± 0.02 I |
BBHS | 68.95 ± 0.03 b | 22.39 ± 0.03 3 | 1670.71 ± 0.03 II |
Ultrasonic-assisted | |||
BBEU20 | 42.65 ± 0.04 a,d | 25.40 ± 0.02 1 | 573.56 ± 0.02 I,II |
BBEU40 | 55.35 ± 0.01 a,b | 34.45 ± 0.04 2 | 557.20 ± 0.03 I,II |
BBEU60 | 69.60 ± 0.03 b,c | 36.07 ± 0.02 2 | 463.54 ± 0.02 I,II |
BBMU20 | 58.30 ± 0.01 a,b | 34.46 ± 0.03 2 | 235.71 ± 0.02 I |
BBMU40 | 85.35 ± 0.01 c | 35.43 ± 0.01 2 | 45.01 ± 0.03 I |
BBMU60 | 81.85 ± 0.01 c | 37.20 ± 0.01 2 | 94.27 ± 0.02 I |
BBHU20 | 42.40 ± 0.04 a | 25.32 ± 0.03 1 | 982.13 ± 0.01 II,III |
BBHU40 | 45.79 ± 0.07 a,d | 38.32 ± 0.01 2 | 1418.35 ± 0.03 III |
BBHU60 | 27.89 ± 0.03 d | 17.01 ± 0.01 3 | 1279.95 ± 0.03 III |
Positive control | |||
Ascorbic acid | - | - | 45.50 ± 0.01 |
No. | RT (min) | Experimental m/z | Calculated m/z | Error (ppm) | Molecular Formula | MS/MS Product Ions | Tentative Identification | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 1.036 | 193.0624 | 194.0697 | −2.27 | C10H10O4 | 146.0504, 134.8932, 106.0429 | Ferulic acid | [30] |
2 | 1.801 | 147.0585 | 148.0658 | −2.24 | C9H8O2 | 134.0152, 106.0415 | Cinnamic acid | [31] |
3 | 2.605 | 137.0179 | 138.0251 | 0.18 | C7H6O3 | 93.0263 | 2-hydroxybenzoic acid | [30] |
4 | 3.295 | 163.0325 | 164.0397 | −2.77 | C9H8O3 | 146.0453, 134.8934, 106.029 | p-Coumaric acid | [30] |
5 | 5.090 | 177.0480 | 178.0552 | −1.72 | C10H10O3 | 146.0464, 134.0172, 106.0429 | 4-methoxycinnamic acid | [32] |
Raw Materials | Extraction Methods | Results | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TPC (mg GAE/g) | TFC (mg QE/g) | DPPH (IC50 µg/mL) | |||||||||
Et. * | Me. * | Wt. * | Et. * | Me. * | Wt. * | Et. * | Me. * | Wt. * | |||
Bambusa beecheyana | maceration | 44.50 ± 0.03 | 60.15 ± 0.03 | 40.30 ± 0.02 | 28.22 ± 0.03 | 27.73 ± 0.05 | 12.38 ± 0.04 | 95.93 ± 0.02 | 63.32 ± 0.04 | 1931.38 ± 0.01 | This study |
Soxhlet | 97.25 ± 0.02 | 107.65 ± 0.01 | 68.95 ± 0.03 | 40.00 ± 0.01 | 48.89 ± 0.05 | 22.39 ± 0.03 | 87.12 ± 0.03 | 40.43 ± 0.02 | 1670.71 ± 0.03 | ||
ultrasonic- assisted | 42.65 ± 0.04 | 58.3 ± 0.01 | 42.4 ± 0.04 | 25.4 ± 0.02 | 34.46 ± 0.03 | 25.32 ± 0.03 | 573.56 ± 0.02 | 235.71 ± 0.02 | 982.13 ± 0.01 | ||
55.35 ± 0.01 | 85.35 ± 0.01 | 45.79 ± 0.07 | 35.45 ± 0.04 | 35.43 ± 0.01 | 38.32 ± 0.01 | 557.2 ± 0.03 | 45.01 ± 0.03 | 1418.35 ± 0.03 | |||
69.6 ± 0.03 | 81.85 ± 0.01 | 27.89 ± 0.03 | 36.07 ± 0.02 | 37.2 ± 0.01 | 17.01 ± 0.01 | 463.54 ± 0.02 | 94.27 ± 0.02 | 1279.95 ± 0.03 | |||
Bambusa tulda | maceration | 126 ± 3.4 | - | - | 40 ± 0.2 | - | - | 360 ± 1.4 | - | [12] | |
Soxhlet | - | 164 ± 3.8 | - | - | 68 ± 0.9 | - | - | 404 ± 4.3 | - | ||
Bambusa arundinacea | maceration | 14.6 | 2.79 | - | 6.71 | 2.54 | - | 273 | 964 | [13] | |
ultrasonic-assisted | - | 647.76 ± 5.77 | - | - | 247.85 ± 3.79 | - | - | - | - | [20] | |
Bambusa vulgaris | maceration | 44 ± 0.1 | - | 27 ± 0.5 | 22 ± 0.3 | - | 12 ± 1 | 490 ± 60 | - | 400 ± 20 | [14] |
Bambusa nutan | maceration | - | 15.35 ± 0.55 | - | - | - | - | - | 123.45 | - | [16,18] |
- | - | 180.45 | - | - | - | - | - | 85.81 | |||
Soxhlet | - | 230.07 | - | - | 139.11 | - | - | 57.89 | - | ||
Phyllostachys bambusoides | maceration | - | - | - | - | - | - | 882.08 | - | - | [41] |
Gigantochloa levis | maceration | 2500 | - | - | - | - | - | 86.4 ± 1.05 | - | - | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuzul, M.I.; Jong, V.Y.M.; Koo, L.F.; Chan, T.H.; Ang, C.H.; Idris, J.; Husen, R.; Wong, S.W. Effects of Extraction Methods on Phenolic Content in the Young Bamboo Culm Extracts of Bambusa beecheyana Munro. Molecules 2022, 27, 2359. https://doi.org/10.3390/molecules27072359
Nuzul MI, Jong VYM, Koo LF, Chan TH, Ang CH, Idris J, Husen R, Wong SW. Effects of Extraction Methods on Phenolic Content in the Young Bamboo Culm Extracts of Bambusa beecheyana Munro. Molecules. 2022; 27(7):2359. https://doi.org/10.3390/molecules27072359
Chicago/Turabian StyleNuzul, Mohd. Izuddin, Vivien Yi Mian Jong, Lee Feng Koo, Thye Huat Chan, Chung Huap Ang, Juferi Idris, Rafidah Husen, and Siaw Wei Wong. 2022. "Effects of Extraction Methods on Phenolic Content in the Young Bamboo Culm Extracts of Bambusa beecheyana Munro" Molecules 27, no. 7: 2359. https://doi.org/10.3390/molecules27072359
APA StyleNuzul, M. I., Jong, V. Y. M., Koo, L. F., Chan, T. H., Ang, C. H., Idris, J., Husen, R., & Wong, S. W. (2022). Effects of Extraction Methods on Phenolic Content in the Young Bamboo Culm Extracts of Bambusa beecheyana Munro. Molecules, 27(7), 2359. https://doi.org/10.3390/molecules27072359