Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation
Abstract
:1. Introduction
2. Result and Discussion
2.1. Synthesis and Characterization of Manganese Complexes
2.2. Reactivity for Nitrogen Fixation
2.2.1. Attempted Catalytic Ammonia Formation Using 1–3 as Catalysts
2.2.2. Attempted Catalytic Silylamine Formation Using 1–3 as Catalysts
3. Materials and Methods
3.1. General Methods
3.2. Synthesis
3.2.1. Preparation of PCP–Br
3.2.2. Preparation of 1
3.2.3. Preparation of 2
3.2.4. Preparation of 3
3.3. Reactivity for Nitrogen Fixation
3.3.1. Attempted Catalytic Ammonia Formation Using 1–3 as Catalysts
3.3.2. Attempted Catalytic Silylamine Formation Using 1–3 as Catalysts
3.4. X-ray Diffraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, H. Ammonia Synthesis Catalysts: Innovation and Practice; World Scientific/Chemical Industry Press: Beijing, China, 2013. [Google Scholar] [CrossRef] [Green Version]
- Masero, F.; Perrin, M.A.; Dey, S.; Mougel, V. Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes. Chem.-Eur. J. 2021, 27, 3892–3928. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Nishibayashi, Y. Comprehensive Insights into Synthetic Nitrogen Fixation Assisted by Molecular Catalysts under Ambient or Mild Conditions. Chem. Soc. Rev. 2021, 50, 5201–5242. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, S.; Nishibayashi, Y. Development of Catalytic Nitrogen Fixation Using Transition Metal Complexes Not Relevant to Nitrogenases. Tetrahedron 2021, 83, 131986. [Google Scholar] [CrossRef]
- Ashida, Y.; Nishibayashi, Y. Catalytic Conversion of Nitrogen Molecule into Ammonia Using Molybdenum Complexes under Ambient Reaction Conditions. Chem. Commun. 2021, 57, 1176–1189. [Google Scholar] [CrossRef]
- Chalkley, M.J.; Drover, M.W.; Peters, J.C. Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. Chem. Rev. 2020, 120, 5582–5636. [Google Scholar] [CrossRef]
- Kim, S.; Loose, F.; Chirik, P.J. Beyond Ammonia: Nitrogen–Element Bond Forming Reactions with Coordinated Dinitrogen. Chem. Rev. 2020, 120, 5637–5681. [Google Scholar] [CrossRef]
- Tanabe, Y.; Nishibayashi, Y. Recent Advances in Catalytic Silylation of Dinitrogen Using Transition Metal Complexes. Coord. Chem. Rev. 2019, 389, 73–93. [Google Scholar] [CrossRef]
- Stucke, N.; Flöser, B.M.; Weyrich, T.; Tuczek, F. Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments. Eur. J. Inorg. Chem. 2018, 2018, 1337–1355. [Google Scholar] [CrossRef]
- Nishibayashi, Y. Development of Catalytic Nitrogen Fixation Using Transition Metal–Dinitrogen Complexes under Mild Reaction Conditions. Dalton Trans. 2018, 47, 11290–11297. [Google Scholar] [CrossRef]
- Burford, R.J.; Fryzuk, M.D. Examining the Relationship between Coordination Mode and Reactivity of Dinitrogen. Nat. Rev. Chem. 2017, 1, 26. [Google Scholar] [CrossRef]
- Doyle, L.R.; Wooles, A.J.; Jenkins, L.C.; Tuna, F.; McInnes, E.J.L.; Liddle, S.T. Catalytic Dinitrogen Reduction to Ammonia at a Triamidoamine–Titanium Complex. Angew. Chem. Int. Ed. 2018, 57, 6314–6318. [Google Scholar] [CrossRef] [Green Version]
- Ashida, Y.; Egi, A.; Arashiba, K.; Tanaka, H.; Mitsumoto, T.; Kuriyama, S.; Yoshizawa, K.; Nishibayashi, Y. Catalytic Reduction of Dinitrogen into Ammonia and Hydrazine Using Chromium Complexes Bearing PCP-Type Pincer Ligand. Chem.-Eur. J. 2022, 28. [Google Scholar] [CrossRef]
- Yandulov, D.V.; Schrock, R.R. Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center. Science 2003, 301, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Arashiba, K.; Miyake, Y.; Nishibayashi, Y. A Molybdenum Complex Bearing PNP-Type Pincer Ligands Leads to the Catalytic Reduction of Dinitrogen into Ammonia. Nat. Chem. 2011, 3, 120–125. [Google Scholar] [CrossRef]
- Arashiba, K.; Eizawa, A.; Tanaka, H.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen–Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions. Bull. Chem. Soc. Jpn. 2017, 90, 1111–1118. [Google Scholar] [CrossRef]
- Ashida, Y.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Molybdenum-Catalysed Ammonia Production with Samarium Diiodide and Alcohols or Water. Nature 2019, 568, 536–540. [Google Scholar] [CrossRef]
- Meng, F.; Kuriyama, S.; Tanaka, H.; Egi, A.; Yoshizawa, K.; Nishibayashi, Y. Ammonia Formation Catalyzed by a Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions. Angew. Chem. Int. Ed. 2021, 60, 13906–13912. [Google Scholar] [CrossRef]
- Anderson, J.S.; Rittle, J.; Peters, J.C. Catalytic Conversion of Nitrogen to Ammonia by an Iron Model Complex. Nature 2013, 501, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Del Castillo, T.J.; Thompson, N.B.; Peters, J.C. A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench 57Fe Mössbauer Data, and a Hydride Resting State. J. Am. Chem. Soc. 2016, 138, 5341–5350. [Google Scholar] [CrossRef] [Green Version]
- Chalkley, M.J.; Del Castillo, T.J.; Matson, B.D.; Roddy, J.P.; Peters, J.C. Catalytic N2-to-NH3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET. ACS Cent. Sci. 2017, 3, 217–223. [Google Scholar] [CrossRef]
- Buscagan, T.M.; Oyala, P.H.; Peters, J.C. N2-to-NH3 Conversion by a Triphos-Iron Catalyst and Enhanced Turnover under Photolysis. Angew. Chem. Int. Ed. 2017, 56, 6921–6926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Castillo, T.J.; Thompson, N.B.; Suess, D.L.M.; Ung, G.; Peters, J.C. Evaluating Molecular Cobalt Complexes for the Conversion of N2 to NH3. Inorg. Chem. 2015, 54, 9256–9262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorantes, M.J.; Moore, J.T.; Bill, E.; Mienert, B.; Lu, C.C. Bimetallic Iron–Tin Catalyst for N2 to NH3 and a Silyldiazenido Model Intermediate. Chem. Commun. 2020, 56, 11030–11033. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, J., Jr.; Peters, J.C. Catalytic Nitrogen-to-Ammonia Conversion by Osmium and Ruthenium Complexes. J. Am. Chem. Soc. 2017, 139, 16105–16108. [Google Scholar] [CrossRef] [Green Version]
- Hill, P.J.; Doyle, L.R.; Crawford, A.D.; Myers, W.K.; Ashley, A.E. Selective Catalytic Reduction of N2 to N2H4 by a Simple Fe Complex. J. Am. Chem. Soc. 2016, 138, 13521–13524. [Google Scholar] [CrossRef] [Green Version]
- Shiina, K. Reductive Silylation of Molecular Nitrogen via Fixation to Tris(Trialkylsilyl)Amine. J. Am. Chem. Soc. 1972, 94, 9266–9267. [Google Scholar] [CrossRef]
- Ghana, P.; van Krüchten, F.D.; Spaniol, T.P.; van Leusen, J.; Kögerler, P.; Okuda, J. Conversion of Dinitrogen to Tris(Trimethylsilyl)Amine Catalyzed by Titanium Triamido-Amine Complexes. Chem. Commun. 2019, 55, 3231–3234. [Google Scholar] [CrossRef]
- Imayoshi, R.; Nakajima, K.; Nishibayashi, Y. Vanadium-Catalyzed Reduction of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions. Chem. Lett. 2017, 46, 466–468. [Google Scholar] [CrossRef]
- Kendall, A.J.; Johnson, S.I.; Bullock, R.M.; Mock, M.T. Catalytic Silylation of N2 and Synthesis of NH3 and N2H4 by Net Hydrogen Atom Transfer Reactions Using a Chromium P4 Macrocycle. J. Am. Chem. Soc. 2018, 140, 2528–2536. [Google Scholar] [CrossRef]
- Yin, J.; Li, J.; Wang, G.-X.; Yin, Z.-B.; Zhang, W.-X.; Xi, Z. Dinitrogen Functionalization Affording Chromium Hydrazido Complex. J. Am. Chem. Soc. 2019, 141, 4241–4247. [Google Scholar] [CrossRef]
- Komori, K.; Oshita, H.; Yasushi, M.; Hidai, M. Catalytic Conversion of Molecular Nitrogen into Silylamines Using Molybdenum and Tungsten Dinitrogen Complexes. J. Am. Chem. Soc. 1989, 111, 1939–1940. [Google Scholar] [CrossRef]
- Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. Molybdenum-Catalyzed Transformation of Molecular Dinitrogen into Silylamine: Experimental and DFT Study on the Remarkable Role of Ferrocenyldiphosphine Ligands. J. Am. Chem. Soc. 2011, 133, 3498–3506. [Google Scholar] [CrossRef]
- Imayoshi, R.; Tanaka, H.; Matsuo, Y.; Yuki, M.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Cobalt-Catalyzed Transformation of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions. Chem.-Eur. J. 2015, 21, 8905–8909. [Google Scholar] [CrossRef]
- Eaton, M.C.; Knight, B.J.; Catalano, V.J.; Murray, L.J. Evaluating Metal Ion Identity on Catalytic Silylation of Dinitrogen Using a Series of Trimetallic Complexes. Eur. J. Inorg. Chem. 2020, 2020, 1519–1524. [Google Scholar] [CrossRef]
- Yuki, M.; Tanaka, H.; Sasaki, K.; Miyake, Y.; Yoshizawa, K.; Nishibayashi, Y. Iron-Catalysed Transformation of Molecular Dinitrogen into Silylamine under Ambient Conditions. Nat. Commun. 2012, 3, 1254. [Google Scholar] [CrossRef] [Green Version]
- Prokopchuk, D.E.; Wiedner, E.S.; Walter, E.D.; Popescu, C.V.; Piro, N.A.; Kassel, W.S.; Bullock, R.M.; Mock, M.T. Catalytic N2 Reduction to Silylamines and Thermodynamics of N2 Binding at Square Planar Fe. J. Am. Chem. Soc. 2017, 139, 9291–9301. [Google Scholar] [CrossRef]
- Araake, R.; Sakadani, K.; Tada, M.; Sakai, Y.; Ohki, Y. [Fe4] and [Fe6] Hydride Clusters Supported by Phosphines: Synthesis, Characterization, and Application in N2 Reduction. J. Am. Chem. Soc. 2017, 139, 5596–5606. [Google Scholar] [CrossRef]
- Ohki, Y.; Araki, Y.; Tada, M.; Sakai, Y. Synthesis and Characterization of Bioinspired [Mo2Fe2]–Hydride Cluster Complexes and Their Application in the Catalytic Silylation of N2. Chem.-Eur. J. 2017, 23, 13240–13248. [Google Scholar] [CrossRef]
- Arata, S.; Sunada, Y. An Isolable Iron(ii) Bis(Supersilyl) Complex as an Effective Catalyst for Reduction Reactions. Dalton Trans. 2019, 48, 2891–2895. [Google Scholar] [CrossRef]
- Siedschlag, R.B.; Bernales, V.; Vogiatzis, K.D.; Planas, N.; Clouston, L.J.; Bill, E.; Gagliardi, L.; Lu, C.C. Catalytic Silylation of Dinitrogen with a Dicobalt Complex. J. Am. Chem. Soc. 2015, 137, 4638–4641. [Google Scholar] [CrossRef]
- Suzuki, T.; Fujimoto, K.; Takemoto, Y.; Wasada-Tsutsui, Y.; Ozawa, T.; Inomata, T.; Fryzuk, M.D.; Masuda, H. Efficient Catalytic Conversion of Dinitrogen to N(SiMe3)3 Using a Homogeneous Mononuclear Cobalt Complex. ACS Catal. 2018, 8, 3011–3015. [Google Scholar] [CrossRef]
- Gao, Y.; Li, G.; Deng, L. Bis(Dinitrogen)Cobalt(−1) Complexes with NHC Ligation: Synthesis, Characterization, and Their Dinitrogen Functionalization Reactions Affording Side-on Bound Diazene Complexes. J. Am. Chem. Soc. 2018, 140, 2239–2250. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.L.; Ochiai, T.; Lam, F.Y.T.; Kelly, R.P.; Seymour, M.L.; Maron, L. Metallacyclic Actinide Catalysts for Dinitrogen Conversion to Ammonia and Secondary Amines. Nat. Chem. 2020, 12, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Bennaamane, S.; Espada, M.F.; Mulas, A.; Personeni, T.; Saffon-Merceron, N.; Fustier-Boutignon, M.; Bucher, C.; Mézailles, N. Catalytic Reduction of N2 to Borylamine at a Molybdenum Complex. Angew. Chem. Int. Ed. 2021, 60, 20210–20214. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Arashiba, K.; Tanaka, H.; Eizawa, A.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Catalytic Reduction of Molecular Dinitrogen to Ammonia and Hydrazine Using Vanadium Complexes. Angew. Chem. Int. Ed. 2018, 57, 9064–9068. [Google Scholar] [CrossRef]
- Kuriyama, S.; Arashiba, K.; Nakajima, K.; Matsuo, Y.; Tanaka, H.; Ishii, K.; Yoshizawa, K.; Nishibayashi, Y. Catalytic Transformation of Dinitrogen into Ammonia and Hydrazine by Iron-Dinitrogen Complexes Bearing Pincer Ligand. Nat. Commun. 2016, 7, 12181. [Google Scholar] [CrossRef]
- Kuriyama, S.; Arashiba, K.; Tanaka, H.; Matsuo, Y.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands. Angew. Chem. Int. Ed. 2016, 55, 14291–14295. [Google Scholar] [CrossRef]
- Grüger, N.; Wadepohl, H.; Gade, L.H. A Readily Accessible PNP Pincer Ligand with a Pyrrole Backbone and Its NiI/II Chemistry. Dalton Trans. 2012, 41, 14028. [Google Scholar] [CrossRef]
- Kumar, S.; Mani, G.; Mondal, S.; Chattaraj, P.K. Pyrrole-Based New Diphosphines: Pd and Ni Complexes Bearing the PNP Pincer Ligand. Inorg. Chem. 2012, 51, 12527–12539. [Google Scholar] [CrossRef]
- Venkanna, G.T.; Ramos, T.V.M.; Arman, H.D.; Tonzetich, Z.J. Nickel (II) Complexes Containing a Pyrrole–Diphosphine Pincer Ligand. Inorg. Chem. 2012, 51, 12789–12795. [Google Scholar] [CrossRef]
- Moulton, C.J.; Shaw, B.L. Transition Metal–Carbon Bonds. Part XLII. Complexes of Nickel, Palladium, Platinum, Rhodium and Iridium with the Tridentate Ligand 2,6-Bis[(Di-t-Butylphosphino)Methyl]Phenyl. J. Chem. Soc. Dalton Trans. 1976, 11, 1020–1024. [Google Scholar] [CrossRef]
- Kuriyama, S.; Kato, T.; Tanaka, H.; Konomi, A.; Yoshizawa, K.; Nishibayashi, Y. Catalytic Reduction of Dinitrogen to Ammonia and Hydrazine Using Iron–Dinitrogen Complexes Bearing Anionic Benzene-Based PCP-Type Pincer Ligands. Bull. Chem. Soc. Jpn. 2022, 95. [Google Scholar] [CrossRef]
- Kawakami, R.; Kuriyama, S.; Tanaka, H.; Arashiba, K.; Konomi, A.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Catalytic Reduction of Dinitrogen to Tris(Trimethylsilyl)Amine Using Rhodium Complexes with a Pyrrole-Based PNP-Type Pincer Ligand. Chem. Commun. 2019, 55, 14886–14889. [Google Scholar] [CrossRef]
- Kawakami, R.; Kuriyama, S.; Tanaka, H.; Konomi, A.; Yoshizawa, K.; Nishibayashi, Y. Iridium-Catalyzed Formation of Silylamine from Dinitrogen under Ambient Reaction Conditions. Chem. Lett. 2020, 49, 794–797. [Google Scholar] [CrossRef]
- Narro, A.L.; Arman, H.D.; Tonzetich, Z.J. Manganese Chemistry of Anionic Pyrrole-Based Pincer Ligands. Organometallics 2019, 38, 1741–1749. [Google Scholar] [CrossRef]
- Sarbajna, A.; He, Y.-T.; Dinh, M.H.; Gladkovskaya, O.; Rahaman, S.M.W.; Karimata, A.; Khaskin, E.; Lapointe, S.; Fayzullin, R.R.; Khusnutdinova, J.R. Aryl–X Bond-Forming Reductive Elimination from High-Valent Mn–Aryl Complexes. Organometallics 2019, 38, 4409–4419. [Google Scholar] [CrossRef]
- Morris, R.J.; Girolami, G.S. High-Valent Organomanganese Chemistry. 2. Synthesis and Characterization of Manganese(III) Aryls. Organometallics 1991, 10, 799–804. [Google Scholar] [CrossRef]
- Dey, K.; De, R.L. Organometallic Derivatives of Cobalt(III), Chromium(III) and Manganese(III) Complexes of Schiff Bases. J. Inorg. Nucl. Chem. 1977, 39, 153–155. [Google Scholar] [CrossRef]
- Kreye, M.; Freytag, M.; Jones, P.G.; Williard, P.G.; Bernskoetter, W.H.; Walter, M.D. Homolytic H2 Cleavage by a Mercury-Bridged Ni(i) Pincer Complex [{(PNP)Ni}2{μ-Hg}]. Chem. Commun. 2015, 51, 2946–2949. [Google Scholar] [CrossRef] [Green Version]
- Venkanna, G.T.; Arman, H.D.; Tonzetich, Z.J. Catalytic C–S Cross-Coupling Reactions Employing Ni Complexes of Pyrrole-Based Pincer Ligands. ACS Catal. 2014, 4, 2941–2950. [Google Scholar] [CrossRef]
- Levine, D.S.; Tilley, T.D.; Andersen, R.A. C–H Bond Activations by Monoanionic, PNP-Supported Scandium Dialkyl Complexes. Organometallics 2015, 34, 4647–4655. [Google Scholar] [CrossRef]
- Fowles, G.W.A.; Rice, D.A.; Walton, R.A. The Donor Properties of Simple Ethers—II[1]: Complexes of Manganese(II), Iron(II), Cobalt(II) and Nickel(II) Halides with Tetrahydrofuran and 1,2-Dimethoxyethane. J. Inorg. Nucl. Chem. 1969, 31, 3119–3131. [Google Scholar] [CrossRef]
- Murray, B.D.; Power, P.P. Monomeric Manganese(II) Alkoxides: Syntheses and x-Ray Crystal Structures of Novel Three- and Four-Coordinate Manganese Complexes of the Tri-Tert-Butylmethoxide Ligand. J. Am. Chem. Soc. 1984, 106, 7011–7015. [Google Scholar] [CrossRef]
- Bradley, D.C.; Hursthouse, M.B.; Ibrahim, A.A.; Malik, K.M.A.; Motevalli, M.; Möseler, R.; Powell, H.; Runnacles, J.D.; Sullivan, A.C. Synthesis and Chemistry of the Bis(Trimethylsilyl)Amido Bis-Tetrahydrofuranates of the Group 2 Metals Magnesium, Calcium, Strontium and Barium. X-ray Crystal Structures of Mg[N(SiMe3)2]2·2THF and Related Mn[N(SiMe3)2]2·2THF. Polyhedron 1990, 9, 2959–2964. [Google Scholar] [CrossRef]
- Brookhart, M.; Grant, B.; Volpe, A.F. [(3,5-(CF3)2C6H3)4B]-[H(OEt2)2]+: A Convenient Reagent for Generation and Stabilization of Cationic, Highly Electrophilic Organometallic Complexes. Organometallics 1992, 11, 3920–3922. [Google Scholar] [CrossRef]
- Weitz, I.S.; Rabinovitz, M. The Application of C8K for Organic Synthesis: Reduction of Substituted Naphthalenes. J. Chem. Soc. Perkin 1 1993, 1, 117–120. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-Hypochlorite Reaction for Determination of Ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Watt, G.W.; Chrisp, J.D. Spectrophotometric Method for Determination of Hydrazine. Anal. Chem. 1952, 24, 2006–2008. [Google Scholar] [CrossRef]
- Higashi, T. ABSCOR: Program for Absorption Correction; Rigaku Corporation: Tokyo, Japan, 1995. [Google Scholar]
- CrystalStructure, version 4.3; Crystal Structure Analysis Package; Rigaku Corporation: Tokyo, Japan, 2000–2018.
- Sheldrick, G.M. SHELXT: Integrating space group determination and structure solution. Acta Crystallogr. Sect. A Found. Adv. 2014, 70, C1437. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
Mn(1)–P(1) | 2.7189(8) | Mn(1)–P(2) | 2.7275(7) |
Mn(1)–N(1) | 2.127(2) | Mn(1)–N(2) | 2.188(2) |
Mn(1)–Cl(1) | 2.3716(10) | ||
P(1)–Mn(1)–P(2) | 147.46(3) | N(1)–Mn(1)–N(2) | 107.34(8) |
N(1)–Mn(1)–Cl(1) | 152.86(6) |
Mn(1)–P(1) | 2.7618(8) | Mn(1)–P(2) | 2.7539(7) |
Mn(1)–N(1) | 2.0549(18) | Mn(1)–N(2) | 2.0215(19) |
P(1)–Mn(1)–P(2) | 132.94(2) | N(1)–Mn(1)–N(2) | 139.15(6) |
Mn(1)–P(1) | 2.4792(17) | Mn(1)–P(2) | 2.4865(17) |
Mn(1)–Br(1) | 2.5208(9) | Mn(1)–Br(2) | 2.4513(9) |
Mn(1)–C(1) | 2.071(5) | ||
P(1)–Mn(1)–P(2) | 144.70(6) | C(1)–Mn(1)–Br(1) | 95.46(14) |
C(1)–Mn(1)–Br2(1) | 163.25(14) |
Entry | cat. | NH3 (Equiv) b | NH2NH2 (Equiv) b | H2 (Equiv) b |
---|---|---|---|---|
1 | 1 | 0 | 0 | 7.8 |
2 | 2 | 1.4 | 0 | 7.5 |
3 | 3 | 0 | 0 | 7.0 |
Entry | cat. | Reductant | NH3 (Equiv) b |
---|---|---|---|
1 | 1 | Na | 0.4 |
2 | 1 | KC8 | 1.5 |
3 | 2 | Na | 0.8 |
4 | 2 | KC8 | 1.4 |
5 | 3 | Na | 2.5 |
6 | 3 | KC8 | 2.2 |
Compound | 1 | 2 | 3 |
---|---|---|---|
chemical formula | C27H47ClMnN2P2 | C28H60MnN2P2Si2 | C24H43Br2MnP2 |
CCDC number | 2149812 | 2149810 | 2149811 |
formula weight | 552.02 | 597.85 | 608.30 |
dimensions of crystals, mm3 | 0.500 × 0.300 × 0.200 | 0.300 × 0.300 × 0.300 | 0.150 × 0.050 × 0.050 |
crystal color, habit | orange, block | colorless, chunk | red, block |
crystal system | orthorhombic | monoclinic | orthorhombic |
space group | Pna21 (#33) | P21/n (#14) | Pna21 (#33) |
a, Å | 19.9909(11) | 10.6261(3) | 12.2701(4) |
b, Å | 19.141(2) | 24.7389(7) | 15.6675(5) |
c, Å | 7.849(3) | 14.0062(4) | 14.2993(4) |
α, deg | 90 | 90 | 90 |
β, deg | 90 | 107.034(8) | 90 |
γ, deg | 90 | 90 | 90 |
V, Å3 | 3003.4(10) | 3520.4(2) | 2748.92(15) |
Z | 4 | 4 | 4 |
ρcalcd, g·cm−3 | 1.221 | 1.128 | 1.470 |
F(000) | 1180.00 | 1300.00 | 1248.00 |
μ, cm−1 | 6.519 | 5.518 | 35.217 |
trans. factors range | 0.647–0.878 | 0.728–0.847 | 0.528–0.839 |
no. reflections measured | 28090 | 33691 | 25377 |
no. unique reflections | 6867 | 8055 | 5991 |
no. parameters refined | 0.0398 | 0.0457 | 0.0835 |
R1 (I > 2σ(I)) a | 0.0322 | 0.0396 | 0.0386 |
wR2 (all data) b | 0.0645 | 0.0863 | 0.0652 |
GOF c | 1.042 | 1.005 | 0.975 |
flack parameter | 0.000 | 0.000 | |
max diff peak/hole, e Å−3 | 0.30/−0.16 | 0.47/−0.34 | 0.73/−0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuriyama, S.; Wei, S.; Kato, T.; Nishibayashi, Y. Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation. Molecules 2022, 27, 2373. https://doi.org/10.3390/molecules27072373
Kuriyama S, Wei S, Kato T, Nishibayashi Y. Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation. Molecules. 2022; 27(7):2373. https://doi.org/10.3390/molecules27072373
Chicago/Turabian StyleKuriyama, Shogo, Shenglan Wei, Takeru Kato, and Yoshiaki Nishibayashi. 2022. "Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation" Molecules 27, no. 7: 2373. https://doi.org/10.3390/molecules27072373
APA StyleKuriyama, S., Wei, S., Kato, T., & Nishibayashi, Y. (2022). Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation. Molecules, 27(7), 2373. https://doi.org/10.3390/molecules27072373