Composition of Fatty Acids in Bone Marrow of Red Deer from Various Ecosystems and Different Categories
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Sampling
4.3. Analysis of Fat, Moisture, and Fat-Free Dry Matter in Bone Marrow
4.4. Fatty Acid Analysis in Bone Marrow
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Silberstein, L.; Anastasi, J. Hematology: Basic Principles and Practice., 7th ed.; Hoffman, R., Benz, E., Heslop, H., Weitz, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; p. 6228. [Google Scholar]
- Dorshkind, K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Ann. Rev. Immunol. 1990, 8, 111–137. [Google Scholar] [CrossRef] [PubMed]
- Tajchman, K.; Ukalska-Jaruga, A.; Bogdaszewski, M.; Pecio, M.; Dziki-Michalska, K. Accumulation of toxic elements in bone and bone marrow of deer living in various ecosystems. A case study of farmed and wild-living deer. Animals 2020, 10, 2151. [Google Scholar] [CrossRef] [PubMed]
- Leat, W.M.F. Fatty acid composition of the plasma lipids of newborn and maternal ruminants. Biochem. J. 1966, 98, 598. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.W.; Setchell, B.P.; Bassett, J. Characterization and metabolism of ovine foetal lipids. Biochem. J. 1967, 104, 1040. [Google Scholar] [CrossRef]
- Noble, R.C.; Steele, W.; Moore, J. The metabolism of linoleic acid by the young lamb. Br. J. Nutr. 1971, 26, 97. [Google Scholar] [CrossRef] [Green Version]
- Payne, E. Fatty acid composition of tissue phospholipids of the foetal calf and neonatal lamb, deer calf and piglet as compared with the cow, sheep, deer and pig. Br. J. Nutr. 1978, 39, 53. [Google Scholar] [CrossRef]
- Janiszewski, P.; Dmuchowski, B.; Gugołek, A.; Żełobowski, R. Body weight characteristics of farm-raised fallow deer (Dama dama L.) over the winter period. J. Cent. Eur. Agric. 2008, 9, 337–342. [Google Scholar]
- Bartoš, L.; Vaňková, D.; Hyánek, J.; Šiler, J. Impact of allosucking on growth of farmed red deer calves (Cervus elaphus). Anim. Sci. 2016, 72, 493–500. [Google Scholar] [CrossRef]
- Dzięciołowski, R.; Babińska-Werka, J.; Wasilewski, M.; Goszczyński, J. Physical condition of red deer in a high density population. Acta Theriol. 1996, 41, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Turbil, C.; Ruf, T.; Mang, T.; Arnold, W. Regulation of heart rate and rumen temperature in red deer: Effects of season and food intake. J. Exp. Biol. 2011, 214 Pt 6, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Arnold, W.; Ruf, T.; Reimoser, S.; Tataruch, F.; Onderscheka, K.; Schober, F. Nocturnal hypometabolism as an overwintering strategy of red deer (Cervus elaphus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R174–R181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thouzeau, C.; Massemin, S.; Handrich, Y. Bone marrow fat mobilization in relation to lipid and protein catabolism during prolonged fasting in barn owls. J. Comp. Physiol. B 1997, 167, 17–24. [Google Scholar] [CrossRef]
- Ransom, A.B. Kidney and marrow fat as indicators of white-tailed deer condition. J. Wildl. Manag. 1965, 29, 397–398. [Google Scholar] [CrossRef]
- Nieminen, M.; Laitinen, M. Bone marrow and kidney fats as indicators of condition in reindeer. Rangifer 1986, 1, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.L.; Valkenburg, P.; Reed, D.J. Correlations and depletion patterns of marrow fat in caribou bones. J. Wildl. Manag. 1987, 51, 865–873. [Google Scholar] [CrossRef]
- Wolkers, J.; Wensing, T.; Schonewille, J.T.; van’t Klooster, A.T. Undernutrition in relation to changed tissue composition in wild boar Sus Scrofa. Comp. Biochem. Physiol. 1994, 108A, 623–628. [Google Scholar] [CrossRef]
- Jackson, C.M. The Effects of Inanition and Malnutrition upon Growth and Structure; Blakison’s, Son & Co.: Philadelphia, PA, USA, 1998; p. 616. [Google Scholar]
- Nieminen, M.; Soppela, P. Nutritional status and fatty acid composition of bone marrow in semi-domesticated reindeer. Rangifer 1990, 4, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Soppela, P.; Nieminen, M. The effect of wintertime undernutrition on the fatty acid composition of leg bone marrow fats in reindeer (Rangifer tarandus tarandus L.). Comp. Biochem. Physiol. B 2001, 128, 63–72. [Google Scholar] [CrossRef]
- Meng, M.; West, G.; Irving, L. Fatty acid composition of caribou bone marrow. Comp. Biochem. Physiol. 1969, 30, 187–191. [Google Scholar] [CrossRef]
- Pond, C.M.; Mattacks, C.A.; Colby, R.H.; Tyler, N.J.C. The anatomy, chemical composition and maximum glycolytic capacity of adipose tissue in wild Svalbard reindeer Rangifer tarandus platyrhynchus. in winter. J. Zool. Lond. 1993, 229, 17–40. [Google Scholar] [CrossRef]
- Irving, L.; Schmidt-Nielsen, K.; Abrahamson, N.S.B. On the melting points of animal fats in cold climates. Physiol. Zool. 1957, 30, 93–105. [Google Scholar] [CrossRef]
- Turner, J.C. Adaptive strategies of selective fatty acid deposition in the bone marrow of desert bighorn sheep. Comp. Biochem. Physiol. 1979, 62A, 599–604. [Google Scholar] [CrossRef]
- Irvingv, L. Arctic Life of Birds and Mammals Including Man; Springer: New York, NY, USA, 1972; p. 191. [Google Scholar]
- Gavino, V.C.; Gavino, G.R. Adipose hormone-sensitive lipase preferentially releases polyunsaturated fatty acids from triglycerides. Lipids 1992, 27, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Raclot, T.; Mioskowski, E.; Bach, A.C.; Groscolas, R. Selectivity of fatty acid mobilization: A general metabolic feature of adipose tissue. Am. J. Physiol. 1995, 269, R1060–R1067. [Google Scholar] [CrossRef]
- Nagy, J.; Szabó, A.; Donkó, T.; Bokor, J.; Romvári, R.; Repa, I.; Horn, P.; Fébel, H. Body composition and venison quality of farmed red deer (Cervus elaphus) hinds reared on grass, papilionaceous or mixed pasture paddocks. Arch. Anim. Breed. 2019, 62, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Razmaite, V.; Pileckas, V.; Siukscius, A.; Juskiene, V. Fatty Acid Composition of Meta and Edible Offal from Free-Living Red Deer (Cervus elaphus). Foods 2020, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Hoz, L.; Lopez-Bote, C.J.; Cambero, M.I.; D’Arrigo, M.; Pin, C.; Ordonez, J.A. Effect of dietary linseed oil and α-tocopherol on pork tenderloin (Psoas major) muscle. Meat Sci. 2003, 65, 1039–1044. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Everts, H.; Beynen, A.C. Influence of dietary linseed, fish and coconut oil on growth performance of growing pigs kept on small holdings in central Vietnam. J. Anim. Physiol. Anim. Nutr. (Berl.) 2004, 88, 204–210. [Google Scholar] [CrossRef]
- Razmaitė, V.; Pileckas, V. Fatty acid composition in maternal and foetal muscle tissues of beaver (Castor fiber). Biologia 2019, 74, 97–101. [Google Scholar] [CrossRef]
- Neiland, K.A. Weight of dried marrows as indicator of fat in caribou femurs. J. Wild. Manag. 1970, 34, 904–907. [Google Scholar] [CrossRef]
- Christie, W.W. The composition, structure and function of lipids in the tissues of ruminant animals. In Lipid Metabolism in Ruminant Animals; Christie, W.W., Ed.; Pergamon Press: Oxford, UK, 1981; pp. 95–191. [Google Scholar]
- Bruckner, G. Biological effects of polyunsaturated fatty acids. In Fatty Acids in Foods and Their Health Implications; Chow, C.K., Ed.; Marcel Dekker: New York, NY, USA, 1992; pp. 631–646. [Google Scholar]
- Sugár, L.; Nagy, I. Fatty Acid Composition in the Bone Marrow Fats of Cervidae. In The Biology of Deer; Brown, R.D., Ed.; Springer: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Pond, C.M. Physiological specialisation of adipose tissue. Prog. Lipid Res. 1999, 38, 225–248. [Google Scholar] [CrossRef]
- Ferlay, A.; Bernard, L.; Meynadier, A.; Malpuech-Brugere, C. Production of trans and conjugated fatty acids in diary ruminants and their puyative effects on human health: A review. Biochmie 2017, 141, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Stender, S.; Astrup, A.; Dyerberg, J. Ruminant and industrially produced trans fatty acids: Health aspects. Food Nutr. Res. 2008, 52, 1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordain, L.; Watkins, B.A.; Florant, G.L.; Kelher, M.; Rogers, L.; Li, Y. Fatty acid analysis of wild ruminant tissues: Evolutionary implications for reducing diet-related chronic disease. Eur. J. Clin. Nutr. 2002, 56, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DEFRA Code of Recommendations for the Welfare of Farmed Deer. 2022. Available online: http://www.defra.gov.uk/animalh/welfare/farmed/othersps/deer/pb0055/deercode.htm. (accessed on 20 February 2022).
- FEDFA Federation of European Deer Farmers Associations. 2022. Available online: https://www.fedfa.com/ (accessed on 20 February 2022).
- Mattiello, S. Welfare issues of modern deer farming. Ital. J. Anim. Sci. 2009, 8, 205–217. [Google Scholar] [CrossRef]
- Janiszewski, P.; Kolasa, S. Zoometric Characteristics of Red Deer (Cervus elaphus L.) Stags from Northern Poland. Balt. For. 2006, 12, 122–127. [Google Scholar]
- PN-ISO 1442; Meat and meat products—Determination of moisture content (reference method). International Organization for Standardization: Geneva, Switzerland, 2000.
- PN-ISO 1444; Meat and meat products—Determination of free fat content. International Organization for Standardization: Geneva, Switzerland, 2000.
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- AOCS Official Method Ce 2–66. Preparation of Methyl Esters of Fatty Acids; American Oil Chemists’ Society: Champaign, IL, USA, 2000. [Google Scholar]
- Domaradzki, P.; Florek, M.; Skałecki, P.; Litwińczuk, A.; Kędzierska-Matysek, M.; Wolanciuk, A.; Tajchman, K. Fatty acid composition, cholesterol content and lipid oxidation indices of intramuscular fat from skeletal muscles of beaver (Castor fiber L.). Meat Sci. 2019, 150, 131–140. [Google Scholar] [CrossRef]
Variable (%) | Farmed Fawns | Wild Fawns | Wild Does | Fawns Wild vs. Farmed p-Value t a/K-S b | Wild Fawns vs. Does p-Value t a/K-S b | |||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |||
Body Mass (kg) | 49.42 | 5.12 | 45.78 | 6.79 | 80.83 | 30.53 | >0.05 a | <0.001 b |
Bone Marrow Composition (%) | ||||||||
Fat | 53.52 | 13.71 | 83.14 | 3.43 | 77.33 | 9.19 | <0.001 b | >0.05 b |
Moisture | 21.01 | 10.07 | 11.66 | 1.77 | 11.01 | 4.07 | <0.005 b | >0.05 b |
Fat-Free Dry Matter | 25.48 | 11.78 | 4.81 | 2.53 | 10.96 | 7.19 | <0.001 b | <0.01 b |
Variable (%) | Farmed Fawns | Wild Fawns | Wild Does | Wild Fawns vs. Farmed Fawns p-Value t a/K-S b | Wild Fawns vs. Wild Does p-Value t a/K-S b | |||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |||
C10:0 | 0.06 | 0.02 | 0.07 | 0.02 | 0.08 | 0.07 | >0.05 a | >0.05 b |
C12:0 | tr | - | 0.62 | 0.14 | 0.11 | 0.05 | – | <0.001 a |
C14:0 | 5.18 | 1.08 | 5.94 | 0.64 | 2.23 | 0.82 | <0.018 a | <0.001 a |
C16:0 | 15.87 | 0.78 | 19.39 | 0.89 | 13.62 | 3.57 | <0.001 a | <0.001 b |
C18:0 | 4.58 | 0.73 | 5.58 | 0.94 | 3.85 | 1.08 | <0.003 a | <0.001 a |
C20:0 | 0.12 | 0.03 | 0.17 | 0.03 | 0.13 | 0.04 | <0.001 a | <0.008 a |
ƩSFA | 26.27 | 1.73 | 31.76 | 1.90 | 19.93 | 5.39 | <0.001 a | <0.001 b |
C15:0 | 0.90 | 0.08 | 0.89 | 0.08 | 0.53 | 0.16 | >0.05 a | <0.001 b |
C15:1 | 0.46 | 0.05 | 0.37 | 0.09 | 0.36 | 0.09 | <0.05 a | >0.05 a |
C17:0 | 0.49 | 0.07 | 0.57 | 0.06 | 0.33 | 0.08 | <0.003 a | <0.001 a |
C17:1 c7 | 0.09 | 0.03 | - | - | - | - | - | - |
C17:1 c9 | 0.73 | 0.08 | 0.77 | 0.07 | 0.77 | 0.07 | >0.05 a | >0.05 a |
C21:0 | 0.09 | 0.02 | 0.06 | 0.02 | 0.11 | 0.04 | >0.05 a | <0.001 a |
OCFA | 2.79 | 0.23 | 2.65 | 0.23 | 2.07 | 0.36 | >0.05 a | <0.001 a |
C13:0 iso | 0.13 | 0.05 | 0.07 | 0.01 | tr | - | <0.001 b | >0.05 a |
C13:0 anteiso | 0.12 | 0.03 | 0.11 | 0.02 | tr | - | >0.05 a | >0.05 a |
C14:0 iso | 0.14 | 0.02 | 0.07 | 0.02 | 0.06 | 0.02 | <0.001 a | >0.05 a |
C15:0 iso | 0.33 | 0.06 | 0.18 | 0.03 | 0.16 | 0.04 | <0.001 b | >0.05 b |
C15:0 anteiso | 0.52 | 0.07 | 0.33 | 0.07 | 0.28 | 0.11 | <0.001a | >0.05 a |
C17:0 iso | 0.37 | 0.05 | 0.27 | 0.03 | 0.23 | 0.03 | <0.001b | <0.001 a |
C17:0 anteiso | 0.49 | 0.05 | 0.48 | 0.07 | 0.43 | 0.08 | >0.05 a | >0.05 a |
C18:0 iso | 0.12 | 0.03 | 0.14 | 0.03 | 0.19 | 0.05 | >0.05 a | <0.025 b |
ƩBCFA | 2.24 | 0.29 | 1.65 | 0.22 | 1.39 | 0.25 | <0.001 a | <0.004 a |
Variable (%) | Farmed Fawns | Wild Fawns | Wild Does | Wild Fawns vs. Farmed Fawns p-Valuet a/K-S b | Wild Fawns Vs. Wild Does p-Value t a/K-S b | |||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |||
C14:1 c9 | 3.62 | 0.86 | 3.15 | 0.46 | 2.67 | 0.95 | >0.05 a | >0.05 b |
C16:1 c11 | 0.06 | 0.01 | 0.06 | 0.01 | 0.05 | 0.01 | >0.05 a | >0.05 a |
C16:1 c13 | 0.28 | 0.05 | 0.18 | 0.03 | 0.14 | 0.04 | <0.001 a | <0.008 a |
C16:1 c7 | 0.63 | 0.08 | 0.57 | 0.05 | 0.51 | 0.03 | >0.05 b | <0.001 a |
C16:1 c9 | 12.09 | 2.22 | 11.35 | 1.48 | 14.96 | 1.71 | >0.05 a | <0.001 a |
C18:1 c9 | 38.81 | 1.15 | 34.98 | 1.21 | 37.51 | 2.48 | <0.001 a | <0.005 b |
C18:1 c11 | 4.19 | 0.49 | 4.46 | 0.88 | 10.33 | 5.66 | >0.05 b | <0.001 b |
C18:1 c12 | 0.09 | 0.01 | 0.14 | 0.03 | 0.15 | 0.04 | <0.001 a | >0.05 a |
C18:1 c13 | 0.37 | 0.05 | 0.42 | 0.09 | 0.89 | 0.42 | >0.05 a | <0.005 b |
C20:1 c9 | 0.18 | 0.03 | 0.24 | 0.05 | 0.19 | 0.05 | >0.05 a | >0.05 a |
C20:1 c11 | 0.45 | 0.09 | 0.46 | 0.11 | 0.74 | 0.32 | >0.05 a | >0.05 b |
C20:1 c13 | 0.16 | 0.02 | 0.12 | 0.03 | 0.12 | 0.02 | <0.001 a | >0.05 a |
ƩMUFA cis | 60.91 | 1.92 | 56.08 | 2.29 | 68.25 | 6.99 | <0.001 a | <0.001 b |
C18:2 n-6 LA | 1.21 | 0.22 | 1.59 | 0.18 | 1.66 | 0.32 | <0.001 a | >0.05 a |
C18:2 cis | 0.19 | 0.04 | 0.36 | 0.09 | 0.42 | 0.04 | <0.001 b | >0.05 a |
C18:3 n-3 ALA | 0.62 | 0.12 | 1.15 | 0.26 | 1.14 | 0.44 | <0.001 a | >0.05 a |
CLA | 1.73 | 0.29 | 0.83 | 0.21 | 0.87 | 0.28 | <0.001 a | >0.05 a |
C20:2 n-6 | 0.09 | 0.02 | 0.13 | 0.02 | 0.09 | 0.03 | <0.022 a | <0.033 a |
C20:4 n-6 AA | 0.09 | 0.04 | 0.09 | 0.04 | 0.07 | 0.02 | >0.05 a | >0.05 a |
C20:3 n-3 | 0.07 | 0.01 | 0.12 | 0.03 | 0.15 | 0.05 | <0.006 a | <0.024 a |
C22:5 n-3 DPA | 0.19 | 0.10 | 0.06 | 0.04 | 0.06 | 0.01 | <0.005 b | >0.05 a |
ƩPUFA | 3.94 | 0.55 | 4.26 | 0.46 | 4.37 | 0.89 | >0.05 a | >0.05 b |
C18:1 t6/7 | 0.20 | 0.02 | 0.19 | 0.02 | 0.17 | 0.04 | >0.05 a | >0.05 b |
C18:1 t9 | 0.40 | 0.07 | 0.21 | 0.03 | 0.21 | 0.02 | <0.001 b | >0.05 a |
C18:1 t10 | 0.16 | 0.02 | 0.17 | 0.03 | 0.21 | 0.07 | >0.05 a | >0.05 b |
C18:1 t11 VA | 1.51 | 0.30 | 0.84 | 0.18 | 0.65 | 0.22 | <0.001 a | <0.011 a |
C18:1 t16 | 0.18 | 0.02 | 0.34 | 0.07 | 0.32 | 0.09 | <0.001 b | >0.05 a |
ƩMUFA trans | 2.45 | 0.38 | 1.75 | 0.22 | 1.56 | 0.39 | <0.001 a | >0.05 b |
ƩC18:2 trans | 1.05 | 0.20 | 1.39 | 0.24 | 1.85 | 0.37 | <0.001 a | <0.001 a |
ƩC18:3 trans | 0.36 | 0.05 | 0.45 | 0.09 | 0.58 | 0.03 | <0.007 a | <0.001 a |
ƩTFA | 3.86 | 0.49 | 3.60 | 0.39 | 3.99 | 0.68 | >0.05 a | >0.05 b |
PUFA/SFA | 0.15 | 0.03 | 0.13 | 0.02 | 0.23 | 0.05 | >0.05 b | <0.001 b |
n-3 | 0.71 | 0.20 | 1.32 | 0.30 | 1.33 | 0.48 | <0.001 a | >0.05 a |
n-6 | 1.32 | 0.25 | 1.74 | 0.17 | 1.76 | 0.34 | <0.001 a | >0.05 a |
n-6/n-3 | 1.95 | 0.45 | 1.37 | 0.29 | 1.39 | 0.25 | <0.001 a | >0.05 a |
Component | Eigenvalue | Proportion | Cumulative |
---|---|---|---|
1 | 7.66 | 45.06 | 45.06 |
2 | 5.63 | 33.10 | 78.16 |
3 | 1.76 | 10.35 | 88.52 |
4 | 0.66 | 3.85 | 92.37 |
5 | 0.39 | 2.32 | 94.69 |
6 | 0.30 | 1.74 | 96.44 |
7 | 0.24 | 1.39 | 97.83 |
8 | 0.15 | 0.91 | 98.73 |
9 | 0.10 | 0.61 | 99.73 |
10 | 0.07 | 0.39 | 99.89 |
11 | 0.03 | 0.15 | 99.94 |
12 | 0.01 | 0.05 | 99.26 |
13 | 0.00 | 0.03 | 99.97 |
14 | 0.00 | 0.02 | 99.98 |
15 | 0.00 | 0.01 | 99.99 |
16 | 0.00 | 0.00 | 99.99 |
17 | 0.00 | 0.00 | 100.00 |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
C14:0 | 0.392 | 0.854 | 0.129 |
C16:0 | 0.793 | 0.570 | −0.019 |
C18:0 | 0.727 | 0.459 | −0.231 |
C18:1 n-9 | −0.860 | −0.002 | −0.227 |
C18:1 c11 | −0.454 | −0.778 | 0.205 |
C18:2 n-6 LA | 0.714 | −0.635 | 0.002 |
C18:3 n-3 ALA | 0.810 | −0.450 | −0.100 |
SFA | 0.710 | 0.694 | −0.004 |
MUFA cis | −0.740 | −0.648 | 0.145 |
PUFA | 0.698 | −0.470 | −0.442 |
TFA | 0.266 | −0.239 | −0.897 |
n-3 | 0.779 | −0.520 | −0.097 |
n-6 | 0.768 | −0.579 | −0.019 |
PUFA/SFA | −0.329 | −0.925 | −0.105 |
Fat (%) | 0.752 | −0.376 | 0.474 |
Moisture (%) | −0.469 | 0.577 | −0.137 |
FFM (%) | −0.732 | 0.192 | −0.549 |
Body weight (kg) | −0.393 | −0.722 | 0.011 |
Variable | Correlation Coefficient (r/rS) | Significance |
---|---|---|
C14:0 | −0.698 r | *** |
C16:0 | −0.759 r | *** |
C18:0 | −0.581 r | *** |
C18:1 n-9 | 0.297 r | ns |
C18:1 c11 | 0.601 rS | * |
C18:2 n-6 LA | 0.129 r | ns |
C18:3 n-3 ALA | 0.081 r | ns |
SFA | −0.767 r | *** |
MUFA cis | 0.762 r | *** |
PUFA | 0.011 r | ns |
TFA | 0.083 r | ns |
n-3 | 0.140 r | ns |
n-6 | 0.046 r | ns |
PUFA/SFA | 0.400 rS | * |
Fat (%) | −0.122 rS | ns |
Moisture (%) | −0.39 rS | ns |
FFM (%) | 0.284 rS | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner-Bogdaszewska, Ż.; Tajchman, K.; Domaradzki, P.; Florek, M. Composition of Fatty Acids in Bone Marrow of Red Deer from Various Ecosystems and Different Categories. Molecules 2022, 27, 2511. https://doi.org/10.3390/molecules27082511
Steiner-Bogdaszewska Ż, Tajchman K, Domaradzki P, Florek M. Composition of Fatty Acids in Bone Marrow of Red Deer from Various Ecosystems and Different Categories. Molecules. 2022; 27(8):2511. https://doi.org/10.3390/molecules27082511
Chicago/Turabian StyleSteiner-Bogdaszewska, Żaneta, Katarzyna Tajchman, Piotr Domaradzki, and Mariusz Florek. 2022. "Composition of Fatty Acids in Bone Marrow of Red Deer from Various Ecosystems and Different Categories" Molecules 27, no. 8: 2511. https://doi.org/10.3390/molecules27082511
APA StyleSteiner-Bogdaszewska, Ż., Tajchman, K., Domaradzki, P., & Florek, M. (2022). Composition of Fatty Acids in Bone Marrow of Red Deer from Various Ecosystems and Different Categories. Molecules, 27(8), 2511. https://doi.org/10.3390/molecules27082511