Host-Guest Inclusion Complexes of Natural Products and Nanosystems: Applications in the Development of Repellents
Abstract
:1. Introduction
Repellents: Mode of Action and Current State of Art
2. Natural Compounds with Repellent Activity
Natural Product | Polymeric/Lipid Nanosystems | References | ||||
---|---|---|---|---|---|---|
Essential Oil | Compound Extracted from Essential Oil (Major Compunds) | Technique | Organic Matrices | Structures | Formulations | |
- | Eugenol | Co-precipitation/Solvent evaporation | Oligosaccharide | β-CD | Inclusion complex | [51] |
Lemongrass (Cymbopogon flexuosus) | citral and geraniuml | Co-precipitation | Oligosaccharide | β-CD | Inclusion complex | [39] |
Geranium Egyptian (Pelargonium graveolens) | β-citronellol | |||||
Lemon Eucalyptus (Eucalyptus citriadora) | β-citronellal | |||||
(Rosemary) Lipia gracilis | Carvacrol | Kneading, co-evaporation and physical mixture | Oligosaccharide | β-CD | Inclusion complex | [57] |
Cedar (Cedrus atlantica) | Esterifying | Oligosaccharide/citric acid (citrate) | β-CD/citrate | Inclusion complex | [58] | |
Lavender (Lavandula officinalis) | ||||||
Peppermint (Mentha piperita L.) | ||||||
Cloves (Eugenia caryophyllus) | - | |||||
Eucalyptus (Eucalyptus citriodora) | ||||||
Jasmine (Jasminum officinale) | ||||||
Citronella (Cymbopogon winterianus) | Citronellal Citronellol | Kneading | Oligosaccharide | β-CD | Inclusion complex | [59] |
Orange (Citrus sinensis L.) | R-limonene | Paste complexation, coprecipitation and physical mixture | Oligosaccharide | β-CD | Inclusion complex | [60] |
- | Carvacrol Linalool | Ultrafiltration and centrifugation | Oligosaccharide/chitosan glycol | β-CD/chitosan | Inclusion complex | [61] |
Copaiba oilresin (Copaifera multijuga Hayne) | β-caryophyllene | Physical mixture, kneading and slurry | Oligosaccharide | β-CD and HPβCD | Inclusion complex | [62] |
- | Geraniol | Physical mixture, slurry and paste | Oligosaccharide | β-CD | Inclusion complex | [63] |
Rosemary-pepper (Lippia origanoides) | Thymol | Freeze-drying/microemulsion | Stearic acid, oleic acid, soybean lecithin and polysorbate 80/HPβCD | NLC/HPβCD | - | [64] |
Geranium (Pelargonium graveolens) | - | Ultrasonic solvent emulsification | Stearic acid, soybean lecithin and Tween-80 | SLN | nanoformulation | [65] |
- | Mixture of icaridin (synthetic) and geraniol (natural) | Emulsion/solvent evaporation | Tripalmitin, polyvinyl alcohol) and hydroxypropyl methylcellulose | NLC/SLN | nanoformulation | [66] |
Black cumin (Nigella Sativa L.) | - | Hot homogenisation | Hydrogenated palm oil, Sorbitol and polysorbate 80 | SLN | nanoformulation | [67] |
- | Citral | High-pressure homogenization | Glyceryl monostearate, Tween-80 and Span-80 | SLN | nanoformulation | [68] |
- | D-limonene | Phase transition composition | Polyoxyethylene (20,40, 60 and 80) | - | nanoemulsion | [69] |
Eucalyptus oil (Eucalyptus citriodora) | - | Uultrasonication | Tween80 | - | Nanoemulsion | [70] |
Citronella oil (Cymbopogon winterianus) | D-Limonene | Cavitation assisted | Tween80 and SPAN80 | - | Nanoemulsion | [71] |
- | Thymol-eugenol mixtures | Solubilization | Poly (ethylene oxide)/PEO and poly(propylene oxide)/PPO | - | Nanoemulsion | [72] |
- | Eugenol | Solubilization | PEO and PPO | - | Polymeric Micelles | [73] |
1,8-Cineole | ||||||
Geraniol | ||||||
Linalool | ||||||
Carvacrol | ||||||
Citronellol | ||||||
Thymol | ||||||
Menthol | ||||||
α-terpineol | ||||||
Nonyl alcohol | ||||||
Clove oil (Eugenia caryophyllus) | Eugenol | Mixture and Spray dryer | Casein | - | Polymeric Micelles | [74] |
Clove oil (Eugenia caryophyllus) | Eugenol | Ethanol injection | soybean phospholipid | - | Lipossome | [75] |
Thyme essential oil | - | Thin film dispersion | ε-polylysine (Polyvinylpyrrolidone)/Oligosaccharide | β-CD | Lipossome/β-CD | [76] |
3. Polymerics Systems Applied in the Nanoencapsulation of Natural Products
3.1. Inclusion Complexes Using Cyclodextrins
3.2. Solid Lipid Nanoparticles (SLNs)
3.3. Liposomes
3.4. Nanoemulsions
3.5. Polymeric Micelles
4. Molecular Details of Inclusion Complexes Formed between Natural Compounds from Essential and Organic Matrices
5. Final Considerations: Perspectives in the Development of New Nanosystem Repellents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tabanca, N.; Bernier, U.R.; Agramonte, N.M.; Tsikolia, M.; Bloomquist, J.R. Discovery of Repellents from Natural Products. Curr. Org. Chem. 2016, 20, 2690–2702. [Google Scholar] [CrossRef] [Green Version]
- Norris, E.J.; Coats, J.R. Current and Future Repellent Technologies: The Potential of Spatial Repellents and Their Place in Mosquito-Borne Disease Control. Int. J. Environ. Res. Public Health 2017, 14, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, T.S.; Smith, D.P. Odorant and pheromone receptors in insects. Front. Cell. Neurosci. 2009, 3, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Peng, W.; Zhu, C.; Zhang, Q.; Saccone, G.; Zhang, H. Identification and expression profile analysis of odorant binding proteins in the oriental fruit fly Bactrocera dorsalis. Int. J. Mol. Sci. 2013, 14, 14936–14949. [Google Scholar] [CrossRef] [Green Version]
- Boyle, S.M.; McInally, S.; Ray, A. Expanding the olfactory code by in silico decoding of odor-receptor chemical space. eLife 2013, 2, e01120. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, Y.; Wang, X.; Liu, Y.; Wang, N. Responses to Host Plant Volatiles and Identification of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga. ACS Omega 2019, 4, 3800–3811. [Google Scholar] [CrossRef] [Green Version]
- Venthur, H.; Zhou, J.-J.J. Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Front. Physiol. 2018, 9, 1163. [Google Scholar] [CrossRef]
- Damberger, F.; Nikonova, L.; Horst, R.; Peng, G.; Leal, W.S.; Wüthrich, K. NMR Characterization of a pH-Dependent Equilibrium between Two Folded Solution Conformations of the Pheromone-Binding Protein from Bombyx Mori. Protein Sci. 2000, 9, 1038–1041. [Google Scholar] [CrossRef] [Green Version]
- Manoharan, M.; Fuchs, P.F.J.; Sowdhamini, R.; Offmann, B. Insights on pH-dependent conformational changes of mosquito odorant binding proteins by molecular dynamics simulations. J. Biomol. Struct. Dyn. 2014, 32, 1742–1751. [Google Scholar] [CrossRef]
- Jin, X.; Ha, T.S.; Smith, D.P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA 2008, 105, 10996–11001. [Google Scholar] [CrossRef] [Green Version]
- Meepagala, K.M.; Bernier, U.R.; Burandt, C.; Duke, S.O. Mosquito repellents based on a natural chromene analogue with longer duration of action than N,N-diethyl-meta-toluamide (DEET). J. Agric. Food Chem. 2013, 61, 9293–9297. [Google Scholar] [CrossRef]
- Sfara, V.; Mougabure-Cueto, G.; Zerba, E.N.; Alzogaray, R.A. Adaptation of the repellency response to DEET in Rhodnius prolixus. J. Insect Physiol. 2011, 57, 1431–1436. [Google Scholar] [CrossRef]
- Alzogaray, R.A.; Fontan, A.; Zerba, E.N. Repellency of deet to nymphs of Triatoma infestans. Med. Vet. Entomol. 2000, 14, 6–10. [Google Scholar] [CrossRef]
- Syed, Z.; Leal, W.S. Mosquitoes smell and avoid the insect repellent DEET. Proc. Natl. Acad. Sci. USA 2008, 105, 13598–13603. [Google Scholar] [CrossRef] [Green Version]
- Diaz, J.H. Chemical and plant-based insect repellents: Efficacy, safety, and toxicity. Wilderness Environ. Med. 2016, 27, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Iliou, K.; Kikionis, S.; Petrakis, P.V.; Ioannou, E.; Roussis, V. Citronella oil-loaded electrospun micro/nanofibrous matrices as sustained repellency systems for the Asian tiger mosquito Aedes albopictus. Pest. Manag. Sci. 2019, 75, 2142–2147. [Google Scholar] [CrossRef] [Green Version]
- Stanczyk, N.M.; Brookfield, J.F.Y.; Field, L.M.; Logan, J.G. Aedes aegypti Mosquitoes Exhibit Decreased Repellency by DEET following Previous Exposure. PLoS ONE 2013, 8, e54438. [Google Scholar] [CrossRef]
- Stanczyk, N.M.; Brookfield, J.F.Y.; Ignell, R.; Logan, J.G.; Field, L.M. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc. Natl. Acad. Sci. USA 2010, 107, 8575–8580. [Google Scholar] [CrossRef] [Green Version]
- Thireou, T.; Kythreoti, G.; Tsitsanou, K.E.; Koussis, K.; Drakou, C.E.; Kinnersley, J.; Kröber, T.; Guerin, P.M.; Zhou, J.J.; Iatrou, K.; et al. Identification of novel bioinspired synthetic mosquito repellents by combined ligand-based screening and OBP-structure-based molecular docking. Insect Biochem. Mol. Biol. 2018, 98, 48–61. [Google Scholar] [CrossRef]
- González-González, A.; Palma-Millanao, R.; Yáñez, O.; Rojas, M.; Mutis, A.; Venthur, H.; Quiroz, A.; Ramírez, C.C. Virtual screening of plant volatile compounds reveals a high affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) odorant-binding proteins for sesquiterpenes from its native host. J. Insect Sci. 2016, 16, 30. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, K.S.; Galúcio, J.M.; Da Costa, C.H.S.; Santana, A.R.; Dos Santos Carvalho, V.; Do Nascimento, L.D.; Lima E Lima, A.H.; Neves Cruz, J.; Alves, C.N.; Lameira, J. Exploring the Potentiality of Natural Products from Essential Oils as Inhibitors of Odorant-Binding Proteins: A Structure- and Ligand-Based Virtual Screening Approach to Find Novel Mosquito Repellents. ACS Omega 2019, 4, 22475–22486. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Booth, J.C.; Davrazou, F.; Port, A.M.; Jones, D.N.M. Interactions of anopheles gambiae odorant-binding proteins with a human-derived repellent: Implications for the mode of action of N,N-diethyl-3-methylbenzamide (DEET). J. Biol. Chem. 2013, 288, 4475–4485. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, K.R.; Klun, J.A.; Debboun, M.; Kramer, M. Feeding deterrent effects of catnip oil components compared with two synthetic amides against Aedes aegypti. J. Med. Entomol. 2005, 42, 643–646. [Google Scholar] [CrossRef]
- Yadav, N.P.; Rai, V.K.; Mishra, N.; Sinha, P.; Bawankule, D.U.; Pal, A.; Tripathi, A.K.; Chanotiya, C.S. A novel approach for development and characterization of effective mosquito repellent cream formulation containing citronella oil. Biomed. Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Do Nascimento, L.D.; de Moraes, A.A.B.; da Costa, K.S.; Galúcio, J.M.P.; Taube, P.S.; Costa, C.M.L.; Cruz, J.N.; de Aguiar Andrade, E.H.; de Faria, L.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef]
- Shah, S.I.; Khutoryanskiy, V.V.; Williams, A.C. A novel polymer insect repellent conjugate for extended release and decreased skin permeation of para-menthane-3,8-diol. Pharmaceutics 2021, 13, 403. [Google Scholar] [CrossRef]
- Wu, W.; Li, S.; Yang, M.; Lin, Y.; Zheng, K.; Akutse, K.S. Citronellal perception and transmission by Anopheles gambiae s.s. (Diptera: Culicidae) females. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Junnila, A.; Butler, J.; Kravchenko, V.D.; Revay, E.E.; Weiss, R.W.; Schlein, Y. Efficacy of the Botanical Repellents Geraniol, Linalool, and Citronella against Mosquitoes. J. Vector Ecol. 2009, 34, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Ditzen, M.; Pellegrino, M.; Vosshall, L.B. Insect Odorant Receptors Are Molecular Targets of the Insect Repellent DEET. Science 2008, 319, 1838–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogan, E.B.; Ayres, J.W.; Rossignol, P.A. Behavioural mode of action of deet: Inhibition of lactic acid attraction. Med. Vet. Entomol. 1999, 13, 97–100. [Google Scholar] [CrossRef]
- Mapossa, A.B.; Focke, W.W.; Tewo, R.K.; Androsch, R.; Kruger, T. Mosquito-repellent controlled-release formulations for fighting infectious diseases. Malar. J. 2021, 20, 165. [Google Scholar] [CrossRef]
- Tavares, M.; da Silva, M.R.M.; de Oliveira de Siqueira, L.B.; Rodrigues, R.A.S.; Bodjolle-d’Almeira, L.; dos Santos, E.P.; Ricci-Júnior, E. Trends in insect repellent formulations: A review. Int. J. Pharm. 2018, 539, 190–209. [Google Scholar] [CrossRef]
- Lee, M.Y. Essential Oils as Repellents against Arthropods. Biomed. Res. Int. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gillij, Y.G.; Gleiser, R.M.; Zygadlo, J.A. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour. Technol. 2008, 99, 2507–2515. [Google Scholar] [CrossRef]
- Liang, J.Y.; Guo, S.S.; Zhang, W.J.; Geng, Z.F.; Deng, Z.W.; Du, S.S.; Zhang, J. Fumigant and repellent activities of essential oil extracted from Artemisia dubia and its main compounds against two stored product pests. Nat. Prod. Res. 2018, 32, 1234–1238. [Google Scholar] [CrossRef]
- Do Nascimento, L.D.; Cascaes, M.M.; da Costa, K.S.; de Andrade, E.H.A.; Andrade, E.L.; Costa, C.M.L.; de Faria, L.J.G. Microencapsulamento De Óleos Essenciais: Conceitos e Aplicações. Produção Conhecimento Eng. Química 2019, 3, 22–35. [Google Scholar] [CrossRef]
- Duarte, J.L.; Taira, T.C.; Di Filippo, L.D.; Fonseca-Santos, B.; Pinto, M.C.; Chorilli, M. Novel bioadhesive polycarbophil-based liquid crystal systems containing Melaleuca alternifolia oil as potential repellents against Aedes aegypti. J. Mol. Liq. 2020, 314, 113626. [Google Scholar] [CrossRef]
- Hogenbom, J.; Jones, A.; Wang, H.V.; Pickett, L.J.; Faraone, N. Synthesis and characterization of β-cyclodextrin-essential oil inclusion complexes for tick repellent development. Polymers 2021, 13, 1892. [Google Scholar] [CrossRef]
- Lalthazuali; Mathew, N. Mosquito repellent activity of volatile oils from selected aromatic plants. Parasitol. Res. 2017, 116, 821–825. [Google Scholar] [CrossRef]
- Azeem, M.; Zaman, T.; Tahir, M.; Haris, A.; Iqbal, Z.; Binyameen, M.; Nazir, A.; Shad, S.A.; Majeed, S.; Mozūraitis, R. Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti. Ind. Crops Prod. 2019, 140, 111609. [Google Scholar] [CrossRef]
- Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A.R.N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020, 12, 669. [Google Scholar] [CrossRef]
- Do Nascimento, L.D.; Almeida, L.Q.; de Sousa, E.M.P.; Costa, C.M.L.; da Costa, K.S.; de Andrade, E.H.A.; de Faria, L.J.G. Microwave-assisted extraction: An alternative to extract Piper aduncum essential oil. Braz. J. Dev. 2020, 6, 40619–40638. [Google Scholar] [CrossRef]
- Diniz Do Nascimento, L.; Gomes Silva, S.; Cascaes, M.M.; Santana Da Costa, K.; Luis, P.; Figueiredo, B.; Leal Costa, M.; Helena De Aguiar Andrade, E.; Guerreiro De Faria, L.J. molecules Drying Effects on Chemical Composition and Antioxidant Activity of Lippia thymoides Essential Oil, a Natural Source of Thymol. Molecules 2021, 26, 2621. [Google Scholar] [CrossRef]
- Tisgratog, R.; Sanguanpong, U.; Grieco, J.P.; Ngoen-Kluan, R.; Chareonviriyaphap, T. Plants traditionally used as mosquito repellents and the implication for their use in vector control. Acta Trop. 2016, 157, 136–144. [Google Scholar] [CrossRef]
- Francikowski, J.; Baran, B.; Cup, M.; Janiec, J.; Krzyżowski, M. Commercially Available Essential Oil Formulas as Repellents against the Stored-Product Pest Alphitobius diaperinus. Insects 2019, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.R.M.; Ricci-Júnior, E. An approach to natural insect repellent formulations: From basic research to technological development. Acta Trop. 2020, 212, 105419. [Google Scholar] [CrossRef]
- Prabakaran, P.; Sivasubramanian, C.; Veeramani, R.; Prabhu, S. Review Study on Larvicidal and Mosquito Repellent Activity of Volatile Oils Isolated from Medicinal Plants. Int. J. Environ. Agric. Biotechnol. 2017, 2, 3132–3138. [Google Scholar] [CrossRef]
- Ríos, N.; Stashenko, E.E.; Duque, J.E. Evaluation of the insecticidal activity of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae). Rev. Bras. Entomol. 2017, 61, 307–311. [Google Scholar] [CrossRef]
- Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development and testing PMD from lemon eucalyptus (Corymbia citriodora) extract. Malar. J. 2011, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- De Freitas, C.A.B.; de Araújo, R.C.S.; da Paz, S.P.A.; de Silva, J.R.A.; Alves, C.N.; Lameira, J. Obtenção E Caracterização De Complexo De Inclusão De Β-Ciclodextrina E Eugenol/Preparation and Characterization of Β-Cyclodextrin Inclusion Complex of Eugenol. Braz. J. Dev. 2021, 7, 33056–33070. [Google Scholar] [CrossRef]
- Chiriac, A.P.; Rusu, A.G.; Nita, L.E.; Chiriac, V.M.; Neamtu, I.; Sandu, A. Polymeric carriers designed for encapsulation of essential oils with biological activity. Pharmaceutics 2021, 13, 631. [Google Scholar] [CrossRef] [PubMed]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.C.; de Souza Costa, G.C.; dos Reis, L.E.L.; da Silva, L.D.; Peixoto, M.F.; Alves, C.C.F.; Forim, M.R.; Quintela, E.D.; Araújo, W.L.; de Melo Cazal, C. In natura and nanoencapsulated essential oils from Xylopia aromatica reduce oviposition of Bemisia tabaci in Phaseolus vulgaris. J. Pest Sci. 2020, 93, 807–821. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Mossa, A.T.H. Green Pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016, 9, 354–378. [Google Scholar] [CrossRef] [Green Version]
- Galvão, J.G.; Cerpe, P.; Santos, D.A.; Gonsalves, J.K.; Santos, A.J.; Nunes, R.K.; Lira, A.A.; Alves, P.B.; La Corte, R.; Blank, A.F.; et al. Lippia gracilis essential oil in í µí¼·-cyclodextrin inclusion complexes: An environmentally safe formulation to control Aedes aegypti larvae. Pest Manag. Sci. 2018, 75, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Khanna, S.; Chakraborty, J.N. Mosquito repellent activity of cotton functionalized with inclusion complexes of β-cyclodextrin citrate and essential oils. Fash. Text. 2018, 5, 9. [Google Scholar] [CrossRef]
- Songkro, S.; Hayook, N.; Jaisawang, J.; Maneenuan, D.; Chuchome, T.; Kaewnopparat, N. Investigation of inclusion complexes of citronella oil, citronellal and citronellol with b-cyclodextrin for mosquito repellent. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 339–355. [Google Scholar] [CrossRef]
- Galvão, J.G.; Silva, V.F.; Ferreira, S.G.; França, F.R.M.; Santos, D.A.; Freitas, L.S.; Alves, P.B.; Araújo, A.A.S.; Cavalcanti, S.C.H.; Nunes, R.S. β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: An alternative to control Aedes aegypti larvae. Thermochim. Acta 2015, 608, 14–19. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Melville, C.C.; Vechia, J.F.D.; De Andrade, D.J.; Fraceto, L.F. Chitosan nanoparticles functionalized with β-cyclodextrin: A promising carrier for botanical pesticides. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef]
- Gabriel de Oliveira Pinheiro, J.; de Aragão Tavares, E.; Santos da Silva, S.; Félix Silva, J.; Maria Barbosa Gomes de Carvalho, Y.; Rhayanny Assunção Ferreira, M.; Antunes de Souza Araújo, A.; Guimarães Barbosa, E.; de Freitas Fernandes Pedrosa, M.; Alberto Lira Soares, L.; et al. Inclusion Complexes of Copaiba (Copaifera multijuga Hayne) Oleoresin and Cyclodextrins: Physicochemical Characterization and Anti-Inflammatory Activity. Int. J. Mol. Sci. Artic. 2017, 18, 2388. [Google Scholar] [CrossRef] [Green Version]
- Menezes, P.P.; Serafini, M.R.; Santana, B.V.; Nunes, R.S.; Quintans, L.J.; Silva, G.F.; Medeiros, I.A.; Marchioro, M.; Fraga, B.P.; Santos, M.R.V.; et al. Solid-state β-cyclodextrin complexes containing geraniol. Thermochim. Acta 2012, 548, 45–50. [Google Scholar] [CrossRef]
- Pires, F.Q.; da Silva, J.K.R.; Sa-Barreto, L.L.; Gratieri, T.; Gelfuso, G.M.; Cunha-Filho, M. Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: A promising approach for cutaneous delivery of a volatile essential oil. Colloids Surf. B Biointerfaces 2019, 182, 110382. [Google Scholar] [CrossRef]
- Adel, M.M.; Salem, N.Y.; Abdel-Aziz, N.F.; Ibrahim, S.S. Application of new nano pesticide geranium oil loaded-solid lipid nanoparticles for control the black cutworm agrotis ipsilon (Hub.) (lepi., noctuidae). EurAsian J. Biosci. 2019, 13, 1453–1461. [Google Scholar]
- Abrantes, D.C.; Rogerio, C.B.; de Oliveira, J.L.; Campos, E.V.R.; de Araújo, D.R.; Pampana, L.C.; Duarte, M.J.; Valadares, G.F.; Fraceto, L.F. Development of a Mosquito Repellent Formulation Based on Nanostructured Lipid Carriers. Front. Pharmacol. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Alhaj, N.A.; Shamsudin, M.N.; Alipiah, N.M.; Zamri, H.F.; Bustamam, A.; Ibrahim, S.; Abdullah, R. Characterization of Nigella sativa L. essential oil-loaded solid lipid nanoparticles. Am. J. Pharmacol. Toxicol. 2010, 5, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Lu, Z.; Li, D.; Hu, J. Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chem. 2018, 248, 78–85. [Google Scholar] [CrossRef]
- Feng, J.; Wang, R.; Chen, Z.; Zhang, S.; Yuan, S.; Cao, H.; Jafari, S.M.; Yang, W. Formulation optimization of D-limonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids Surf. A Physicochem. Eng. Asp. 2020, 596, 124746. [Google Scholar] [CrossRef]
- Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem. 2014, 21, 1044–1049. [Google Scholar] [CrossRef]
- Agrawal, N.; Maddikeri, G.L.; Pandit, A.B. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrason. Sonochem. 2017, 36, 367–374. [Google Scholar] [CrossRef]
- Lucia, A.; Toloza, A.C.; Fanucce, M.; Fernández-Peña, L.; Ortega, F.; Rubio, R.G.; Coviella, C.; Guzmán, E. Nanoemulsions based on thymol-eugenol mixtures: Characterization, stability and larvicidal activity against aedes aegypti. Bull. Insectol. 2020, 73, 153–160. [Google Scholar]
- Lucia, A.; Toloza, A.C.; Guzmán, E.; Ortega, F.; Rubio, R.G. Novel polymeric micelles for insect pest control: Encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ 2017, 2017, e3171. [Google Scholar] [CrossRef]
- Putri, Y.R.P.; Pratami, D.K.; Hermansyah, H.; Wijanarko, A.; Sahlan, M. Study controlled release, toxicity test, and pesticide test of microcapsule eugenol with casein micelle. AIP Conf. Proc. 2019, 2085, 020015. [Google Scholar] [CrossRef]
- Sebaaly, C.; Jraij, A.; Fessi, H.; Charcosset, C.; Greige-Gerges, H. Preparation and characterization of clove essential oil-loaded liposomes. Food Chem. 2015, 178, 52–62. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, Y.; Thangaraj, B.; Abdel-Samie, M.A.S.; Cui, H. Improving the stability of thyme essential oil solid liposome by using β-cyclodextrin as a cryoprotectant. Carbohydr. Polym. 2018, 188, 243–251. [Google Scholar] [CrossRef]
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Bezerra, F.M.; Lis, M.J.; Firmino, H.B.; Da Silva, J.G.D.; Valle, R.D.C.S.C.; Valle, J.A.B.; Scacchetti, F.A.P.; Tessaro, A.L. The role of β-cyclodextrin in the textile industry-review. Molecules 2020, 25, 3624. [Google Scholar] [CrossRef]
- Kotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A.; Chinga Carrasco, G. Encapsulation of Oregano (Origanum onites L.) Essential Oil in β-Cyclodextrin (β-CD): Synthesis and Characterization of the Inclusion Complexes. Bioengineering 2017, 4, 74. [Google Scholar] [CrossRef] [Green Version]
- Lis, M.J.; Carmona, Ó.G.; Carmona, C.G.; Bezerra, F.M. Inclusion complexes of citronella oil with β-cyclodextrin for controlled release in biofunctional textiles. Polymers 2018, 10, 1324. [Google Scholar] [CrossRef] [Green Version]
- Sherje, A.P.; Dravyakar, B.R.; Kadam, D.; Jadhav, M. Cyclodextrin-based nanosponges: A critical review. Carbohydr. Polym. 2017, 173, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Nardello-Rataj, V.; Leclercq, L. Encapsulation of biocides by cyclodextrins: Toward synergistic effects against pathogens. Beilstein J. Org. Chem. 2014, 10, 2603–2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radu, C.D.; Parteni, O.; Ochiuz, L. Applications of cyclodextrins in medical textiles—Review. J. Control. Release 2016, 224, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Pereira, A.E.S.; De Morais Ribeiro, L.N.; Fernandes, F.O.; Gonçalves, K.C.; Polanczyk, R.A.; Pasquoto-Stigliani, T.; Lima, R.; et al. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll. 2017, 65, 157–164. [Google Scholar] [CrossRef]
- Rakmai, J.; Cheirsilp, B. Continuous production of β-cyclodextrin by cyclodextrin glycosyltransferase immobilized in mixed gel beads: Comparative study in continuous stirred tank reactor and packed bed reactor. Biochem. Eng. J. 2016, 105, 107–113. [Google Scholar] [CrossRef]
- Kelidari, H.R.; Moemenbellah-Fard, M.D.; Morteza-Semnani, K.; Amoozegar, F.; Shahriari-Namadi, M.; Saeedi, M.; Osanloo, M. Solid-lipid nanoparticles (SLN)s containing Zataria multiflora essential oil with no-cytotoxicity and potent repellent activity against Anopheles stephensi. J. Parasit. Dis. 2020, 45, 101–108. [Google Scholar] [CrossRef]
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev. 2012, 64, 83–101. [Google Scholar] [CrossRef]
- Valenti, D.; De Logu, A.; Loy, G.; Sinico, C.; Bonsignore, L.; Cottiglia, F.; Garau, D.; Fadda, A.M. Liposome-incorporated Santolina insularis essential oil: Preparation, characterization and in vitro antiviral activity. J. Liposome Res. 2001, 11, 73–90. [Google Scholar] [CrossRef]
- Pinto, I.C.; Cerqueira-Coutinho, C.S.; Santos, E.P.; Carmo, F.A.; Ricci-Junior, E. Development and characterization of repellent formulations based on nanostructured hydrogels. Drug Dev. Ind. Pharm. 2017, 43, 67–73. [Google Scholar] [CrossRef]
- Nirmala, M.J.; Nagarajan, R. Recent Research Trends in Fabrication and Applications of Plant Essential Oil Based Nanoemulsions. J. Nanomed. Nanotechnol. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018, 270, 203–225. [Google Scholar] [CrossRef]
- Montenegro, L.; Lai, F.; Offerta, A.; Sarpietro, M.G.; Micicchè, L.; Maccioni, A.M.; Valenti, D.; Fadda, A.M. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol. 2016, 32, 100–112. [Google Scholar] [CrossRef]
- Franklyne, J.S.; Mukherjee, A.; Chandrasekaran, N. Essential oil micro-and nanoemulsions: Promising roles in antimicrobial therapy targeting human pathogens. Lett. Appl. Microbiol. 2016, 63, 322–334. [Google Scholar] [CrossRef]
- Pavoni, L.; Pavela, R.; Cespi, M.; Bonacucina, G.; Maggi, F.; Zeni, V.; Canale, A.; Lucchi, A.; Bruschi, F.; Benelli, G. Green micro-and nanoemulsions for managing parasites, vectors and pests. Nanomaterials 2019, 9, 1285. [Google Scholar] [CrossRef] [Green Version]
- Bajerski, L.; Michels, L.R.; Colomé, L.M.; Bender, E.A.; Freddo, R.J.; Bruxel, F.; Haas, S.E. The use of Brazilian vegetable oils in nanoemulsions: An update on preparation and biological applications. Braz. J. Pharm. Sci. 2016, 52, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Chen, L.; Yaouba, S.; Narawi, M.M.; Zain, M.N.; Mohd Narawi, M.; Ing Chiu, H.; Keong Yong, Y.; Nadhirah Mohamad Zain, N.; Raoov Ramachandran, M.; et al. Biocompatible Nutmeg Oil-Loaded Nanoemulsion as Phyto-Repellent. Front. Pharmacol. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Echeverría, J.; Albuquerque, R. Nanoemulsions of Essential Oils: New Tool for Control of Vector-Borne Diseases and In Vitro Effects on Some Parasitic Agents. Medicines 2019, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Balaji, A.P.B.; Mishra, P.; Suresh Kumar, R.S.; Mukherjee, A.; Chandrasekaran, N. Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control. Colloids Surf. B Biointerfaces 2015, 128, 370–378. [Google Scholar] [CrossRef]
- Barradas, T.N.; Lopes, L.M.A.; Ricci, E.; De Holanda E Silva, K.G.; Mansur, C.R.E. Development and characterization of micellar systems for application as insect repellents. Int. J. Pharm. 2013, 454, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Dickens, J.C.; Bohbot, J.D. Mini review: Mode of action of mosquito repellents. Pestic. Biochem. Physiol. 2013, 106, 149–155. [Google Scholar] [CrossRef]
- Alvira, E. Theoretical study of the β-cyclodextrin inclusion complex formation of eugenol in water. Molecules 2018, 23, 928. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, S.F.Z.; Arsad, S.R.; Mohamad, H.; Abdallah, H.H.; Maarof, H. Host-guest molecular encapsulation of cucurbit[7]uril with dillapiole congeners using docking simulation and density functional theory approaches. Struct. Chem. 2021, 32, 1151–1161. [Google Scholar] [CrossRef]
- Andrade-Ochoa, S.; Correa-Basurto, J.; Rodríguez-Valdez, L.M.; Sánchez-Torres, L.E.; Nogueda-Torres, B.; Nevárez-Moorillón, G.V. In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae) Open Access. Chem. Cent. J. 2018, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Egwolf, B.; Eric Walters, D.; Roux, B. Ion Selectivity of α-Hemolysin with a β-Cyclodextrin Adapter. I. Single Ion Potential of Mean Force and Diffusion Coefficient. J. Phys. Chem. B 2010, 114, 952–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seridi, L.; Boufelfel, A. Simulations of docking C60 in β-Cyclodextrin. J. Mol. Liq. 2011, 162, 69–77. [Google Scholar] [CrossRef]
- Hernández-Sánchez, P.; López-Miranda, S.; Guardiola, L.; Serrano-Martínez, A.; Gabaldón, J.A.; Nuñez-Delicado, E. Optimization of a method for preparing solid complexes of essential clove oil with β-cyclodextrins. J. Sci. Food Agric. 2017, 97, 420–426. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pena, G.A.; da Costa Lopes, A.S.; de Morais, S.H.S.; do Nascimento, L.D.; dos Santos, F.R.R.; da Costa, K.S.; Alves, C.N.; Lameira, J. Host-Guest Inclusion Complexes of Natural Products and Nanosystems: Applications in the Development of Repellents. Molecules 2022, 27, 2519. https://doi.org/10.3390/molecules27082519
Pena GA, da Costa Lopes AS, de Morais SHS, do Nascimento LD, dos Santos FRR, da Costa KS, Alves CN, Lameira J. Host-Guest Inclusion Complexes of Natural Products and Nanosystems: Applications in the Development of Repellents. Molecules. 2022; 27(8):2519. https://doi.org/10.3390/molecules27082519
Chicago/Turabian StylePena, Gueive Astur, Anna Sylmara da Costa Lopes, Sylvano Heleno Salgado de Morais, Lidiane Diniz do Nascimento, Fábio Rogério Rodrigues dos Santos, Kauê Santana da Costa, Cláudio Nahum Alves, and Jerônimo Lameira. 2022. "Host-Guest Inclusion Complexes of Natural Products and Nanosystems: Applications in the Development of Repellents" Molecules 27, no. 8: 2519. https://doi.org/10.3390/molecules27082519
APA StylePena, G. A., da Costa Lopes, A. S., de Morais, S. H. S., do Nascimento, L. D., dos Santos, F. R. R., da Costa, K. S., Alves, C. N., & Lameira, J. (2022). Host-Guest Inclusion Complexes of Natural Products and Nanosystems: Applications in the Development of Repellents. Molecules, 27(8), 2519. https://doi.org/10.3390/molecules27082519