Fixed-Bed Adsorption: Comparisons of Virgin and Zirconium Oxide-Coated Scoria for the Removal of Fluoride from Water
Abstract
:1. Introduction
2. Results and Discussions
2.1. Characterization of Adsorbents
2.2. Influence of Experimental Parameters on Fluoride Removal
2.2.1. Influence of Initial Solution pH
2.2.2. Influence of Initial Flow Rate
2.3. Application of the Thomas Model
2.4. Application of the Adams–Bohart Model
2.5. Fluoride Adsorption Performance of Different Adsorbents
3. Materials and Methods
3.1. Adsorbent Preparations
Coating of Zirconium Oxide onto Virgin Scoria (VSco)
3.2. Chemicals and Reagents
3.3. Characterizations of the Materials
3.4. Fixed-Bed Column Adsorption Studies
3.5. Analysis of Column Data
Breakthrough Curve
3.6. Breakthrough Curve Modeling
3.6.1. Thomas Model
3.6.2. Adams–Bohart Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Armienta, M.A.; Segovia, N. Arsenic and Fluoride in the Groundwater of Mexico. Environ. Geochem. Health 2008, 30, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Farooqi, A.; Xiao, T.; Ali, W.; Noor, S.; Abiola, O.; Ali, S.; Nasim, W. A Review of Global Outlook on Fluoride Contamination in Groundwater with Prominence on the Pakistan Current Situation. Environ. Geochem. Health 2018, 40, 1265–1281. [Google Scholar] [CrossRef] [PubMed]
- Msonda, K.W.M.; Masamba, W.R.L.; Fabiano, E. A Study of Fluoride Groundwater Occurrence in Nathenje, Lilongwe, Malawi. Phys. Chem. Earth 2007, 32, 1178–1184. [Google Scholar] [CrossRef]
- Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E.; Fewtrell, L.; Magara, Y. Fluoride in Drinking-Water; World Health Organization (WHO): Geneva, Switzerland; IWA Publishing: London, UK, 2006; ISBN 9781900222969. [Google Scholar]
- Geleta, W.S.; Alemayehu, E.; Lennartz, B. Enhanced Defluoridation of Water Using Zirconium—Coated Pumice in Fixed-Bed Adsorption Columns. Materials 2021, 14, 6145. [Google Scholar] [CrossRef]
- Geleta, W.S.; Alemayehu, E.; Lennartz, B. Enhanced Defluoridation from Aqueous Solutions Using Zirconium–Coated Pumice in Fixed-Bed Column Systems. In Proceedings of the MOL2NET’21, Conference on Molecular, Biomedical & Computational Sciences and Engineering, Basel, Switzerland, 25 January 2021–30 January 2022. [Google Scholar] [CrossRef]
- Geleta, W.S.; Alemayehu, E.; Lennartz, B. Volcanic Rock Materials for Defluoridation of Water in Fixed-Bed Column Systems. Molecules 2021, 26, 977. [Google Scholar] [CrossRef]
- Whitford, G.M. The Metabolism and Toxicity of Fluoride, 2nd ed.; Karger: Basel, Switzerland, 1996; Volume 16, ISBN 978-3-8055-6247-8. [Google Scholar] [CrossRef]
- Dar, M.A.; Sankar, K.; Dar, I.A. Fluorine Contamination in Groundwater: A Major Challenge. Environ. Monit. Assess. 2011, 173, 955–968. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, L.; Xiu, Y.; Huang, K. Defluoridation in Fixed Bed Column Filled with Zr(IV)-Loaded Garlic Peel. Microchem. J. 2019, 145, 476–485. [Google Scholar] [CrossRef]
- Kut, K.M.K.; Sarswat, A.; Srivastava, A.; Pittman, C.U., Jr.; Mohan, D. A Review of Fluoride in African Groundwater and Local Remediation Methods. Groundw. Sustain. Dev. 2016, 2–3, 190–212. [Google Scholar] [CrossRef]
- Mohan, S.; Singh, D.K.; Kumar, V.; Hasan, S.H. Effective Removal of Fluoride Ions by RGO/ZrO2 Nanocomposite from Aqueous Solution: Fixed Bed Column Adsorption Modelling and Its Adsorption Mechanism. J. Fluor. Chem. 2016, 194, 40–50. [Google Scholar] [CrossRef]
- Rango, T.; Vengosh, A.; Jeuland, M.; Whitford, G.M.; Tekle-Haimanot, R. Biomarkers of Chronic Fluoride Exposure in Groundwater in a Highly Exposed Population. Sci. Total Environ. 2017, 596–597, 1–11. [Google Scholar] [CrossRef]
- Žáček, V.; Rapprich, V.; Šíma, J.; Škoda, R.; Laufek, F.; Legesa, F. Kogarkoite, Na3(SO4)F, from the Shalo Hot Spring, Main Ethiopian Rift: Implications for F-Enrichment of Thermal Groundwater Related to Alkaline Silicic Volcanic Rocks. J. Geosci. 2015, 60, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Tekle-Haimanot, R.; Melaku, Z.; Kloos, H.; Reimann, C.; Fantaye, W.; Zerihun, L.; Bjorvatn, K. The Geographic Distribution of Fluoride in Surface and Groundwater in Ethiopia with an Emphasis on the Rift Valley. Sci. Total Environ. 2006, 367, 182–190. [Google Scholar] [CrossRef]
- Eawag. Geogenic Contamination Contamination Handbook–Addressing Arsenic and Fluoride in Drinking Water; Johnson, C.A., Bretzler, A., Eds.; Swiss Federal Institute of Aquatic Science and Technology (Eawag): Dübendorf, Switzerland, 2015. [Google Scholar]
- Edmunds, W.M.; Smedley, P.L. Fluoride in Natural Waters. In Essentials of Medical Geology; Springer: Berlin, Germany, 2014; Volume 51, pp. 311–336. ISBN 9789400743748. [Google Scholar] [CrossRef]
- Rango, T.; Bianchini, G.; Beccaluva, L.; Tassinari, R. Geochemistry and Water Quality Assessment of Central Main Ethiopian Rift Natural Waters with Emphasis on Source and Occurrence of Fluoride and Arsenic. J. Afr. Earth Sci. 2010, 57, 479–491. [Google Scholar] [CrossRef]
- Demelash, H.; Beyene, A.; Abebe, Z.; Melese, A. Fluoride Concentration in Ground Water and Prevalence of Dental Fluorosis in Ethiopian Rift Valley: Systematic Review and Meta-Analysis. BMC Public Health 2019, 19, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Wang, T.; Xiao, Y.; Tian, E.; Wang, W.; Zhao, Y.; Tian, L.; Jiang, H.; Luo, X. Efficient Fluoride Removal from Aqueous Solution by Synthetic Fe[Sbnd]Mg[Sbnd]La Tri-Metal Nanocomposite and the Analysis of Its Adsorption Mechanism. J. Alloys Compd. 2018, 738, 118–129. [Google Scholar] [CrossRef]
- Sarkar, M.; Banerjee, A.; Pramanick, P.P.; Sarkar, A.R. Use of Laterite for the Removal of Fluoride from Contaminated Drinking Water. J. Colloid Interface Sci. 2006, 302, 432–441. [Google Scholar] [CrossRef]
- Maliyekkal, S.M.; Sharma, A.K.; Philip, L. Manganese-Oxide-Coated Alumina: A Promising Sorbent for Defluoridation of Water. Water Res. 2006, 40, 3497–3506. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Z.; Feng, C.; Sugiura, N.; Li, M.; Chen, R. Fluoride Removal from Water by Granular Ceramic Adsorption. J. Colloid Interface Sci. 2010, 348, 579–584. [Google Scholar] [CrossRef]
- Su, T.; Song, Y.; Lan, X.; Gao, W. Optimization for Removal Efficiency of Fluoride Using La (III)–Al (III)–Activated Carbon Modified by Chemical Route. Green Process. Synth. 2020, 9, 405–415. [Google Scholar] [CrossRef]
- Ghanbarian, M.; Ghanbarian, M.; Mahvi, A.H.; Tabatabaie, T. Enhanced Fluoride Removal over MgFe2O4–Chitosan–CaAl Nanohybrid: Response Surface Optimization, Kinetic and Isotherm Study. Int. J. Biol. Macromol. 2020, 148, 574–590. [Google Scholar] [CrossRef]
- Kennedy, A.M.; Arias-Paic, M. Fixed-Bed Adsorption Comparisons of Bone Char and Activated Alumina for the Removal of Fluoride from Drinking Water. J. Environ. Eng. 2020, 146, 04019099. [Google Scholar] [CrossRef]
- Kumari, U.; Mishra, A.; Siddiqi, H.; Meikap, B.C. Effective Defluoridation of Industrial Wastewater by Using Acid Modified Alumina in Fixed-Bed Adsorption Column: Experimental and Breakthrough Curves Analysis. J. Clean. Prod. 2021, 279, 123645. [Google Scholar] [CrossRef]
- Alemayehu, E.; Lennartz, B. Virgin Volcanic Rocks: Kinetics and Equilibrium Studies for the Adsorption of Cadmium from Water. J. Hazard. Mater. 2009, 169, 395–401. [Google Scholar] [CrossRef]
- Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Adsorptive Removal of Phosphate from Aqueous Solutions Using Low-Cost Volcanic Rocks: Kinetics and Equilibrium Approaches. Materials 2021, 14, 1312. [Google Scholar] [CrossRef] [PubMed]
- Salifu, A.; Petrusevski, B.; Mwampashi, E.S.; Pazi, I.A.; Ghebremichael, K.; Buamah, R.; Aubry, C.; Amy, G.L.; Kenedy, M.D. Defluoridation of Groundwater Using Aluminum-Coated Bauxite: Optimization of Synthesis Process Conditions and Equilibrium Study. J. Environ. Manag. 2016, 181, 108–117. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, L.; An, X.; Wan, G.; Zhu, W.; Luo, Y. Enhanced Fluoride Removal from Water by Rare Earth (La and Ce) Modified Alumina: Adsorption Isotherms, Kinetics, Thermodynamics and Mechanism. Sci. Total Environ. 2019, 688, 184–198. [Google Scholar] [CrossRef]
- Chaudhry, S.A.; Khan, T.A.; Ali, I. Zirconium Oxide-Coated Sand Based Batch and Column Adsorptive Removal of Arsenic from Water: Isotherm, Kinetic and Thermodynamic Studies. Egypt. J. Pet. 2017, 26, 553–563. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Faraji, M.; Mohammadi, A.; Kamani, H. Optimization of Fluoride Adsorption onto Natural and Modified Pumice Using Response Surface Methodology: Isotherm, Kinetic and Thermodynamic Studies. Korean J. Chem. Eng. 2017, 34, 454–462. [Google Scholar] [CrossRef]
- Lǚ, J.; Liu, H.; Liu, R.; Zhao, X.; Sun, L.; Qu, J. Adsorptive Removal of Phosphate by a Nanostructured Fe-Al-Mn Trimetal Oxide Adsorbent. Powder Technol. 2013, 233, 146–154. [Google Scholar] [CrossRef]
- Chaudhary, M.; Rawat, S.; Jain, N.; Bhatnagar, A.; Maiti, A. Chitosan-Fe-Al-Mn Metal Oxyhydroxides Composite as Highly Efficient Fluoride Scavenger for Aqueous Medium. Carbohydr. Polym. 2019, 216, 140–148. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Mohammadi, H.; Sharafi, K.; Asadi, A. Fluoride and Nitrate Adsorption from Water by Fe(III)-Doped Scoria: Optimizing Using Response Surface Modeling, Kinetic and Equilibrium Study. Water Sci. Technol. Water Supply 2018, 18, 1117–1132. [Google Scholar] [CrossRef]
- Xu, X.; Li, Q.; Cui, H.; Pang, J.; An, H.; Wang, W.; Zhai, J. Column-Mode Fluoride Removal from Aqueous Solution by Magnesia-Loaded Fly Ash Cenospheres. Environ. Technol. 2012, 33, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Djobo, J.N.Y.; Tchadjié, L.N.; Tchakoute, H.K.; Kenne, B.B.D.; Elimbi, A. Synthesis of Geopolymer Composites from a Mixture of Volcanic Scoria and Metakaolin. J. Asian Ceram. Soc. 2014, 2, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Panias, D.; Giannopoulou, I.P.; Perraki, T. Effect of Synthesis Parameters on the Mechanical Properties of Fly Ash-Based Geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007, 301, 246–254. [Google Scholar] [CrossRef]
- Jere, G.V.; Santhamma, M.T. IR and Laser Raman Studies on Peroxo Fluoro Species of Zirconium. Inorganica Chim. Acta 1977, 24, 57–61. [Google Scholar] [CrossRef]
- Dou, X.; Mohan, D.; Pittman, C.U.; Yang, S. Remediating Fluoride from Water Using Hydrous Zirconium Oxide. Chem. Eng. J. 2012, 198–199, 236–245. [Google Scholar] [CrossRef]
- Sepehr, M.N.; Zarrabi, M.; Kazemian, H.; Amrane, A.; Yaghmaian, K.; Ghaffari, H.R. Removal of Hardness Agents, Calcium and Magnesium, by Natural and Alkaline Modified Pumice Stones in Single and Binary Systems. Appl. Surf. Sci. 2013, 274, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Sepehr, M.N.; Amrane, A.; Karimaian, K.A.; Zarrabi, M.; Ghaffari, H.R. Potential of Waste Pumice and Surface Modified Pumice for Hexavalent Chromium Removal: Characterization, Equilibrium, Thermodynamic and Kinetic Study. J. Taiwan Inst. Chem. Eng. 2014, 45, 635–647. [Google Scholar] [CrossRef]
- Alraddadi, S.; Assaedi, H. Physical Properties of Mesoporous Scoria and Pumice Volcanic Rocks. J. Phys. Commun. 2021, 5, 115018. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, Z.; Xu, X.; Cheng, C.; Gao, B.; Yue, Q.; Liu, S.; Han, C. Enhanced Fluoride Uptake by Bimetallic Hydroxides Anchored in Cotton Cellulose/Graphene Oxide Composites. J. Hazard. Mater. 2019, 376, 91–101. [Google Scholar] [CrossRef]
- Lin, X.; Huang, Q.; Qi, G.; Shi, S.; Xiong, L.; Huang, C.; Chen, X.; Li, H.; Chen, X. Estimation of Fixed-Bed Column Parameters and Mathematical Modeling of Breakthrough Behaviors for Adsorption of Levulinic Acid from Aqueous Solution Using SY-01 Resin. Sep. Purif. Technol. 2017, 174, 222–231. [Google Scholar] [CrossRef]
- Muthamilselvi, P.; Karthikeyan, R.; Kapoor, A.; Prabhakar, S. Continuous Fixed-Bed Studies for Adsorptive Remediation of Phenol by Garlic Peel Powder. Int. J. Ind. Chem. 2018, 9, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Fallah, N.; Taghizadeh, M. Continuous Fixed-Bed Adsorption of Mo(VI) from Aqueous Solutions by Mo(VI)-IIP: Breakthrough Curves Analysis and Mathematical Modeling. J. Environ. Chem. Eng. 2020, 8, 104079. [Google Scholar] [CrossRef]
- Ghosh, A.; Chakrabarti, S.; Ghosh, U.C. Fixed-Bed Column Performance of Mn-Incorporated Iron(III) Oxide Nanoparticle Agglomerates on As(III) Removal from the Spiked Groundwater in Lab Bench Scale. Chem. Eng. J. 2014, 248, 18–26. [Google Scholar] [CrossRef]
- Ghosh, A.; Chakrobroty, S.; Biswas, K.; Ghosh, U.C. Column Performances on Fluoride Removal by Agglomerated Ce (IV)–Zr (IV) Mixed Oxide Nanoparticles Packed Fixed-Beds. J. Environ. Chem. Eng. 2015, 3, 653–661. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, F.; Zheng, X.; Ma, J.; Gao, C. Removal of Fluoride from Aqueous Solution Using Granular Acid-Treated Bentonite (GHB): Batch and Column Studies. J. Hazard. Mater. 2011, 185, 1073–1080. [Google Scholar] [CrossRef]
- García-Sánchez, J.J.; Solache-Ríos, M.; Martínez-Miranda, V.; Morelos, C.S. Removal of Fluoride Ions from Drinking Water and Fluoride Solutions by Aluminum Modified Iron Oxides in a Column System. J. Colloid Interface Sci. 2013, 407, 410–415. [Google Scholar] [CrossRef]
- Salifu, A.; Petrusevski, B.; Ghebremichael, K.; Modestus, L.; Buamah, R.; Aubry, C.; Amy, G.L. Aluminum (Hydr) Oxide Coated Pumice for Fluoride Removal from Drinking Water: Synthesis, Equilibrium, Kinetics and Mechanism. Chem. Eng. J. 2013, 228, 63–74. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; WHO World Health Organization: Geneva, Switzerland, 2011; ISBN 978-92-4-154815-1. [Google Scholar]
- Sahu, N.; Bhan, C.; Singh, J. Removal of Fluoride from an Aqueous Solution by Batch and Column Process Using Activated Carbon Derived from Iron Infused Pisum Sativum Peel: Characterization, Isotherm, Kinetics Study. Environ. Eng. Res. 2020, 26, 200241. [Google Scholar] [CrossRef]
- Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal. Materials 2021, 14, 5466. [Google Scholar] [CrossRef]
- Hu, A.; Ren, G.; Che, J.; Guo, Y.; Ye, J.; Zhou, S. Phosphate Recovery with Granular Acid-Activated Neutralized Red Mud: Fixed-Bed Column Performance and Breakthrough Curve Modelling. J. Environ. Sci. 2020, 90, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.C. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 1944, 66, 1664–1666. [Google Scholar] [CrossRef]
- Hu, Q.; Xie, Y.; Feng, C.; Zhang, Z. Fractal-like Kinetics of Adsorption on Heterogeneous Surfaces in the Fixed-Bed Column. Chem. Eng. J. 2019, 358, 1471–1478. [Google Scholar] [CrossRef]
- Bohart, G.S.; Adams, E.Q. Some Aspects of the Behavior of Charcoal with Respect to Chlorine. J. Am. Chem. Soc. 1920, 42, 523–544. [Google Scholar] [CrossRef] [Green Version]
- Chu, K.H. Breakthrough Curve Analysis by Simplistic Models of Fixed Bed Adsorption: In Defense of the Century-Old Bohart-Adams Model. Chem. Eng. J. 2020, 380, 122513. [Google Scholar] [CrossRef]
Elemental Content | VSco % (wt) | ZrOCSc % (wt) | Oxide Content | VSco % (wt) | ZrOCSc % (wt) |
---|---|---|---|---|---|
Si | 18.3 | 19.3 | SiO2 | 47.4 | 44.8 |
Al | 10.3 | 10.2 | Al2O3 | 21.6 | 23.1 |
Fe | 7.8 | 8.1 | Fe2O3 | 8.9 | 5.8 |
K | 0.4 | 0.4 | K2O | 0.5 | 0.3 |
Ca | 6.4 | 6.2 | CaO | 12.4 | 11.9 |
Na | 2.2 | 2.2 | Na2O | 3.0 | 2.6 |
Mg | 2.8 | 2.7 | MgO | 3.3 | 2.0 |
Zn | <0.1 | <0.1 | TiO2 | 1.4 | 1.1 |
Zr | <0.1 | 1.2 | ZrO2 | - | 8.3 |
Mn | 0.1 | 0.1 | MnO | 0.4 | 0.1 |
Cr | <0.1 | <0.1 | ZnO | 0.2 | 0.2 |
Cu | <0.1 | <0.1 | NiO | 0.1 | 0.2 |
Co | <0.1 | <0.1 | CuO | 0.2 | 0.2 |
Cd | <0.1 | <0.1 | - | - | - |
Ni | <0.1 | <0.1 | - | - | - |
Pb | <0.1 | <0.1 | - | - | - |
As | <0.1 | <0.1 | - | - | - |
Parameter Studied | pH | CO (mg/L) | QO (mL/min) | EBCT (min) | tb (min) | te (min) | Vb (mL) | Ve (mL) | MTZ (cm) | qb (mg/kg) | qtot (mg) | qe (mg/kg) | Adsorbent |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variation in pH keeping CO and QO constant | 2 | 10 | 1.25 | 412 | 2058 | 3425 | 2572.50 | 4280.84 | 3.99 | 34.86 | 42.81 | 58 | ZrOCSc |
4 | 10 | 1.25 | 412 | 316 | 944 | 394.26 | 1180.41 | 6.66 | 5.34 | 11.80 | 16 | ||
6 | 10 | 1.25 | 412 | 161 | 495 | 200.89 | 618.75 | 6.75 | 2.72 | 6.19 | 8.39 | ||
2 | 10 | 1.25 | 412 | 309 | 783 | 386.25 | 941.25 | 5.60 | 5.23 | 9.41 | 12.76 | VSco | |
4 | 10 | 1.25 | 412 | 137 | 318 | 170 | 386.25 | 5.70 | 2.30 | 3.86 | 5.23 | ||
6 | 10 | 1.25 | 412 | 91 | 275 | 114.13 | 343.75 | 6.68 | 1.55 | 3.44 | 4.66 | ||
Variation in QO keeping pH and CO constant | 2 | 10 | 1.25 | 412 | 2058 | 3425 | 2572.50 | 4280.84 | 3.99 | 34.86 | 42.81 | 58 | ZrOCSc |
2 | 10 | 2.50 | 206 | 721 | 1262 | 1803.05 | 3153.60 | 4.28 | 24.44 | 31.54 | 42.54 | ||
2 | 10 | 3.75 | 137 | 336.23 | 647.67 | 1260.86 | 2053.76 | 4.81 | 17.09 | 20.54 | 27.83 | ||
2 | 10 | 1.25 | 412 | 309 | 753 | 386.25 | 941.25 | 5.90 | 5.53 | 9. 51 | 12.76 | VSco | |
2 | 10 | 2.50 | 206 | 155 | 353 | 386.58 | 881.58 | 5.61 | 5.24 | 8.82 | 11.95 | ||
2 | 10 | 3.75 | 137 | 65 | 217 | 243.41 | 813.49 | 7.01 | 3.30 | 8.15 | 11.02 |
Parameter Studied | pH | CO (mg/L) | Q (mL/min) | Bed-Depth, HB (cm) | KT (L/min·mg) (×104) | qo(cal.) (mg/kg) | qe(exp.) (mg/kg) | R2 | Adsorbent |
---|---|---|---|---|---|---|---|---|---|
Variation in pH keeping CO, and QO constant | 2 | 10 | 1.25 | 10 | 1.192 | 57.71 | 58 | 0.992 | ZrOCSc |
4 | 10 | 1.25 | 10 | 2.642 | 14.13 | 16 | 0.976 | ||
6 | 10 | 1.25 | 10 | 5.253 | 8.45 | 8.39 | 0.996 | ||
2 | 10 | 1.25 | 10 | 3.892 | 11.12 | 12.76 | 0.967 | VSco | |
4 | 10 | 1.25 | 10 | 15.083 | 4.34 | 5.23 | 0.977 | ||
6 | 10 | 1.25 | 10 | 15.634 | 3.78 | 4.66 | 0.994 | ||
Variation in QO keeping pH and CO constant | 2 | 10 | 1.25 | 10 | 1.192 | 57.71 | 58 | 0.992 | ZrOCSc |
2 | 10 | 2.50 | 10 | 4.542 | 45.09 | 42.54 | 0.980 | ||
2 | 10 | 3.75 | 10 | 8.277 | 28.03 | 27.83 | 0.993 | ||
2 | 10 | 1.25 | 10 | 3.892 | 11.12 | 12.76 | 0.967 | VSco | |
2 | 10 | 2.50 | 10 | 8.333 | 10.66 | 11.95 | 0.961 | ||
2 | 10 | 3.75 | 10 | 9.127 | 9.81 | 11.02 | 0.953 |
Parameter Studied | pH | CO (mg/L) | Q (mL/min) | Bed-Depth, HB (cm) | KAB (L/min·mg) (×104) | NO(cal.) (mg/L) | R2 | Adsorbent |
---|---|---|---|---|---|---|---|---|
Variation in pH keeping CO and QO constant | 2 | 10 | 1.25 | 10 | 1.192 | 82.78 | 0.992 | ZrOCSc |
4 | 10 | 1.25 | 10 | 2.642 | 20.26 | 0.976 | ||
6 | 10 | 1.25 | 10 | 5.253 | 12.12 | 0.996 | ||
2 | 10 | 1.25 | 10 | 3.892 | 15.95 | 0.967 | VSco | |
4 | 10 | 1.25 | 10 | 15.083 | 6.23 | 0.977 | ||
6 | 10 | 1.25 | 10 | 15.634 | 5.43 | 0.994 | ||
Variation in QO keeping pH and CO constant | 2 | 10 | 1.25 | 10 | 1.192 | 82.78 | 0.992 | ZrOCSc |
2 | 10 | 2.50 | 10 | 4.542 | 64.55 | 0.980 | ||
2 | 10 | 3.75 | 10 | 8.277 | 40.16 | 0.993 | ||
2 | 10 | 1.25 | 10 | 3.892 | 15.95 | 0.967 | VSco | |
2 | 10 | 2.50 | 10 | 8.333 | 15.26 | 0.961 | ||
2 | 10 | 3.75 | 10 | 9.127 | 14.05 | 0.953 |
Adsorbents | Bed Height (cm) | Fluoride Level in (mg L−1) | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|
Granular acid-treated bentonite | 28 | 6.34 | 0.190 | [51] |
Granular acid-treated bentonite | 28 | 2.85 | 0.169 | [51] |
Aluminum-modified iron oxide | 10.5 | 4 | 0.139 | [52] |
Virgin Scoria (VSco*) | 10 | 10 | 0.022 | [7] |
Virgin Scoria (VSco**) | 10 | 10 | 0.013 | [7] |
ZrOCSc | 10 | 10 | 0.058 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geleta, W.S.; Alemayehu, E.; Lennartz, B. Fixed-Bed Adsorption: Comparisons of Virgin and Zirconium Oxide-Coated Scoria for the Removal of Fluoride from Water. Molecules 2022, 27, 2527. https://doi.org/10.3390/molecules27082527
Geleta WS, Alemayehu E, Lennartz B. Fixed-Bed Adsorption: Comparisons of Virgin and Zirconium Oxide-Coated Scoria for the Removal of Fluoride from Water. Molecules. 2022; 27(8):2527. https://doi.org/10.3390/molecules27082527
Chicago/Turabian StyleGeleta, Wondwosen Sime, Esayas Alemayehu, and Bernd Lennartz. 2022. "Fixed-Bed Adsorption: Comparisons of Virgin and Zirconium Oxide-Coated Scoria for the Removal of Fluoride from Water" Molecules 27, no. 8: 2527. https://doi.org/10.3390/molecules27082527
APA StyleGeleta, W. S., Alemayehu, E., & Lennartz, B. (2022). Fixed-Bed Adsorption: Comparisons of Virgin and Zirconium Oxide-Coated Scoria for the Removal of Fluoride from Water. Molecules, 27(8), 2527. https://doi.org/10.3390/molecules27082527