Antibacterial and Wound-Healing Activities of Statistically Optimized Nitrofurazone- and Lidocaine-Loaded Silica Microspheres by the Box–Behnken Design
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimizing Variables of Drug-Loaded Microspheres (DLMs)
2.2. Scanning Electron Microscope Analysis for DLMs
2.3. Zeta Potential Analysis
2.4. Size Distribution by Zeta Sizer
2.5. Fourier Transforms Infrared Spectrophotometric Analysis
2.6. Thermal Analysis
2.7. X-ray Diffraction Analysis (XRD)
2.8. In Vitro Antibacterial Performance
2.9. Cytotoxicity Studies
2.10. Skin Irritation Studies
2.11. In Vivo Antibacterial Studies
3. Materials and Methods
3.1. Materials
3.2. Preparation of Microspheres
3.3. Evaluation of Silica Microspheres
3.3.1. Gelation time (GT) Measurement
3.3.2. In Vitro Release Studies for NFZ–LD-loaded Microspheres
3.3.3. PY of NFZ–LD-loaded Microspheres
3.3.4. Fourier Transforms Infrared Spectroscopy (FTIR)
3.3.5. Thermal Analysis
3.3.6. X-ray Diffraction Analysis (XRD)
3.3.7. Scanning Electron Microscope (SEM) Analysis of DLMs
3.3.8. Zeta Potential and Size Distribution Analysis for DLMs
3.4. In Vitro Antibacterial Performance by Diffusion Test
3.5. Cytotoxicity Studies
3.6. Skin Irritation Testing
3.7. In Vivo Antibacterial Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Radin, S.; Chen, T.; Ducheyne, P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials 2009, 30, 850–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortesuo, P.; Ahola, M.; Kangas, M.; Leino, T.; Laakso, S.; Vuorilehto, L.; Yli-Urpo, A.; Kiesvaara, J.; Marvola, M. Alkyl-substituted silica gel as a carrier in the controlled release of dexmedetomidine. J. Control. Release 2001, 76, 227–238. [Google Scholar] [CrossRef]
- Perumal, S.; kumar Ramadass, S.; Madhan, B. Sol–gel processed mupirocin silica microspheres loaded collagen scaffold: A synergistic bio-composite for wound healing. Eur. J. Pharm. Sci. 2014, 52, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.A.; Padavettan, V. Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—A review. J. Nanomater. 2012, 2012, 8. [Google Scholar] [CrossRef] [Green Version]
- Boateng, J.S.; Matthews, K.H.; Stevens, H.N.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008, 97, 2892–2923. [Google Scholar] [CrossRef]
- Parhi, R.; Suresh, P.; Mondal, S.; Mahesh Kumar, P. Novel penetration enhancers for skin applications: A review. Curr. Drug Deliv. 2012, 9, 219–230. [Google Scholar] [CrossRef]
- Pereira, R.; Silva, S.G.; Pinheiro, M.; Reis, S.; Vale, M.L.d. Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes 2021, 11, 343. [Google Scholar] [CrossRef]
- Sidat, Z.; Marimuthu, T.; Kumar, P.; du Toit, L.C.; Kondiah, P.P.; Choonara, Y.E.; Pillay, V. Ionic liquids as potential and synergistic permeation enhancers for transdermal drug delivery. Pharmaceutics 2019, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Zhang, H.; Yang, S.; Xi, Z.; Tang, T.; Yin, R.; Zhang, W. Electrospun PLGA membrane incorporated with andrographolide-loaded mesoporous silica nanoparticles for sustained antibacterial wound dressing. Nanomedicine 2018, 13, 2881–2899. [Google Scholar] [CrossRef]
- Park, J.-U.; Jeong, S.-H.; Song, E.-H.; Song, J.; Kim, H.-E.; Kim, S. Acceleration of the healing process of full-thickness wounds using hydrophilic chitosan–silica hybrid sponge in a porcine model. J. Biomater. Appl. 2018, 32, 1011–1023. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, Y.; Tang, T.; Wang, F.; Li, T.; Lu, Q. Preparation of high-purity monodisperse silica microspheres by the sol–gel method coupled with polymerization-induced colloid aggregation. Particuology 2015, 22, 177–184. [Google Scholar] [CrossRef]
- Radin, S.; El-Bassyouni, G.; Vresilovic, E.J.; Schepers, E.; Ducheyne, P. In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials 2005, 26, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Omer, L.S.; Ali, R.J. Extraction-spectrophotometric determination of lidocaine hydrochloride in pharmaceuticals. Int. J. Chem. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, R. Chemotherapeutic properties of prominent nitrofurans. J. Antimicrob. Chemother. 1976, 2, 325–336. [Google Scholar] [CrossRef]
- Wang, S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009, 117, 1–9. [Google Scholar] [CrossRef]
- Qiu, K.; Chen, B.; Nie, W.; Zhou, X.; Feng, W.; Wang, W.; Chen, L.; Mo, X.; Wei, Y.; He, C. Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly (L-lactic acid)/poly (ε-caprolactone) composite scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 4137–4148. [Google Scholar] [CrossRef]
- Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438–448. [Google Scholar] [CrossRef]
- Gaur, P.K.; Mishra, S.; Kumar, A.; Panda, B.P. Development and optimization of gastroretentive mucoadhesive microspheres of gabapentin by Box–Behnken design. Artif. Cells Nanomed. Biotechnol. 2014, 42, 167–177. [Google Scholar] [CrossRef]
- Shaalan, R.A.; Belal, T.S. HPLC-DAD stability indicating determination of nitrofurazone and lidocaine hydrochloride in their combined topical dosage form. J. Chromatogr. Sci. 2010, 48, 647–653. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar]
- Barakat, N.S.; Yassin, A.E.B. In vitro characterization of carbamazepine-loaded precifac lipospheres. Drug Deliv. 2006, 13, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Jelvehgari, M.; Atapour, F.; Nokhodchi, A. Micromeritics and release behaviours of cellulose acetate butyrate microspheres containing theophylline prepared by emulsion solvent evaporation and emulsion non-solvent addition method. Arch. Pharmacal Res. 2009, 32, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, R.; Amiji, M. Stomach-specific anti-H. pylori therapy. I: Preparation and characterization of tetracyline-loaded chitosan microspheres. Int. J. Pharm. 2002, 235, 87–94. [Google Scholar] [CrossRef]
- Mu, L.; Feng, S. Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Release 2001, 76, 239–254. [Google Scholar] [CrossRef]
- Karunanidhi, A.; Ghaznavi-Rad, E.; Jeevajothi Nathan, J.; Abba, Y.; Belkum, A.v.; Neela, V. Allium stipitatum extract exhibits in vivo antibacterial activity against methicillin-resistant Staphylococcus aureus and accelerates burn wound healing in a full-thickness murine burn model. Evid.-Based Complement. Altern. Med. 2017, 2017, 1914732. [Google Scholar] [CrossRef] [Green Version]
- Shariati, A.; Moradabadi, A.; Azimi, T.; Ghaznavi-Rad, E. Wound healing properties and antimicrobial activity of platelet-derived biomaterials. Sci. Rep. 2020, 10, 1032. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, K.G.; Yılmaz, H.; Yılmaz, S. In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 90, 82–86. [Google Scholar] [CrossRef]
- Draize, J.H. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 1944, 82, 377–390. [Google Scholar]
- Wang, L.-Y.; Tsai, P.-S.; Yang, Y.-M. Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion. J. Microencapsul. 2006, 23, 3–14. [Google Scholar] [CrossRef]
- Kortesuo, P.; Ahola, M.; Kangas, M.; Jokinen, M.; Leino, T.; Vuorilehto, L.; Laakso, S.; Kiesvaara, J.; Yli-Urpo, A.; Marvola, M. Effect of synthesis parameters of the sol–gel-processed spray-dried silica gel microparticles on the release rate of dexmedetomidine. Biomaterials 2002, 23, 2795–2801. [Google Scholar] [CrossRef]
- Higuchi, T. Mechanism of sustained.action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Rosemary, M.; MacLaren, I.; Pradeep, T. Investigations of the antibacterial properties of ciprofloxacin@ SiO2. Langmuir 2006, 22, 10125–10129. [Google Scholar] [CrossRef] [PubMed]
- Gouda, R.; Baishya, H.; Qing, Z. Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J. Dev. Drugs 2017, 6, 1–8. [Google Scholar]
- Matlhola, K.; Katata-Seru, L.; Tshweu, L.; Bahadur, I.; Makgatho, G.; Balogun, M. Formulation and optimization of Eudragit RS PO-tenofovir nanocarriers using Box-Behnken experimental design. J. Nanomater. 2015, 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Liu, Y. Antibacterial applications and safety issues of silica-based materials: A review. Int. J. Appl. Ceram. Technol. 2021, 18, 289–301. [Google Scholar] [CrossRef]
- Şen Karaman, D.; Manner, S.; Rosenholm, J.M. Mesoporous silica nanoparticles as diagnostic and therapeutic tools: How can they combat bacterial infection? Ther. Deliv. 2018, 9, 241–244. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Nedley, M.P.; Bhaduri, S.B.; Bredzinski, X.; Boddu, S.H. Masking the bitter taste of injectable lidocaine HCl formulation for dental procedures. AAPS Pharmscitech 2015, 16, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Peng, L.; Huang, Z.; Mei, S. Well-dispersed hollow silica microspheres synthesis with silica sol as precursor by template method. J. Mol. Struct. 2014, 1059, 15–19. [Google Scholar] [CrossRef]
- Yilmaz, E.; Bengisu, M. Drug entrapment in silica microspheres through a single step sol–gel process and in vitro release behavior. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77, 149–155. [Google Scholar] [CrossRef]
- Ahmed, A.; Clowes, R.; Willneff, E.; Ritchie, H.; Myers, P.; Zhang, H. Synthesis of uniform porous silica microspheres with hydrophilic polymer as stabilizing agent. Ind. Eng. Chem. Res. 2010, 49, 602–608. [Google Scholar] [CrossRef]
- Mogoşanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 2014, 463, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.-J.; Li, C.-W.; Weihs, D.; Wang, G.-J. Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities. Sci. Technol. Adv. Mater. 2017, 18, 987–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, A.; Choubey, A.; Bajpai, A. Biosorption of chromium ions by calcium alginate nanoparticles. J. Chil. Chem. Soc. 2018, 63, 4077–4081. [Google Scholar] [CrossRef] [Green Version]
Independent Variable | GT (Y1) | PY (Y2) | NFZ Release (Y3) | LD Release (Y4) | ||||
---|---|---|---|---|---|---|---|---|
Source | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value |
Model | 15,569.36 | <0.0001 | 105.38 | <0.0001 | 215.24 | <0.0001 | 6.42 | 0.0114 |
X1 | 1.36 × 105 | <0.0001 | 0.8872 | 0.3776 | 1813.57 | <0.0001 | 31.49 | 0.0008 |
X2 | 0.6027 | 0.463 | 185.12 | <0.0001 | 1.27 | 0.2965 | 2.69 | 0.1451 |
X3 | 86.79 | <0.0001 | 525.92 | <0.0001 | 0.0019 | 0.9662 | 0.2045 | 0.6648 |
X1X2 | 60.3 | 0.0001 | 1.08 | 0.3323 | 1.66 | 0.2388 | 6.43 | 0.0389 |
X1X3 | 5.43 | 0.0526 | 0 | 0.9964 | 10.97 | 0.0129 | 0.0245 | 0.88 |
X2X3 | 15.37 | 0.0057 | 3.71 | 0.0955 | 0.0402 | 0.8468 | 0.0222 | 0.8857 |
X12 | 14.9 | 0.0062 | 3.08 | 0.1226 | 27.46 | 0.0012 | 6.02 | 0.0439 |
X2² | 1.09 | 0.3314 | 21.65 | 0.0023 | 19.16 | 0.0032 | 4.57 | 0.07 |
X3² | 5.79 | 0.047 | 7.76 | 0.0271 | 0.9374 | 0.3652 | 0.41 | 0.5424 |
Composition of Optimized DLMs | DLMs Responses | Exp. Value | Predicted Value | PE | DF | Size (µm) | ZP (mv) | |
---|---|---|---|---|---|---|---|---|
pH | 6.9 | GT | 92.5 | 95 | 2.88 | 0.921 | 50 ± 4.65 | −28 ± 3.32 |
Stirring time (min) | 150 | PY | 88.5 | 91.00 | 4.04 | 0.947 | - | - |
Vegetable Oil concentration (mL) | 100 | NFZ release | 31.5 | 28.00 | 4.46 | 0.892 | - | - |
LD release | 30.6 | 25.00 | 4.46 | 0.887 | - | - |
Formulation/Treatment | Size of Inhibition Zone (mm) | |||
---|---|---|---|---|
3rd Day | 5th Day | 7th Day | 14th Day | |
NFZ- and LD-loaded DLMs | 18.2 | 18.41 | 18.9 | 19.2 |
Pure NFZ and LD suspension. | 17.1 | 17.4 | 17.8 | 18.00 |
Sr. No. | Treated Group with Formulation | Average Erythema Scores | In Vivo Antibacterial Performance | |||
---|---|---|---|---|---|---|
1st Day | 7th Day | 14th Day | Rabbits Having Positive Test/Total No of Rabbits | Infected Sites/Log CFU | ||
1 | Group I (Control Group) | 0 | 0 | 0 | 6/6 | 6.73 ± 1.67 |
2 | Group II (NFZ/LD suspension) | 1 | 2 | 4 | 3/6 | 3.61 ± 1.21 |
3 | Group III (NFZ–LD-loaded Microspheres) | 0 | 1 | 0 | 0/6 | 0 |
Formulation (Coded Levels of Ingredients) | Actual Values of Formulation Ingredients | Results of Responses | |||||
---|---|---|---|---|---|---|---|
X1 pH | X2 Stirring Time (Hours) | X3 Volume of Oil (mL) | GT (min) | PY (%) | NFZ Release (%) | LD Release (%) | |
F1 (+1, 0, −1) | 8.4 | 02 | 50 | 147 ± 1.23 | 49 ± 2.32 | 42 ± 2.54 | 43 ± 2.71 |
F2 (−1, 0, 0) | 5.8 | 02 | 50 | 09 ± 2.11 | 48 ± 3.27 | 31 ± 2.37 | 33 ± 1.83 |
F3 (0, 0, 0) | 7.2 | 02 | 75 | 76 ± 2.75 | 58 ± 1.89 | 35 ± 2.85 | 37 ± 3.54 |
F4 (0, −1, +1) | 7.2 | 01 | 100 | 72 ± 3.12 | 62 ± 2.67 | 36 ± 3.29 | 38 ± 3.44 |
F5 (0, +1, −1) | 7.2 | 03 | 50 | 77 ± 2.54 | 48 ± 2.54 | 37 ± 1.92 | 38 ± 2.56 |
F6 (−1, 0, 0) | 5.8 | 02 | 75 | 07 ± 1.25 | 61 ± 3.71 | 31 ± 3.41 | 33 ± 2.37 |
F7 (0, 0, 0) | 7.2 | 02 | 75 | 76 ± 3.87 | 58 ± 3.39 | 35 ± 3.73 | 37 ± 1.84 |
F8 (0, 0, 0) | 7.2 | 02 | 75 | 76 ± 3.98 | 58 ± 3.83 | 35 ± 2.61 | 37 ± 3.52 |
F9 (+1, −1, 0) | 8.4 | 01 | 75 | 149 ± 2.07 | 49 ± 2.59 | 43 ± 2.87 | 45 ± 3.42 |
F10 (0, 0, 0) | 7.2 | 02 | 75 | 76 ± 2.92 | 58 ± 1.97 | 35 ± 3.14 | 37 ± 2.31 |
F11 (−1, −1, 0) | 5.8 | 01 | 75 | 06 ± 1.03 | 44 ± 3.26 | 31 ± 1.72 | 32 ± 2.36 |
F12 (+1, 0, +1) | 8.4 | 02 | 100 | 145 ± 3.41 | 76 ± 2.23 | 48 ± 1.77 | 45 ± 3.57 |
F13 (0, +1, +1) | 7.2 | 03 | 100 | 75 ± 2.34 | 84 ± 3.39 | 36 ± 2.82 | 38 ± 3.69 |
F14 (−1, +1, +1) | 5.8 | 03 | 100 | 08 ± 2.32 | 82 ± 4.17 | 30 ± 3.81 | 33 ± 2.81 |
F15 (0, −1, −1) | 7.2 | 01 | 50 | 78 ± 3.52 | 34 ± 3.81 | 37 ± 2.89 | 38 ± 2.56 |
F16 (0, 0, 0) | 7.2 | 02 | 75 | 76 ± 4.18 | 58 ± 2.96 | 35 ± 3.15 | 37 ± 1.83 |
F17 (+1, +1, 0) | 8.4 | 03 | 75 | 144 ± 3.47 | 64 ± 3.62 | 44 ± 2.29 | 45 ± 2.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, H.U.; Nasir, F.; Maheen, S.; Shafqat, S.S.; Shah, S.; Khames, A.; Ghoneim, M.M.; Abbas, G.; Shabbir, S.; Abdelgawad, M.A.; et al. Antibacterial and Wound-Healing Activities of Statistically Optimized Nitrofurazone- and Lidocaine-Loaded Silica Microspheres by the Box–Behnken Design. Molecules 2022, 27, 2532. https://doi.org/10.3390/molecules27082532
Khan HU, Nasir F, Maheen S, Shafqat SS, Shah S, Khames A, Ghoneim MM, Abbas G, Shabbir S, Abdelgawad MA, et al. Antibacterial and Wound-Healing Activities of Statistically Optimized Nitrofurazone- and Lidocaine-Loaded Silica Microspheres by the Box–Behnken Design. Molecules. 2022; 27(8):2532. https://doi.org/10.3390/molecules27082532
Chicago/Turabian StyleKhan, Hafeez Ullah, Fahmeed Nasir, Safirah Maheen, Syed Salman Shafqat, Shahid Shah, Ahmed Khames, Mohammed M. Ghoneim, Ghulam Abbas, Saleha Shabbir, Mohamed A. Abdelgawad, and et al. 2022. "Antibacterial and Wound-Healing Activities of Statistically Optimized Nitrofurazone- and Lidocaine-Loaded Silica Microspheres by the Box–Behnken Design" Molecules 27, no. 8: 2532. https://doi.org/10.3390/molecules27082532
APA StyleKhan, H. U., Nasir, F., Maheen, S., Shafqat, S. S., Shah, S., Khames, A., Ghoneim, M. M., Abbas, G., Shabbir, S., Abdelgawad, M. A., Abourehab, M. A. S., Irfan, A., & El Sisi, A. M. (2022). Antibacterial and Wound-Healing Activities of Statistically Optimized Nitrofurazone- and Lidocaine-Loaded Silica Microspheres by the Box–Behnken Design. Molecules, 27(8), 2532. https://doi.org/10.3390/molecules27082532