Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica–Alumina Catalysts for Esterification
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Materials
2.2. Esterification Behaviour of SixAly Catalysts
3. Experimental: Materials and Methods
3.1. Preparation of the Catalysts
3.2. Characterization of the Catalysts
3.3. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Čebular, K.; Božić, B.Đ.; Stavber, S. Esterification of Aryl/Alkyl Acids Catalysed by N-bromosuccinimide under Mild Reaction Conditions. Molecules 2018, 23, 2235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo, A.; Lopez, L.; de la Cruz, F.; Castañeda-Facio, A.; Rámirez-Mendoza, L.; Córdova-Cisneros, K.; de Loera, D. Applications of Carboxylic Acids in Organic Synthesis, Nanotechnology and Polymers. In Carboxylic Acid—Key Role in Life Sciences; IntechOpen Limited: London, UK, 2018; pp. 35–50. [Google Scholar]
- Jermy, B.R.; Pandurangan, A. A highly efficient catalyst for the esterification of acetic acid using n-butyl alcohol. J. Mol. Catal. A Chem. 2005, 237, 146–154. [Google Scholar] [CrossRef]
- Cheng, F.; Tompsett, G.A. Synergistic Effects of Inexpensive Mixed Metal Oxides for Catalytic Hydrothermal Liquefaction of Food Wastes. ACS Sustain. Chem. Eng. 2020, 8, 6877–6886. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Crossing the Borders Between Homogeneous and Heterogeneous Catalysis: Developing Recoverable and Reusable Catalytic Systems. Top. Catal. 2008, 48, 8–31. [Google Scholar] [CrossRef]
- Kiss, A.A.; Dimian, A.C.; Rothenberg, G. Solid Acid Catalysts for Biodiesel Production –-Towards Sustainable Energy. Adv. Synth. Catal. 2006, 348, 75–81. [Google Scholar] [CrossRef]
- Kirumakki, S.; Nagaraju, N.; Chary, K. Esterification of alcohols with acetic acid over zeolites Hβ, HY and HZSM5. Appl. Catal. A Gen. 2006, 299, 185–192. [Google Scholar] [CrossRef]
- Debecker, D.P.; Hulea, V.; Mutin, P.H. Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: A review. Appl. Catal. A 2013, 451, 192–206. [Google Scholar] [CrossRef]
- Liu, Y.; Lotero, E.; Goodwin, J.G. A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis. J. Catal. 2006, 242, 278–286. [Google Scholar] [CrossRef]
- Sempels, R.E.; Rouxhet, P.G. Infrared study of the adsorption of benzene and acetonitrile on silica-alumina gels: Acidity properties and surface heterogeneity. J. Colloid Interface Sci. 1976, 55, 263–273. [Google Scholar] [CrossRef]
- Chizallet, C.; Raybaud, P. Acidity of Amorphous Silica-Alumina: From Coordination Promotion of Lewis Sites to Proton Transfer. ChemPhysChem 2010, 11, 105–108. [Google Scholar] [CrossRef]
- Williams, M.F.; Fonfé, B.; Sievers, C.; Abraham, A.; van Bokhoven, J.A.; Jentys, A.; van Veen, J.A.R.; Lercher, J.A. Hydrogenation of tetralin on silica–alumina-supported Pt catalysts I. Physicochemical characterization of the catalytic materials. J. Catal. 2007, 251, 485–496. [Google Scholar] [CrossRef]
- Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic–inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696–753. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S. “Traditional” Sol-Gel Chemistry as a Powerful Tool for the Preparation of Supported Metal and Metal Oxide Catalysts. Materials 2019, 12, 668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vioux, A. Nonhydrolytic sol-gel routes to oxides. Chem. Mat. 1997, 9, 2292–2299. [Google Scholar] [CrossRef]
- Debecker, D.P. Innovative Sol-Gel Routes for the Bottom-Up Preparation of Heterogeneous Catalysts. Chem. Rec. 2018, 18, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Al Khudhair, A.; Bouchmella, K.; Andrei, R.D.; Mehdi, A.; Mutin, P.H.; Hulea, V. One-step non-hydrolytic sol-gel synthesis of mesoporous SiO2-Al2O3-NiO catalysts for ethylene oligomerization. Microporous Mesoporous Mater. 2021, 322, 111165–111173. [Google Scholar] [CrossRef]
- Agliullin, M.R.; Danilova, I.G.; Faizullin, A.V.; Amarantov, S.V.; Bubennov, S.V.; Prosochkina, T.R.; Grigor’eva, N.G.; Paukshtis, E.A.; Kutepov, B.I. Sol-gel synthesis of mesoporous aluminosilicates with a narrow pore size distribution and catalytic activity thereof in the oligomerization of dec-1-ene. Microporous Mesoporous Mater. 2016, 230, 118–127. [Google Scholar] [CrossRef]
- May, M.; Asomoza, M.; Lopez, T.; Gomez, R. Precursor Aluminum Effect in the Synthesis of Sol−Gel Si−Al Catalysts: FTIR and NMR Characterization. Chem. Mat. 1997, 9, 2395–2399. [Google Scholar] [CrossRef]
- Hu, W.; Luo, Q.; Su, Y.; Chen, L.; Yue, Y.; Ye, C.; Deng, F. Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy. Microporous Mesoporous Mater. 2006, 92, 22–30. [Google Scholar] [CrossRef]
- Yabuki, M.; Takahashi, R.; Sato, S.; Sodesawa, T.; Ogura, K. Silica–alumina catalysts prepared in sol–gel process of TEOS with organic additives. Phys. Chem. Chem. Phys. 2002, 4, 4830–4837. [Google Scholar] [CrossRef]
- Zhao, X.S.; Lu, G.Q.; Whittaker, A.K.; Millar, G.J.; Zhu, H.Y. Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA. J. Phys. Chem. B 1997, 101, 6525–6531. [Google Scholar] [CrossRef]
- Engelhardt, G. Multinuclear solid-state NMR in silicate and zeolite chemistry. TrAC, Trends Anal. Chem. 1989, 8, 343–347. [Google Scholar] [CrossRef]
- Lippmaa, E.; Samoson, A.; Magi, M. High-resolution aluminum-27 NMR of aluminosilicates. J. Am. Chem. Soc. 1986, 108, 1730–1735. [Google Scholar] [CrossRef]
- Lin, C.; Ritter, J.A.; Amiridis, M.D. Effect of thermal treatment on the nanostructure of SiO2-Al2O3 xerogels. J. Non-Cryst. Solids 1997, 215, 146–154. [Google Scholar] [CrossRef]
- Katada, N.; Igi, H.; Kim, J.-H. Determination of the Acidic Properties of Zeolite by Theoretical Analysis of Temperature-Programmed Desorption of Ammonia Based on Adsorption Equilibrium. J. Phys. Chem. B 1997, 101, 5969–5977. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Baiker, A.; Huang, J. Pentacoordinated Aluminum Species: New Frontier for Tailoring Acidity-Enhanced Silica–Alumina Catalysts. Acc. Chem. Res. 2020, 53, 2648–2658. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Liu, B.; Zhang, Y. Effect of Si/Al ratio of high-silica HZSM-5 catalysts on the prins condensation of isobutylene and formaldehyde to isoprene. Heliyon 2019, 5, e01640. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhang, L.; Cheng, Z. Design of Water-Tolerant Solid Acids: A Trade-Off Between Hydrophobicity and Acid Strength and their Catalytic Performance in Esterification. Catal. Surv. Asia 2021, 25, 279–300. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, W.E. Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings. J. Eur. Ceram. Soc. 2003, 23, 1215–1221. [Google Scholar] [CrossRef]
- Saha, S. Preparation of alumina by sol-gel process, its structures and properties. J. Sol-Gel Sci. 1994, 3, 117–126. [Google Scholar] [CrossRef]
Samples | Expected and (Experimental) Compositions | Sol-Gel Route | ||
---|---|---|---|---|
SiO2 | Al2O3 | Si/Al 1 | ||
Si100Al0 | 100 (99.6) | 0.0 (0.1) 2 | ∞ (250) | acidic HSG |
Si100Al0 | 100 (99.3) | 0.0 (0.1) 2 | ∞ (330) | basic HSG |
Si100Al0 | 100 (99.8) | 0.0 (0.2) 3 | ∞ (500) | NHSG |
Si75Al25 | 74.7 (74.9) | 25.3 (25.1) | 2.9 (3.0) | acidic HSG |
Si75Al25 | 74.6 (82.2) | 25.4 (17.8) | 2.9 (2.9) | basic HSG |
Si75Al25 | 71.8 (69.5) | 28.2 (30.5) | 2.5 (2.5) | NHSG |
Si50Al50 | 50.6 (47.5) | 49.4 (52.5) | 1.0 (0.9) | acidic HSG |
Si50Al50 | 49.4 (53.4) | 50.6 (46.6) | 1.0 (1.1) | basic HSG |
Si50Al50 | 51.4 (44.4) | 48.6 (55.6) | 1.0 (0.8) | NHSG |
Si25Al75 | 24.7 (28.8) | 75.3 (71.2) | 0.3 (0.4) | acidic HSG |
Si25Al75 | 24.6 (29.1) | 75.4 (70.9) | 0.3 (0.4) | basic HSG |
Si25Al75 | 22.1 (24.1) | 77.9 (75.9) | 0.3 (0.3) | NHSG |
Si0Al100 | 0.0 (0.1) 2 | 100 (99.7) | 0.0 (0.0) | acidic HSG |
Si0Al100 | 0.0 (0.1) 2 | 100 (99.7) | 0.0 (0.0) | basic HSG |
Si0Al100 | 0.0 (0.1) 2 | 100 (99.9) | 0.0 (0.0) | NHSG |
Sample | SBET (m2/g) | Vp (cm3/g) | Dp (nm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Acidic HSG | Basic HSG | NHSG | Acidic HSG | Basic HSG | NHSG | Acidic HSG | BASIC HSG | NHSG | |
Si100Al0 | 377 | 477 | 595 | 0.2 | 1.0 | 1.9 | 1.9 | 8.7 | 13.8 |
Si75Al25 | 237 | 547 | 335 | 0.1 | 1.1 | 0.6 | 1.8 | 8.0 | 6.8 |
Si50Al50 | 311 | 448 | 312 | 0.4 | 1.2 | 0.6 | 5.4 | 11 | 8.4 |
Si25Al75 | 513 | 482 | 200 | 1.4 | 0.9 | 0.3 | 11 | 7.7 | 6.8 |
Si0Al100 | 375 | 340 | 197 | 0.4 | 0.4 | 0.2 | 4.8 | 4.0 | 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Khudhair, A.; Bouchmella, K.; Mutin, P.H.; Hulea, V.; Gimello, O.; Mehdi, A. Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica–Alumina Catalysts for Esterification. Molecules 2022, 27, 2534. https://doi.org/10.3390/molecules27082534
Al Khudhair A, Bouchmella K, Mutin PH, Hulea V, Gimello O, Mehdi A. Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica–Alumina Catalysts for Esterification. Molecules. 2022; 27(8):2534. https://doi.org/10.3390/molecules27082534
Chicago/Turabian StyleAl Khudhair, Atheer, Karim Bouchmella, Pierre Hubert Mutin, Vasile Hulea, Olinda Gimello, and Ahmad Mehdi. 2022. "Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica–Alumina Catalysts for Esterification" Molecules 27, no. 8: 2534. https://doi.org/10.3390/molecules27082534
APA StyleAl Khudhair, A., Bouchmella, K., Mutin, P. H., Hulea, V., Gimello, O., & Mehdi, A. (2022). Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica–Alumina Catalysts for Esterification. Molecules, 27(8), 2534. https://doi.org/10.3390/molecules27082534