Studying the Suitability of Nineteen Lignins as Partial Polyol Replacement in Rigid Polyurethane/Polyisocyanurate Foam
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lignin Characterization
2.2. Foam Characterization
3. Materials and Methods
3.1. Materials
3.2. Lignin Characterization Methods
3.2.1. Ash Content
3.2.2. Impurity Analysis
3.2.3. pH Measurements
3.2.4. Hydroxyl Content
3.3. Foam Preparation Methods
3.4. Foam Characterization Methods
3.4.1. Foam Lightness
3.4.2. Apparent Density
3.4.3. Compression Strength
3.4.4. Cell Size
3.4.5. Closed-Cell Content
3.4.6. Thermal Conductivity
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Randall, D.; Lee, S. The Polyurethanes Book; Huntsman Polyurethanes: Everberg, Belgium, 2002; pp. 1–285. [Google Scholar]
- Ashida, K. Polyurethane and Related Foams: Chemistry and Technology; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–13. [Google Scholar]
- Oertel, G. Polyurethane Handbook: Chemistry-Raw Materials-Processing-Application-Properties; Carl Hanser Verlag: New York, NC, USA, 1985; pp. 1–95. [Google Scholar]
- Furtwengler, P.; Matadi Boumbimba, R.; Sarbu, A.; Avérous, L.; Boumbimba, R.M. Novel Rigid Polyisocyanurate Foams from Synthesized Biobased Polyester Polyol with Enhanced Properties. ACS Sustain. Chem. Eng. 2018, 6, 6577–6589. [Google Scholar] [CrossRef]
- Arbenz, A.; Frache, A.; Cuttica, F.; Avérous, L. Advanced biobased and rigid foams, based on urethane-modified isocyanurate from oxypropylated gambier tannin polyol. Polym. Degrad. Stab. 2016, 132, 62–68. [Google Scholar] [CrossRef]
- Klempner, D.; Sendijarevic, V. Handbook of Polymeric Foams and Foam Technology; Hanser: Cincinnati, OH, USA, 1991; pp. 141–181. [Google Scholar]
- Woods, G. The ICI Polyurethanes Book, 2nd ed.; Published Jointly by ICI Polyurethanes and Wiley: Chichester, NY, USA, 1990; pp. 127–185. [Google Scholar]
- Zhang, W.; Zhang, Y.; Liang, H.; Liang, D.; Cao, H.; Liu, C.; Qian, Y.; Lu, Q.; Zhang, C. High bio-content castor oil based waterborne polyurethane/sodium lignosulfonate composites for environmental friendly UV absorption application. Ind. Crop. Prod. 2019, 142, 111836. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, B.; Zhu, Y.; Wang, Z. Preparation and Characterization of Rigid Polyurethane Foams with Different Loadings of Lignin-Derived Polycarboxylic Acids. Int. J. Polym. Sci. 2019, 2019, 3710545. [Google Scholar] [CrossRef]
- Roziafanto, A.N.; Dwijaya, M.S.; Yunita, R.; Amrullah, M.; Chalid, M. Synthesis hybrid bio-polyurethane foam from biomass material. In Proceedings of the AIP Conference Proceedings, Tangerang, Indonesia, 1–4 October 2019; Volume 2175. [Google Scholar]
- Liszkowska, J.; Borowicz, M.; Paciorek-Sadowska, J.; Isbrandt, M.; Czupryński, B.; Moraczewski, K. Assessment of Photodegradation and Biodegradation of RPU/PIR Foams Modified by Natural Compounds of Plant Origin. Polymers 2019, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, M.; Gupta, M.; Singh, B.; Singh, A.K.; Gupta, V.K. Effect of functionalized lignin on the properties of lignin-isocyanate prepolymer blends and composites. Eur. Polym. J. 2014, 52, 32–43. [Google Scholar] [CrossRef]
- Xue, B.-L.; Huang, P.-L.; Sun, Y.-C.; Li, X.-P.; Sun, R.-C. Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis. RSC Adv. 2017, 7, 6123–6130. [Google Scholar] [CrossRef] [Green Version]
- Gosselink, R.J.A.; de Jong, E.; Guran, B.; Abächerli, A. Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind. Crop. Prod. 2004, 20, 121–129. [Google Scholar] [CrossRef]
- Hu, L.; Pan, H.; Zhou, Y.; Zhang, M. Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources 2011, 6, 3515–3525. [Google Scholar] [CrossRef]
- Bajwa, D.S.S.; Pourhashem, G.; Ullah, A.H.H.; Bajwa, S.G.G. A concise review of current lignin production, applications, products and their environment impact. Ind. Crop. Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Desai, M.; Harvey, R.P. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015. Fed. Regist. 2017, 82, 10767. [Google Scholar]
- Holladay, J.E.; White, J.F.; Bozell, J.J.; Johnson, D. Top Value-Added Chemicals from Biomass—Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin; Pacific Northwest National Laboratory: Richland, WA, USA, 2007; Volume 7. [Google Scholar]
- Pan, X.; Kadla, J.F.; Ehara, K.; Gilkes, N.; Saddler, J.N. Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger: Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. J. Agric. Food Chem. 2006, 54, 5806–5813. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Dong, M.; Lu, Y.; Turley, A.; Jin, T.; Wu, C. Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind. Crop. Prod. 2011, 34, 1629–1634. [Google Scholar] [CrossRef]
- Gao, L.; Zheng, G.; Zhou, Y.; Hu, L.; Feng, G. Improved mechanical property, thermal performance, flame retardancy and fire behavior of lignin-based rigid polyurethane foam nanocomposite. J. Therm. Anal. Calorim. 2015, 120, 1311–1325. [Google Scholar] [CrossRef]
- Luo, X.; Xiao, Y.; Wu, Q.; Zeng, J. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols. Int. J. Biol. Macromol. 2018, 115, 786–791. [Google Scholar] [CrossRef]
- Xue, B.-L.; Wen, J.-L.; Sun, R.-C. Lignin-Based Rigid Polyurethane Foam Reinforced with Pulp Fiber: Synthesis and Characterization. ACS Sustain. Chem. Eng. 2014, 2, 1474–1480. [Google Scholar] [CrossRef]
- Liu, Z.-M.M.; Yu, F.; Fang, G.-Z.Z.; Yang, H.-J.J.; Fei, Y.U.; Fang, G.-Z.Z.; Yang, H.-J.J.; Yu, F.; Fang, G.-Z.Z.; Yang, H.-J.J. Performance characterization of rigid polyurethane foam with refined alkali lignin and modified alkali lignin. J. For. Res. 2009, 20, 161–164. [Google Scholar] [CrossRef]
- Pan, X.; Saddler, J.N. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol. Biofuels 2013, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Gao, L.; Guo, W. Effect of incorporation of lignin as bio-polyol on the performance of rigid lightweight wood–polyurethane composite foams. J. Wood Sci. 2020, 66, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Paberza, A.; Cabulis, U.; Arshanitsa, A. Wheat straw lignin as filler for rigid polyurethane foams on the basis of tall oil amide. Polimery 2014, 59, 477–481. [Google Scholar] [CrossRef]
- Hejna, A.; Kirpluks, M.; Kosmela, P.; Cabulis, U.; Haponiuk, J.; Piszczyk, Ł. The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind. Crop. Prod. 2017, 95, 113–125. [Google Scholar] [CrossRef]
- Doherty, W.O.S.; Mousavioun, P.; Fellows, C.M. Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crop. Prod. 2011, 33, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. (Charles) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review. Renew. Sustain. Energy Rev. 2016, 60, 317–329. [Google Scholar] [CrossRef]
- Alinejad, M.; Henry, C.; Nikafshar, S.; Gondaliya, A.; Bagheri, S.; Chen, N.; Singh, S.; Hodge, D.; Nejad, M. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers 2019, 11, 1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, R.R.; Mondy, L.A.; Long, K.N.; Celina, M.C.; Wyatt, N.; Roberts, C.C.; Soehnel, M.M.; Brunini, V.E. The kinetics of polyurethane structural foam formation: Foaming and polymerization. AIChE J. 2017, 63, 2945–2957. [Google Scholar] [CrossRef]
- Maillard, D.; Osso, E.; Faye, A.; Li, H.; Ton-That, M.; Stoeffler, K. Influence of lignin’s pH on polyurethane flexible foam formation and how to control it. J. Appl. Polym. Sci. 2021, 138, 50319. [Google Scholar] [CrossRef]
- ASTM-D4274; Standard Test Method for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols (D4274). ASTM International: West Conshohocken, PA, USA, 2005; Volume 9, pp. 1–43. [CrossRef]
- ASTM-D7487; Standard Practice for Polyurethane Raw Materials: Polyurethane Foam Cup Test 1. ASTM International: West Conshohocken, PA, USA, 2014; Volume 9, pp. 1–5. [CrossRef]
- Zieglowski, M.; Trosien, S.; Rohrer, J.; Mehlhase, S.; Weber, S.; Bartels, K.; Siegert, G.; Trellenkamp, T.; Albe, K.; Biesalski, M. Reactivity of Isocyanate-Functionalized Lignins: A Key Factor for the Preparation of Lignin-Based Polyurethanes. Front. Chem. 2019, 7, 562. [Google Scholar] [CrossRef] [Green Version]
- Antonino, L.D.; Gouveia, J.R.; de Sousa Júnior, R.R.; Garcia, G.E.S.; Gobbo, L.C.; Tavares, L.B.; dos Santos, D.J. Reactivity of Aliphatic and Phenolic Hydroxyl Groups in Kraft Lignin towards 4,4′ MDI. Molecules 2021, 26, 2131. [Google Scholar] [CrossRef]
- Zhang, C.; Kessler, M.R. Bio-based Polyurethane Foam Made from Compatible Blends of Vegetable-Oil-based Polyol and Petroleum-based Polyol. ACS Sustain. Chem. Eng. 2015, 3, 743–749. [Google Scholar] [CrossRef]
- Galkin, M.V.; Samec, J.S.M. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem 2016, 9, 1544–1558. [Google Scholar] [CrossRef]
- ASTM D3576-20; Standard Test Method for Cell Size of Rigid Cellular Plastics 1. ASTM International: West Conshohocken, PA, USA, 1999; Volume 8, pp. 1–5. [CrossRef]
- ASTM-C1029; Standard Specification for Spray-Applied Rigid Cellular Polyurethane Thermal Insulation. ASTM International: West Conshohocken, PA, USA, 2002; Volume 15, pp. 1–6. [CrossRef]
- ASTM-E1730; Standard Specification for Rigid Foam for Use in Structural Sandwich Panel Cores 1. ASTM International: West Conshohocken, PA, USA, 1998; Volume 4, pp. 4–7. [CrossRef]
- Zhu, S.; Chen, K.; Xu, J.; Li, J.; Mo, L. Bio-based polyurethane foam preparation employing lignin from corn stalk enzymatic hydrolysis residues. RSC Adv. 2018, 8, 15754–15761. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; De Hoop, C.F.; Xie, J.; Hse, C.-Y.; Qi, J.; Hu, T. Characterization of Biobased Polyurethane Foams Employing Lignin Fractionated from Microwave Liquefied Switchgrass. Int. J. Polym. Sci. 2017, 2017, 4207367. [Google Scholar] [CrossRef] [Green Version]
- Eaves, D. Handbook of Polymer Foams; iSmithers Rapra Publishing: Shawbury, UK, 2004; pp. 1–8. [Google Scholar]
- Tappi, T. Ash in wood, pulp, paper and paperboard: Combustion at 525 C. TAPPI Test. Methods T 2002, 211, 64–67. [Google Scholar]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analysis 922.02; AOAC: Rockville, MD, USA, 2005; ISBN 0-935584-85-4. [Google Scholar]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analysis 980.03; AOAC: Rockville, MD, USA, 2000; ISBN 0-935584-85-4. [Google Scholar]
- EPA. U.S. Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils, Revision 1; EPA: Washington, DC, USA, 2007.
- AOAC. Official Methods of Analysis of AOAC International. Metals and Other Elements in Plants and Pet. Foods. Inductively Coupled Plasma (ICP) Spectroscopic Method 985.01; AOAC: Rockville, MD, USA, 1996. [Google Scholar]
- Kalami, S. Development of Biobased Phenolic Adhesives for Engineered Wood Products. Ph.D. Thesis, Mississippi State University, Starkville, MS, USA, 2018. [Google Scholar]
- Emmanuel, S. Biobased Phenolic Adhesive Using Unmodified Lignin and Glyoxal. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2020. [Google Scholar]
- Gondaliya, A.M. Comparative Analysis of Different Lignins as Partial Polyol Replacement in Polyurethane Flexible Foam Formulations. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2020. [Google Scholar]
- Li, H.; Xu, C.; Yuan, Z.; Wei, Q. Synthesis of bio-based polyurethane foams with liquefied wheat straw: Process optimization. Biomass Bioenergy 2018, 111, 134–140. [Google Scholar] [CrossRef]
- ASTM D1622; Standard Test Method for Apparent Density of Rigid Cellular Plastics. ASTM International: West Conshohocken, PA, USA, 2014; Volume 82, pp. 3–6. [CrossRef]
- ASTM D1621; Standard Test Method for Compressive Properties Of Rigid Cellular Plastics. ASTM International: West Conshohocken, PA, USA, 2004; Volume 4, pp. 5–8. [CrossRef]
- ASTM D2856; Standard Test Method for Open-Cell Content of Rigid Cellular Plastics by the Air Pycnometer. ASTM International: West Conshohocken, PA, USA, 1998; Volume 9, p. 6. [CrossRef]
- Accu Pyc® II Series, Gas. Displacement Pycnometer Series Version 2.01; Micromeritics: Norcross, GA, USA, 2016.
- Szycher, M. Szycher’s Handbook of Polyurethanes; Choice Reviews Online; CRC PRESS: Boca Raton, FL, USA, 1999; Volume 37. [Google Scholar] [CrossRef]
- Tan, S.; Abraham, T.; Ference, D.; MacOsko, C.W. Rigid polyurethane foams from a soybean oil-based Polyol. Polymer 2011, 52, 2840–2846. [Google Scholar] [CrossRef]
- Harikrishnan, G.; Macosko, C.W.; Choi, J.H.; Bischof, J.C.; Singh, S.N. A Simple Transient Method for Measurement of Thermal Conductivity of Rigid Polyurethane Foams. J. Cell. Plast. 2008, 44, 481–491. [Google Scholar] [CrossRef]
Label | Ash Content (%) | pH | K (%) | Mg (%) | Na (%) | Ca (%) |
---|---|---|---|---|---|---|
1-CS-E | 0.63 ± 0.01 | 4.99 ± 0.16 | 0.01 | 0.00 | 0.03 | 0.01 |
2-SW-K | 3.92 ± 0.35 | 6.65 ± 0.11 | 0.12 | 0.01 | 0.68 | 0.04 |
3-SW-O | 0.37 ± 0.11 | 5.04 ± 0.58 | 0.01 | 0.00 | 0.01 | 0.01 |
4-HW-O | 0.13 ± 0.03 | 6.42 ± 0.44 | 0.01 | 0.00 | 0.01 | 0.01 |
5-SW-L | 11.5 ± 0.18 * | 4.35 ± 0.07 | 0.22 | 0.17 | 0.11 | 3.81 |
6-SW-K | 1.99 ± 0.20 | 3.97 ± 0.09 | 0.16 | 0.00 | 0.95 | 0.01 |
7-HW-K | 1.11 ± 0.07 | 4.49 ± 0.26 | 0.06 | 0.01 | 0.18 | 0.06 |
8-SW-K | 0.01 ± 0.01 | 6.64 ± 0.09 | 0.04 | 0.02 | 0.28 | 0.05 |
9-WS-O | 0.50 ± 0.17 | 3.69 ± 0.10 | 0.01 | 0.00 | 0.01 | 0.01 |
10-SW-K | 0.54 ± 0.02 | 4.83 ± 0.19 | 0.02 | 0.01 | 0.06 | 0.03 |
11-SW-K | 0.65 ± 0.01 | 4.80 ± 0.17 | 0.02 | 0.00 | 0.17 | 0.01 |
12-SW-K | 0.76 ± 0.02 | 4.90 ± 0.10 | 0.02 | 0.01 | 0.20 | 0.01 |
13-HW-O | 0.04 ± 0.02 | 4.02 ± 0.07 | 0.02 | 0.00 | 0.01 | 0.03 |
14-WS-O | 0.09 ± 0.03 | 3.88 ± 0.03 | 0.01 | 0.00 | 0.01 | 0.02 |
15-HW-S | 0.11 ± 0.05 | 4.23 ± 0.15 | 0.15 | 0.01 | 0.76 | 0.17 |
16-WS-S | 0.86 ± 0.15 | 4.71 ± 0.17 | 0.00 | 0.00 | 0.37 | 0.02 |
17-SW-K | 0.94 ± 0.01 | 4.28 ± 0.09 | 0.03 | 0.02 | 0.40 | 0.04 |
18-HW-S | 4.84 ± 0.09 | 4.17 ± 0.17 | 0.86 | 0.01 | 0.89 | 0.02 |
19-HW-K | 5.19 ± 0.01 | 7.94 ± 0.04 | 0.28 | 0.02 | 1.12 | 0.17 |
Label | Hydroxyl Content 31P NMR Data (mmol/g) | Hydroxyl Value | ||||||
---|---|---|---|---|---|---|---|---|
Aliphatic | Syringyl | Condensed Phenolic | Guaiacyl | p-Hydroxy Phenyl | Carboxylic | Total OH | (mg KOH/g) | |
1-CS-E | 3.41 * | 0.74 | 0.39 | 1.08 | 1.16 * | 1.06 | 7.84 * | 439 |
2-SW-K | 1.98 | - | 1.09 | 1.9 | 0.24 | 0.45 | 5.66 | 318 |
3-SW-O | 1.04 | - | 0.47 | 1.57 | 0.18 | 0.47 | 3.73 | 209 |
4-HW-O | 1.38 | 1.44 | 0.43 | 0.77 | 0.17 | 0.32 | 4.51 | 253 |
6-SW-K | 2.10 | - | 1.31 | 2.82 | 0.25 | 0.68 | 7.16 | 402 |
7-HW-K | 1.09 | 2.47 | 0.63 | 1.03 | 0.17 | 0.34 | 5.73 | 321 |
8-SW-K | 2.08 | - | 1.29 | 2.13 | 0.18 | 0.59 | 6.27 | 352 |
9-WS-O | 0.72 | 0.79 | 0.38 | 0.99 | 0.35 | 0.42 | 3.65 | 205 |
10-SW-K | 2.07 | - | 1.29 | 2.16 | 0.19 | 0.54 | 6.25 | 351 |
11-SW-K | 1.78 | - | 0.91 | 2.09 | 0.27 | 0.45 | 5.50 | 309 |
12-SW-K | 2.49 | - | 1.43 | 2.26 | 0.24 | 0.37 | 6.79 | 381 |
13-HW-O | 0.92 | 1.79 | 0.89 | 0.68 | 0.12 | 0.28 | 4.68 | 263 |
14-WS-O | 1.12 | 0.69 | 0.24 | 0.87 | 0.34 | 0.41 | 3.67 | 206 |
15-HW-S | 1.92 | 0.42 | 1.01 | 2.22 | 0.29 | 0.77 | 6.63 | 372 |
16-WS-S | 1.36 | 1.24 | 0.42 | 1.04 | 0.25 | 1.18 | 5.49 | 308 |
17-SW-K | 1.51 | - | 0.62 | 1.68 | 0.21 | 0.39 | 4.41 | 247 |
18-HW-S | 1.80 | 0.68 | 0.31 | 0.64 | 0.42 | 1.03 | 4.88 | 274 |
19-HW-K | 1.52 | 1.93 | 0.65 | 0.97 | 0.13 | 0.21 | 5.41 | 304 |
Label | Lightness (Color Analysis) | Cell Size (mm) | Closed-Cell Content (%) | Thermal Conductivity (mW/mK) | R-Value (Km2/W at 0.06 m) |
---|---|---|---|---|---|
Control | 81 ± 0.5 | 0.22 ± 0.02 | 98.6 ± 0.03 | 9.2 ± 0.7 | 6.5 ± 0.6 |
1-CS-E | 69 ± 0.7 | 0.23 ± 0.01 | 99.0 ± 0.05 | 9.1 ± 0.3 | 6.6 ± 0.2 |
2-SW-K | 61 ± 0.6 | 0.22 ± 0.01 | 99.6 ± 0.05 | 10.1 ± 0.2 | 6.0 ± 0.1 |
3-SW-O | 47 ± 0.5 | 0.22 ± 0.01 | 97.2 ± 0.01 | 9.9 ± 0.2 | 6.1 ± 0.1 |
4-HW-O | 49 ± 0.3 | 0.15 ± 0.01 | 99.1 ± 0.02 | 9.4 ± 0.1 | 6.4 ± 0.1 |
5-SW-L | 78 ± 0.2 | 0.26 ± 0.02 | 97.3 ± 0.02 | 9.2 ± 1.0 | 6.6 ± 0.8 |
6-SW-K | 58 ± 1.5 | 0.16 ± 0.02 | 99.1 ± 0.13 | 9.8 ± 0.4 | 6.1 ± 0.2 |
7-HW-K | 41 ± 0.7 | 0.32 ± 0.02 | 83.1 ± 0.14 | 12.9 ± 0.7 | 4.7 ± 0.3 |
8-SW-K | 61 ± 0.8 | 0.20 ± 0.03 | 98.4 ± 0.05 | 9.0 ± 0.5 | 6.7 ± 0.4 |
9-WS-O | 45 ± 0.4 | 0.19 ± 0.02 | 96.9 ± 0.06 | 9.4 ± 0.6 | 6.4 ± 0.5 |
10-SW-K | 64 ± 0.9 | 0.11 ± 0.02 | 99.6 ± 0.04 | 9.3 ± 0.2 | 6.4 ± 0.1 |
11-SW-K | 54 ± 1.4 | 0.39 ± 0.04 | 77.0 ± 0.04 | 10.9 ± 1.8 | 5.7 ± 1.0 |
12-SW-K | 67 ± 1.7 | 0.20 ± 0.00 | 98.2 ± 0.05 | 10.2 ± 0.3 | 5.9 ± 0.2 |
13-HW-O | 55 ± 1.1 | 0.19 ± 0.03 | 99.0 ± 0.14 | 10.0 ± 0.4 | 6.0 ± 0.3 |
14-WS-O | 48 ± 1.0 | 0.25 ± 0.03 | 97.8 ± 0.04 | 10.1 ± 1.0 | 6.0 ± 0.5 |
15-HW-S | 58 ± 1.7 | 0.19 ± 0.02 | 98.5 ± 0.02 | 10.5 ± 0.5 | 5.7 ± 0.3 |
16-WS-S | 63 ± 1.2 | 0.17 ± 0.00 | 99.4 ± 0.02 | 9.7 ± 0.4 | 6.2 ± 0.2 |
17-SW-K | 60 ± 0.9 | 0.22 ± 0.04 | 99.0 ± 0.05 | 10.5 ± 0.5 | 5.7 ± 0.2 |
18-HW-S | 55 ± 0.6 | 0.26 ± 0.01 | 99.2 ± 0.02 | 10.4 ± 1.0 | 5.8 ± 0.4 |
19-HW-K | 50 ± 0.8 | 0.19 ± 0.01 | 98.5 ± 0.02 | 10.1 ± 0.8 | 6.0 ± 0.4 |
ASTM | N/A | 0.33–0.39 [40] | 90 Min [41] | <257 [42] | - |
Raw Materials (g) | Control Foam without Lignin | 30 wt.% Polyol Substitution with Lignin |
---|---|---|
Polyol | 15 | 10.5 |
Lignin | 0 | 4.5 |
Viscosity Reducer | 1.5 | 1.5 |
Water | 0.04 | 0.04 |
Surfactant | 0.15 | 0.15 |
Catalysts | 0.76 | 0.76 |
Flame Retardant | 1.5 | 1.5 |
Blowing Agent | 3.3 | 3.3 |
Isocyanate | 28.79 | 28.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henry, C.; Gondaliya, A.; Thies, M.; Nejad, M. Studying the Suitability of Nineteen Lignins as Partial Polyol Replacement in Rigid Polyurethane/Polyisocyanurate Foam. Molecules 2022, 27, 2535. https://doi.org/10.3390/molecules27082535
Henry C, Gondaliya A, Thies M, Nejad M. Studying the Suitability of Nineteen Lignins as Partial Polyol Replacement in Rigid Polyurethane/Polyisocyanurate Foam. Molecules. 2022; 27(8):2535. https://doi.org/10.3390/molecules27082535
Chicago/Turabian StyleHenry, Christián, Akash Gondaliya, Mark Thies, and Mojgan Nejad. 2022. "Studying the Suitability of Nineteen Lignins as Partial Polyol Replacement in Rigid Polyurethane/Polyisocyanurate Foam" Molecules 27, no. 8: 2535. https://doi.org/10.3390/molecules27082535
APA StyleHenry, C., Gondaliya, A., Thies, M., & Nejad, M. (2022). Studying the Suitability of Nineteen Lignins as Partial Polyol Replacement in Rigid Polyurethane/Polyisocyanurate Foam. Molecules, 27(8), 2535. https://doi.org/10.3390/molecules27082535