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Abstract: Viruses have been a long-term source of infectious diseases that can lead to large-scale
infections and massive deaths. Especially with the recent highly contagious coronavirus (COVID-19),
antiviral drugs were developed nonstop to deal with the emergence of new viruses and subject
to drug resistance. Nitrogen-containing heterocycles have compatible structures and properties
with exceptional biological activity for the drug design of antiviral agents. They provided a broad
spectrum of interference against viral infection at various stages, from blocking early viral entry
to disrupting the viral genome replication process by targeting different enzymes and proteins of
viruses. This review focused on the synthesis and application of antiviral agents derived from various
nitrogen-containing heterocycles, such as indole, pyrrole, pyrimidine, pyrazole, and quinoline, within
the last ten years. The synthesized scaffolds target HIV, HCV/HBV, VZV/HSV, SARS-CoV, COVID-19,
and influenza viruses.

Keywords: nitrogen-containing heterocycles; synthesis; antiviral agents; viruses; COVID-19;
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1. Introduction

In recent years, outbreaks of infectious viral diseases have been increasing unexpect-
edly and costing millions of human lives. Despite many developed vaccines and therapeu-
tics for prevention and treatment, viruses have continuously evolved and re-emerged to
threaten public health, social relations, and economic stability.

In the early 1980s, the human immunodeficiency virus/acquired immunodeficiency
syndrome (HIV/AIDS) infected 79 million people, with 39 million deaths over three
decades [1]. The influenza virus series also have a long-term effect on public health.
The seasonal influenza viruses infect 2–5 million people and kill 250,000–500,000 people
worldwide per year [2]. Other influenza viruses also have caused occasional pandemics
throughout history. The H1N1 influenza pandemic of 1918 cost approximately 40 million
lives. H2N2 caused another epidemic in 1957, while H3N2 struck in 1968, and H1N1
again in 2009 [2]. During the early 21st century, the severe acute respiratory syndrome
coronavirus (SARS-CoV) from a zoonotic source started in Guangdong Province, China.
It spread through the global community, causing about 8000 infections and 800 deaths
worldwide [3]. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in
2012 and caused 2029 infections and 704 deaths in 27 countries [4]. The novel coronavirus
(SARS-CoV-2) has caused a worldwide pandemic with more than 99 million infections
and 2 million deaths within the first twelve months, starting in December 2019 in Wuhan,
China. Although some antiviral drugs and vaccines are available for certain viruses, it is
necessary to continuously develop new drugs and methods for drug-resistant viruses and
viruses newly evolved from mutations.
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The most promising antiviral drugs are small organic molecules that can target specific
parts of the viruses and interfere with different stages of the viral life cycle [4]. Various
strategies have been applied to target different viruses effectively. For example, for SARS-
CoV, small molecules were used to target protease activity and inhibit viral replication. For
anti-HIV/AIDS agents, viral glycoproteins were targeted to hinder their interaction with
the receptors on cell surfaces, which then activate the virus’s endocytosis into the cell [4].
Among many chemical scaffolds, nitrogen-containing heterocyclic small compounds have
been exploited extensively due to their broad range of applications in biological and phar-
macological activities. The nitrogen-containing heterocyclic bases have high versatility in
synthesis with different moieties. Those heterocyclic backbones have rigid aromatic struc-
tures that can be incorporated into the binding pockets and provide various molecular inter-
actions, such as ionic bonding, hydrogen bonding, hydrophobic interaction, non-covalent
bonding, etc., for ligand binding with receptor proteins [5,6]. The interaction can mimic
specific properties that can effectively inhibit the activities of various biological enzymes
and components that play vital roles in the development of viral infections [7,8]. Previous
reviews focused on single types of nitrogen-containing heterocycles such as indole and/or
imidazothiazole derivatives in designing antiviral agents [7,9]. Other reviews covered
broader details on various biological applications such as antimicrobial, anti-inflammatory,
anti-tubercular, anti-depressant, and anti-cancer activities [10–12]. Our current review
focuses specifically on the common nitrogen-containing heterocycles including indoles,
pyrroles, pyrimidines, pyrazoles, and quinolines that have been applied in drug design for
antiviral purposes during the past ten years. These heterocycles are significant backbones
of pharmaceutical products with exceptional biological activity to interfere with various
viral infections [8]. While the indole cores are known for their wide existence in natural
products with biological activity [7], the properties of pyrrole can be expanded for chemical
design and are suitable for biological systems [13]. Pyrimidine derivatives have widespread
therapeutic applications, as they are essential building blocks of nucleic acids in DNA and
RNA [14]. Pyrazoles can be fused with other heterocycles to extend their active biological
potential [15]. Quinoline derivatives have versatile chemical properties for synthesis and
biological activities [16]. Our review discusses the synthesis and biological characteristics of
nitrogen-containing heterocycle derivatives in detail. Further modifications and functions
of nitrogen heterocycles are introduced along with various antiviral purposes.

2. Indole

Indole derivatives are one of the well-known scaffolds in drug discovery that can
inhibit a wide diversity of enzymes by binding with potential ligands [7]. The first indole
was prepared using Fischer indole synthesis, which was reported in 1866. Nowadays, most
indole synthesis pathways start with incorporating a benzene ring with additional factors
that stabilize the formation with the fused pyrrole ring. Indole is an aromatic ring with ten
π electrons and a lone pair of nitrogens. The lone pair is not available for protonation but is
involved in the delocalization of the indole conjugated system. The protonation and other
electrophilic substitutions mostly occur at the C-3 position, which has the highest electron
density and is most thermodynamically stable for modifying antiviral agents [17].

Hassam et al. designed new scaffolds of HIV non-nucleoside reverse transcriptase
(RT) inhibitor with the addition of a cyclopropyl group at the C-3 of the indole base [18].
The RT enzyme plays a crucial role in the reverse transcription of viral RNA to single-
stranded DNA in host cells. The binding of specific cyclopropyl chemical moiety to the
RT pocket can significantly inhibit the enzyme’s function by improving electrostatic in-
teraction with the hydrophobic pocket [18]. As shown in Scheme 1, the ester-substituted
indole 1 reacted with benzoyl chloride for the electrophilic substitution at the C-3 posi-
tion. Tert-butyloxycarbonyl (Boc) was added to intermediate 2 to prevent reactions at the
amine before further modifying cyclopropyl moiety. Intermediate 3 underwent a Wittig
reaction with methyl triphenylphosphonium ylide reagent to convert ketone to alkene 4,
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which then reacted with diiodomethane and zinc alloy for cyclopropyl addition to furnish
product 5 [18].
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Scheme 1. The synthesis of non-nucleoside scaffolds as HIV reverse transcriptase inhibitors. 

As shown in Figure 1, in the in vitro phenotypic assay, compounds 5a–c showed high 
inhibitory activity (IC50), with low cytotoxicity (CC50) in 5a and 5c. In the modeling study, 
5a was better at accommodating the binding site. The indole NH and ester moiety was 
incorporated for hydrogen bonding in the reverse transcriptase’s allosteric site at Lys 101. 
The ester group associates well in the binding site with the ethyl directed out of the site. 
Modification of the ethyl group decreased the potency of the compound. The cyclopropyl 
moiety was implemented to bind with Val 179 binding pocket, a small, hydrophobic cleft 
located near the catalytic site. The aromatic ring of R2 was favorable for the interaction 
with Tyr 188 and Trp 299. The modification at R2 from phenyl to 2-thiophenyl resulted in 
a slightly better inhibitory value but increased toxicity in cells. Increasing the size of the 
halogen at R3 also enhanced IC50 and CC50 values [18]. 
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As shown in Figure 1, in the in vitro phenotypic assay, compounds 5a–c showed high
inhibitory activity (IC50), with low cytotoxicity (CC50) in 5a and 5c. In the modeling study,
5a was better at accommodating the binding site. The indole NH and ester moiety was
incorporated for hydrogen bonding in the reverse transcriptase’s allosteric site at Lys 101.
The ester group associates well in the binding site with the ethyl directed out of the site.
Modification of the ethyl group decreased the potency of the compound. The cyclopropyl
moiety was implemented to bind with Val 179 binding pocket, a small, hydrophobic cleft
located near the catalytic site. The aromatic ring of R2 was favorable for the interaction
with Tyr 188 and Trp 299. The modification at R2 from phenyl to 2-thiophenyl resulted in
a slightly better inhibitory value but increased toxicity in cells. Increasing the size of the
halogen at R3 also enhanced IC50 and CC50 values [18].
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Another study of antiviral agents with substitution at C-3 of indole was utilized
to target the hepatitis C virus (HCV). HCV infection can lead to acute or chronic liver
diseases, such as hepatocellular carcinoma and liver cirrhosis. Specific treatments have been
approved for clinical applications. However, those treatments possessed low effectiveness
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in the patient population with additional side effects [19]. Han et al. [20] introduced
the small molecules of N-protected indole scaffolds (NINS) to inhibit HCV. As shown
in Scheme 2, scaffold 6 reacted with the racemic epibromohydrin to form N-protection
derivative 7 with two enantiomers. The substitution of NH was further extended by
ring-opening of epoxide with the nucleophilic amine chain to afford 8.
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In the structure–activity relationship (SAR) study, multiple modifications of the phenyl
ring at R1 were analyzed. As shown in Table 1, p-F-Ph and m-F-Ph improved inhibitory
potency, but o-F-Ph reduced anti-HCV activity. The m-F-Ph exhibited lower cytotoxicity
compared to p-F-Ph. The (R)-enantiomer can possess better anti-HCV potency and less
cytotoxicity than its corresponding (S)-enantiomer of both m-F-Ph and p-F-Ph. The results
indicated that the position of substitution and chirality has a high impact on their inhibitory
effect. The scaffold was also proved to inhibit viral entry into the viral cycle rather than
interfere in any viral RNA replication in host cells with a mechanism of action (MoA) study.

Table 1. The in vitro SAR study of compounds against HCV [20].

R1 EC50 (µM) CC50 (µM) SI

Ph 2.04 ± 0.11 35.83 ± 0.25 17.56
p-F-Ph 1.02 ± 0.10 46.47 ± 0.24 45.56

(R) p-F-Ph 0.72 ± 0.09 >50 >69.44
(S) p-F-Ph 7.12 ± 0.21 34.57 ± 0.53 4.86

m-F-Ph 0.92 ± 0.06 21.46 ± 0.34 23.33
(R) m-F-Ph 0.74 ± 0.11 31.06 ± 0.37 41.97
(S) p-F-Ph 5.87 ± 0.18 23.31 ± 0.30 3.97

o-F-Ph 2.79 ± 0.17 34.21 ± 0.43 12.26

The varicella-zoster virus (VZV) infection can cause acute varicella and herpes zoster,
leading to various disease complications in the central nervous system from latent viruses [21].
Most approved drugs for VZV-associated treatments were nucleosides that competitively
inhibit the viral DNA polymerase and interfere with DNA replication. However, those
nucleosides implied multiple drug resistance and produced low efficacy in the anti-VZV
virus. Mussela et al. [22] synthesized a family of indole derivatives as non-nucleoside
antivirals to mimic deoxythymidine. The compounds can inhibit thymidine kinase (TK)
by interfering with the series phosphorylation of thymidine triphosphates, which can be
used as a complementary base in the replication process [23]. As shown in Scheme 3,
the 3-(2-bromoethyl)-1H-indole 9 was reacted with methyl iodide for N-alkylation. The
nucleophilic displacement of bromine in 10 was conducted with chain-linked amine and
used palladium as a catalyst under microwave conditions to obtain 11, which was then
treated with acetyl chloride under the basic condition to yield the final compound 12.
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Compound 12 has low cytotoxicity in cells and good inhibitory activity at low EC50
due to the alkylation of NH and acylation of the amine group in C-3 substitution [22]. This
tryptamine derivative has lower potency than reference drugs Acyclovir and Brivudine
but displayed similar inhibiting activity against TK in anti-VZV mechanisms. Additionally,
the derivative 12 selectively targeted VZV strains (OKA, 07-1, and YS-R) only when tested
with other members in the same family of Herpesviridae (HMCV, HSV-1, and HSV-2) and
various RNA virus strains such as HIV and influenza, as shown in Table 2. Compound 12
can be a leading compound for further investigation in inhibiting VZV specifically.

Table 2. Activity of compound 12 against various viral strains [22].

Virus
Strain

OKA
(TK+) 07-1 (TK−) YS-R

(TK−)
AD 169

(HMCV)
Davis

(HMCV)
KOS

(HSV-1)
TK- KOS ACVr 1

(HSV-1)
HSV-2

EC50 (µM) 2.5 1.7 2.1 >4 >4 >100 >100 >1002

1 TK− KOS ACVr: HSV-1; KOS and thymidine kinase-deficient acyclovir-resistant.

Other synthesized potential antiviral agents have substitution at C-2 of indole, the
second most reactive site for electrophiles. For targeting SARS-CoV viruses, Thanigaimalai
et al. [24] discovered compounds to target the chymotrypsin-like protease (CLpro), which
plays a vital role in cleaving polyproteins to produce functional proteins directly involved
in viral replication and transcription [25]. The analogs were peptidomimetic covalent
inhibitors that can mimic the substrate of CoV 3CLpro. As shown in Scheme 4, to synthesize
compound 17, the peptidomimetic chain was added to the commercially available indole
derivative 13, through peptide coupling with the carboxyl group at C2 to form the peptide
14. For the other intermediate, γ-lactam acid 15 coupled with N, O-dimethylhydroxylamine
to form substituted amide from the carboxylic end using Weinreb–Nahm synthesis. The
amide continuously reacted with benzothiazole to create 16, which then deprotected and
coupled with the peptide 14 in the presence of peptide coupling reagent to furnish com-
pound 17 [24].

The synthetic inhibitor 17 has four main features that are suitable for different pockets
in the active site of CoV CLpro. The compounds included ketone to target cysteine residue’s
thiol (Cys 145) in the S1” pocket and (S)-γ-lactam ring for the S1 pocket. The hydrophobic
leucine was used for the S2 position [24,26]. In another study, the leucine was replaced
by the π conjugated system and hydrophobic interaction of the aryl or cyclohexyl group
to enhance access of the S2 pocket to target SARS-CoV-2 [27]. Based on its SAR study,
compound 17 exhibited great inhibitory (Ki = 0.006 µM or IC50 = 0.74 µM) activity with
the methoxy at C-4 of the indole. Indole possessed the best inhibitory effect among other
heterocycles due to its NH, which can provide hydrogen bonding interaction with Gln 166,
as shown in Figure 2 from the molecular docking study.
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3. Pyrrole

Pyrrole is a heterocyclic aromatic five-membered ring that was first observed in coal tar
and bone oil in 1834. Many investigations reported pyrrole as an integral part of different
natural compounds. The delocalization of the lone pair of electrons from the nitrogen atom
provided additional stabilization of the ring. In total, six π electrons delocalized over the
five-membered ring formed the isoelectronic system and allowed electrophilic attack in
different reactions [28].

Curreli et al. [29] have developed drugs to block HIV-1 envelope glycoprotein (gp120)
from binding the receptor CD4 of the host cells and prevent the entry of viral RNA [30].
The scaffolds were designed to mimic receptor CD4 and act as HIV-1 entry antagonists.
Intermediates 18 and 19 were synthesized and coupled to yield compound 20, as shown in
Scheme 5 [28,31]. The deprotonation of amine followed to afford product 21. Intermediate
19 can be synthesized from R- and S-isomer imines that derived isomers in compounds 20
and 21 [29].



Molecules 2022, 27, 2700 7 of 25

Molecules 2022, 27, x FOR PEER REVIEW 7 of 25 
 

 
Molecules 2022, 27, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molecules 

shown in Scheme 5 [28,31]. The deprotonation of amine followed to afford product 21. 
Intermediate 19 can be synthesized from R- and S-isomer imines that derived isomers in 
compounds 20 and 21 [29].  

N NH2

S N

OH N
H
N

S N

OH

N
HO

R2

R3

R1

H2N
H
N

S N

OH

N
HO

R2

R3

R1

DIPEA, HBTU
DMF

DMBA, MeOH
Pd(dba)2, Ph3P18

19N
H

OH
O

R1

R2

R3 20

21a: R1= F, R2= Me, R3= H
21b: R1= F, R2= Cl, R3= F

21

Alloc

Alloc

18a: R1= F, R2= Me, R3= H
18b: R1= F, R2= Cl, R3= F  

Scheme 5. The synthesis of pyrrole derivatives as glycoprotein inhibitors of HIV-1. 

Based on X-ray crystal structure analysis, pyrrole allowed a potential hydrogen bond 
of NH with the residue Asn425 of gp120. Methylation of NH lost an H-bond donor atom 
and increased steric hindrance, which interferes with binding capability. The scaffold 
loses its antiviral activity when replacing the pyrrole ring with imidazole. According to 
Table 3, the compounds exhibited high antiviral potency with low cytotoxicity and good 
selectivity for HIV-1 gp120. The methyl substitution at R2 of 21a enhanced antiviral po-
tency, while the addition of fluoro at R3 of 21b showed similar activity but improved met-
abolic stability. Because (R) 21a (NBD-14088) and (S) 21b (NBD-14107) have better selec-
tivity, they were used to measure HIV-1 entry antagonist properties with cell-to-cell fu-
sion inhibition assay and infectivity in cells, as shown in Figure 3. Even though (R) 21a 
and (S) 21b required higher IC50 compared to NBD-556 (HIV-1 entry agonist) and NBD-
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Scheme 5. The synthesis of pyrrole derivatives as glycoprotein inhibitors of HIV-1.

Based on X-ray crystal structure analysis, pyrrole allowed a potential hydrogen bond
of NH with the residue Asn425 of gp120. Methylation of NH lost an H-bond donor atom
and increased steric hindrance, which interferes with binding capability. The scaffold loses
its antiviral activity when replacing the pyrrole ring with imidazole. According to Table 3,
the compounds exhibited high antiviral potency with low cytotoxicity and good selectivity
for HIV-1 gp120. The methyl substitution at R2 of 21a enhanced antiviral potency, while
the addition of fluoro at R3 of 21b showed similar activity but improved metabolic stability.
Because (R) 21a (NBD-14088) and (S) 21b (NBD-14107) have better selectivity, they were
used to measure HIV-1 entry antagonist properties with cell-to-cell fusion inhibition assay
and infectivity in cells, as shown in Figure 3. Even though (R) 21a and (S) 21b required
higher IC50 compared to NBD-556 (HIV-1 entry agonist) and NBD-11021 (HIV-1 entry
antagonist), negative and positive controls, respectively, two synthesized compounds still
exhibited antagonist properties to reduce infections. The compounds also can inhibit HIV-1
reverse transcriptase from converting viral RNA into complementary DNA in hosts [29].

Table 3. The SAR study of the compounds against HIV-1 in TZM-bl and MT-2 cells [29].

Compound TZM-bl Cells MT-2-Cells
IC50 (µM) CC50 (µM) IC50 (µM) CC50 (µM)

(S) 21a 0.85± 0.06 39.2± 0.8 1.6± 0.08 35.2± 0.8
(R) 21a 0.45± 0.05 38.8± 0.06 0.76± 0.3 38± 1
(S) 21b 0.64± 0.06 39.5± 2.3 0.96± 0.1 37± 1.5
(R) 21b 0.48± 0.1 20.6± 0.2 0.97± 0.2 17.4± 0.4
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Herpes simplex virus (HSV) is another virus in the family of α-herpesviruses with
VZV that can cause common, self-resolving diseases of skin or mucosa, such as herpes
labialis and other infectious diseases. However, HSV and VZV possess differences in the
route of infection, spread pathway, and range of hosts [32]. Due to the viral strains highly
resistant to the nucleoside treatments, non-nucleoside compounds were synthesized to
inhibit thymidine kinase (TK) from early DNA replication. According to Hilmy et al. [33],
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the pyrrole analogs 23a–d were synthesized using different substituted 2-amino-3-cyano-
1,5-diarylpyrroles to react with various aryl aldehydes under the basic condition with
phosphorous pentoxide, as shown in Scheme 6.
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Scheme 6. Synthesis of thymidine kinase inhibitors to target HSV.

The analogs were compared with Acyclovir (ACV), a standard drug used to treat HSV,
for anti-HSV activity and cytotoxicity. As shown in Table 4, all new compounds exhibited a
high percentage of reduction (94–99%) in the number of virus plaques. Compounds 23a
(99%) and 23d (97%) even had better results than ACV due to their similarity at substituted
N of pyrrole with 4-methoxyphenyl. Compound 23a had the highest activity with the
4-methoxybenzylideneamino at position C-2 of pyrrole. The synthesized compounds had
better docking scores than ACV, indicating that they had better ligand–receptor interaction
in the TK active site. Comparing compounds 23a and 23d in Figure 4, they had different
interactions in the binding pocket. The two oxygens of the methoxy group in 23a had
hydrogen bonding with Lys62 and Tyr132. Another hydrogen bond was formed between
the cyano nitrogen and Arg222. However, for 23d, the methoxy group formed two hydrogen
bonds with Arg176 and Tyr101. Other hydrogen bonds were also established from the
nitrogens of the compounds. Both also formed hydrophobic and van der Waals interactions
with other amino acids. However, 23d interacted with crucial amino acids that actively
contribute to the function of TK; hence, 23d showed better inhibitory effect compared to 23a.
Additionally, compounds 27b and 27c might have different anti-HSV activity mechanisms
rather than targeting TK [33].

Table 4. Anti-HSV-1 activity and docking score of analogs 27a–d and Acyclovir [33].

Compound Cytotoxicity
(µM)

% Reduction in Cytopathic
Effect of HSV-1 Docking Score

ACV 10−2 96 −12.74
23a 10−2 99 −11.30
23b 10−2 96 −11.44
23c 10−2 94 -8.98
23d 10−2 97 −7.32

Lin et al. [34] introduced a class of anti-influenza agents targeting the viral nucleopro-
tein (NP), a binding protein that contributes to the transcription and packaging processes.
The synthesized pyrimido-pyrrolo-quinoxalinedione analogs were aimed to inhibit the
synthesis of NP and interrupt viral replication [35]. As shown in Scheme 7, substituted
pyrimidinedione 24 was methylated at the two atoms of nitrogenusing dimethyl sulfate,
followed by Friedel–Crafts acylation with benzyl chloride to furnish compound 26. The
synthesis was continued with the addition of bromine and the formation of fused pyrrole 28
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from the reaction of 27 with 2-amino-2-methylpropan-1-ol. The annulation of intermediate
28 with F- substituted aryl aldehyde produced the final product, compound 29.

Molecules 2022, 27, x FOR PEER REVIEW 9 of 25 
 

 
Molecules 2022, 27, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molecules 

  
(23a) (23d) 

Figure 4. Docking study of 23a and 23d in the binding site of HSV-1 thymidine kinase [33]. 

Lin et al. [34] introduced a class of anti-influenza agents targeting the viral nucleo-
protein (NP), a binding protein that contributes to the transcription and packaging pro-
cesses. The synthesized pyrimido-pyrrolo-quinoxalinedione analogs were aimed to in-
hibit the synthesis of NP and interrupt viral replication [35]. As shown in Scheme 7, sub-
stituted pyrimidinedione 24 was methylated at the two atoms of nitrogenusing dimethyl 
sulfate, followed by Friedel–Crafts acylation with benzyl chloride to furnish compound 
26. The synthesis was continued with the addition of bromine and the formation of fused 
pyrrole 28 from the reaction of 27 with 2-amino-2-methylpropan-1-ol. The annulation of 
intermediate 28 with F- substituted aryl aldehyde produced the final product, compound 
29. 

H
N

NH

O

O

(CH3)2SO4

K2CO3, acetone

N

N

O

O

PhCOCl
ZnO

N

N

O

O

Ph

O

N

N

O

O

Ph

O

NBS, AlBN
CH3CN

N

N

O

O

H2N
OH

TEA, EtOH

CHO
F

pTSA, EtOH
N

OH

N

N

O

O

N

O

F

24 25 26

272829

Br

 
Scheme 7. The synthesis of pyrimido-pyrrolo-quinoxalinedione for inhibiting nucleoprotein of in-
fluenza A H1N1 virus. 

The inhibiting effect of compound 29 (PPQ-581) was compared with that of the nu-
cleozin 3061, a potent antagonist of NP. Both have a similar trend of effectively inhibiting 
nucleoprotein (NP) synthesis shortly after infection. Treatment with 29 and nucleozin 
from 3–8 h post-infection partially inhibits NP synthesis. The docking study of compound 
29 in the influenza A nucleoprotein is shown in Figure 5. The oxygen of ketone formed 
hydrogen bonding with S377, which was a crucial binding area for compound 29. The 
mutation of the S377 sidechain can result in the loss of the anti-influenza activity of com-
pound 29. Compound 29 also inhibited the influenza RNA-dependent RNA polymerase 
(RdRP) activity of nucleozin-resistant influenza strains. 

Figure 4. Docking study of 23a and 23d in the binding site of HSV-1 thymidine kinase [33].

Molecules 2022, 27, x FOR PEER REVIEW 9 of 25 
 

 
Molecules 2022, 27, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molecules 

  
(23a) (23d) 

Figure 4. Docking study of 23a and 23d in the binding site of HSV-1 thymidine kinase [33]. 

Lin et al. [34] introduced a class of anti-influenza agents targeting the viral nucleo-
protein (NP), a binding protein that contributes to the transcription and packaging pro-
cesses. The synthesized pyrimido-pyrrolo-quinoxalinedione analogs were aimed to in-
hibit the synthesis of NP and interrupt viral replication [35]. As shown in Scheme 7, sub-
stituted pyrimidinedione 24 was methylated at the two atoms of nitrogenusing dimethyl 
sulfate, followed by Friedel–Crafts acylation with benzyl chloride to furnish compound 
26. The synthesis was continued with the addition of bromine and the formation of fused 
pyrrole 28 from the reaction of 27 with 2-amino-2-methylpropan-1-ol. The annulation of 
intermediate 28 with F- substituted aryl aldehyde produced the final product, compound 
29. 

H
N

NH

O

O

(CH3)2SO4

K2CO3, acetone

N

N

O

O

PhCOCl
ZnO

N

N

O

O

Ph

O

N

N

O

O

Ph

O

NBS, AlBN
CH3CN

N

N

O

O

H2N
OH

TEA, EtOH

CHO
F

pTSA, EtOH
N

OH

N

N

O

O

N

O

F

24 25 26

272829

Br

 
Scheme 7. The synthesis of pyrimido-pyrrolo-quinoxalinedione for inhibiting nucleoprotein of in-
fluenza A H1N1 virus. 

The inhibiting effect of compound 29 (PPQ-581) was compared with that of the nu-
cleozin 3061, a potent antagonist of NP. Both have a similar trend of effectively inhibiting 
nucleoprotein (NP) synthesis shortly after infection. Treatment with 29 and nucleozin 
from 3–8 h post-infection partially inhibits NP synthesis. The docking study of compound 
29 in the influenza A nucleoprotein is shown in Figure 5. The oxygen of ketone formed 
hydrogen bonding with S377, which was a crucial binding area for compound 29. The 
mutation of the S377 sidechain can result in the loss of the anti-influenza activity of com-
pound 29. Compound 29 also inhibited the influenza RNA-dependent RNA polymerase 
(RdRP) activity of nucleozin-resistant influenza strains. 

Scheme 7. The synthesis of pyrimido-pyrrolo-quinoxalinedione for inhibiting nucleoprotein of
influenza A H1N1 virus.

The inhibiting effect of compound 29 (PPQ-581) was compared with that of the nu-
cleozin 3061, a potent antagonist of NP. Both have a similar trend of effectively inhibiting
nucleoprotein (NP) synthesis shortly after infection. Treatment with 29 and nucleozin from
3–8 h post-infection partially inhibits NP synthesis. The docking study of compound 29 in
the influenza A nucleoprotein is shown in Figure 5. The oxygen of ketone formed hydrogen
bonding with S377, which was a crucial binding area for compound 29. The mutation
of the S377 sidechain can result in the loss of the anti-influenza activity of compound
29. Compound 29 also inhibited the influenza RNA-dependent RNA polymerase (RdRP)
activity of nucleozin-resistant influenza strains.
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4. Pyrimidine

Pyrimidine is a heterocycle composed of a six-membered ring with two nitrogens at
positions 1 and 3. The first pyrimidine derivative was synthesized in 1818 by Gaspare
Brugnatelli. Pyrimidines were continuously developed for applications in biological sys-
tems, as their nitrogen bases were associated with DNA and RNA. The two nitrogens in
pyrimidines are electron withdrawers, leaving specific carbons with electron deficiency [36].
Pyrimidine has also been fused with other heterocycles to improve its applicable spectrum
of biological activity [37].

Currently, HIV/AIDS is still causing a major global health issue. The treatments for
HIV/AIDS require a long-term commitment to target different stages of viral DNA repli-
cation. Malancona et al. [38] introduced the 5,6-dihydroxypyrimidine scaffolds to target
the HIV nucleocapsid (NC), which is a multifunctional protein that plays crucial roles in
binding amino acids for their sequence-specific binding in reverse transcription. NC is also
a nucleic acid chaperone that can manipulate nucleic acid structures for their thermodynam-
ically stable conformations [39]. As shown in Scheme 8, the central dihydroxypyrimidine
cores were obtained by reacting substituted 2-pyridinecarbonitrile with hydroxylamine
hydrochloride to form intermediate 31. The synthesis was continued with the reaction of
compound 31 with dimethyl acetylenedicarboxylate (DMAD) for thermal cyclization to
produce 32, which coupled with (R)-1-cyclohexylethanamine to furnish 33a–33d.
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The 2-(pyridin-2-yl) substituent at R1 was essential for the inhibitory activity of the
analogs. The amide moiety (N-cyclohexylmethyl) targeted the hydrophobic binding site
of the protein. As shown in Table 5, further modification with 5-methoxy, 5-chlorine
at the pyridine group, and quinoline resulted in 33b–33d with 40–80 folds of improved
potency and higher SI values (25–75) than without any modification of 2-(pyridin-2-yl)
substituent. As shown in Figure 6, the molecular docking of compound 33c in the NC
demonstrated that 2-(pyridin-2-yl) substituent has π-stacking interaction with Trp37, while
the dihydroxypyrimidine formed H-bonds with Gly35, Met46, and Gln45. The amide
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moiety interacted with the hydrophobic pocket, including Phe16, Ala25, Trp37, and Met46.
Other in vitro and in vivo tests against multiple drug-resistant HIV-1 strains were also
analyzed in the study. The analogs were also active in different HIV-1 resistant strains, with
high oral bioavailability and excellent in vitro metabolic stability in rat and human samples
and half-life in the in vivo study [38].

Table 5. The inhibiting activity of analogs 33 against HIV nucleocapsid and cells [38].

ID
NC Inhibition IC50

(µM)

BiCycle Wild Type
Strain NL4-3 HeLa PMBC

EC50 (µM) CC50
(µM) SI CC50

(µM) SI

33a 167 ± 7 1.2± 0.7 3.6 ± 0.7 3 2.6 ± 1.7 2
33b 22 ± 7 0.04 ± 0.03 3.0 ± 0.1 75 2.7 ± 0.1 75
33c 2 ± 1 0.1 ± 0.03 3.0 ± 0.5 30 2.5 ± 0.2 25
33d 4 ± 1 0.1 ± 0.05 2.1 ± 0.3 21 5 ± 2 50
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was replaced by chlorine at C-4 pyrimidine, resulting in intermediate 38 for further mod-
ification at this position. Aryl amine was introduced to produce 4-aryl amino derivative 
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Mohamed et al. [40] reported the synthesis of non-nucleoside antiviral agents for hep-
atitis C virus (HCV), which has the highest infection rate in Egypt and causes 350,000 deaths
worldwide annually. The HCV NS5B polymerase functioned as RNA-dependent RNA
polymerase (RdRp) and enabled the catalyzation of viral genome synthesis [41]. The syn-
thesis of pyrrolopyrimidine derivative 39 as a non-nucleoside purine scaffold to inhibit
HCC NS5B polymerase is summarized in Scheme 9. The benzoin 34 was condensed with
aryl amine to form intermediate 35, which then reacted with malononitrile to produce pyr-
role derivative 36 via Dakin West reaction. The 2-aminopyrrole-3-carbonitrile 36 coupled
with formic acid to furnish associated pyrrolopyrimidine derivative 37. The carbonyl was
replaced by chlorine at C-4 pyrimidine, resulting in intermediate 38 for further modification
at this position. Aryl amine was introduced to produce 4-aryl amino derivative 39.
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phenone 40 was coupled with 3,4-dimethoxybenzaldehyde via aldol condensation to af-
ford chalcone 41, which was reacted with hydrogen peroxide to form epoxide 42. The 
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Scheme 9. Synthesis of anti-HCV agents targeting HCV polymerase (NS5B).

Compound 39 exhibited the highest antiviral activity in the study. The arylamino
group (“) enhanced the toxicity of the scaffold in HCV genotype 4a cells. In the molec-
ular docking, it was found that 39 bound strongly with Mg2+ in the docked site. Other
measurements in the docking system proved that 39 was stable in the binding pocket and
improved binding affinity. As shown in Figure 7, the carbonyl C=O of Gln446 in the HCV
RdRp catalytic site can form a hydrogen bond with aniline NH. At the same time, the NH2
interacted with nitrogen in the pyrimidine ring to enhance the binding of compound 39 to
the inhibition site.
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Pyrimidine derivatives were also employed in the study of anti-HSV activity. Currently,
Acylclovir (Figure 8) is one of the drugs used to treat the herpes simplex virus (HSV).
However, in some cases, the viruses can resist the drug; hence, new agents are continuously
developed and tested for antiviral activity. Mohamed et al. [42] reported the synthesis
of pyrimidine derivatives as anti-HSV agents. As shown in Scheme 10, acetophenone 40
was coupled with 3,4-dimethoxybenzaldehyde via aldol condensation to afford chalcone
41, which was reacted with hydrogen peroxide to form epoxide 42. The condensation of
compound 42 with thiourea resulted in the cyclic formation of compound 43, which could
either react with 3-chloroacetylacetone to produce compound 44 or be condensed with
2-bromopropionic acid to form methylthiazolo compound 45.
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Scheme 10. Synthesis of pyrimidine derivatives as anti-HSV agents. 

For the antiviral activity of compounds 44 and 45, a plaque reduction assay was con-
ducted using concentrations of 2 and 5 μg/mL, and the viral count was recorded after 
adding the compounds. As shown in Table 6, compounds 44 and 45 showed a slightly 
higher percentage of inhibition with the 5 μg/mL concentration. Compound 44 was more 
effective than compound 45, achieving 100% inhibition with 5 μg/mL in the test sample. 
As shown in Figure 8, both compounds showed a higher percentage of inhibition at much 
lower concentrations compared to Acyclovir®. For the antiviral mechanism, 44 and 45 
showed viricidal activity that possibly altered viral epitopes to inhibit binding to cells. 
Besides viricidal activity, compound 44 also has the potential to interfere with the replica-
tion processes of HSV. The two compounds are highly promising as potential new anti-
HSV agents.  

Table 6. The calculated percentage of inhibition in the plaque reduction assay of compounds 44 and 
45 [42]. 
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During the current COVID-19 pandemic, Remdesivir® (Figure 9) was approved for 
use in the treatment of patients with confirmed SARS-CoV-2 infection. Remdesivir® is an 
adenosine nucleoside prodrug that exhibits a broad antiviral spectrum. Due to the rapid 
emergence of coronavirus infections that threaten millions of people in the global 
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For the antiviral activity of compounds 44 and 45, a plaque reduction assay was
conducted using concentrations of 2 and 5 µg/mL, and the viral count was recorded after
adding the compounds. As shown in Table 6, compounds 44 and 45 showed a slightly
higher percentage of inhibition with the 5 µg/mL concentration. Compound 44 was
more effective than compound 45, achieving 100% inhibition with 5 µg/mL in the test
sample. As shown in Figure 8, both compounds showed a higher percentage of inhibition
at much lower concentrations compared to Acyclovir®. For the antiviral mechanism, 44
and 45 showed viricidal activity that possibly altered viral epitopes to inhibit binding to
cells. Besides viricidal activity, compound 44 also has the potential to interfere with the
replication processes of HSV. The two compounds are highly promising as potential new
anti-HSV agents.

Table 6. The calculated percentage of inhibition in the plaque reduction assay of compounds 44 and
45 [42].

ID Concentration (µg/mL) Viral Count
(Control)

Viral Count
(Extract)

%
Inhibition

44
2 0.84 × 107 0.08 × 107 90
5 0.84 × 107 0 100

45
2 0.84 × 107 0.08 × 107 90
5 0.84 × 107 0.04 × 107 95

During the current COVID-19 pandemic, Remdesivir® (Figure 9) was approved for
use in the treatment of patients with confirmed SARS-CoV-2 infection. Remdesivir® is
an adenosine nucleoside prodrug that exhibits a broad antiviral spectrum. Due to the
rapid emergence of coronavirus infections that threaten millions of people in the global
community, a safe, approved drug like Remdesivir® was temporarily employed for treat-
ment. It showed in vitro antiviral activity with animal and human coronaviruses, including
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SARS-CoV-2. As shown in Figure 10, Remdesivir® can effectively inhibit viral infection at a
low concentration (EC50 = 0.77 µM) with a high SI value (129.87 µM). The antiviral activity
of Remdesivir® was confirmed with an immunofluorescence assay. The results indicated
complete viral reduction, as the viral nucleoproteins could not be observed with a 3.70 µM
concentration at 48 h post-infection [43].
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tions with crucial residues compared to ATP interactions to inhibit NSP12. The adenosine 
of ATP and the Remdesivir® core also interacted differently from each other in the binding 
pocket. Additionally, RemTP affected D618, which is an essential residue for the function 
of SARS-CoV-2 RdRp by forming a hydrogen bond with K798. The binding free energies 
of ATP and RemTP were represented by FEP calculations, which showed that RemTP 
binds more strongly than ATP in the pocket of SARS-CoV-2 RdRp with approximately 
800 folds in Kd value to effectively inhibit SARS-CoV-2 RdRp activity in RNA reproduc-
tion [44].  
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with Remdesivir® treatment [43].

Remdesivir® was originally targeted to inhibit RNA-dependent RNA polymerase
(RdRp), which has adenosine triphosphate (ATP) as the main substrate. Zhang et al. [44]
reported the homology modeling of NSP12 (the RdRp complex with multiple nonstructural
protein units) of SARS-CoV-2 RdRp (SARS-CoV-2 NSP12). When accumulated in cells,
Remdesivir® was hydrolyzed and coupled with triphosphate (RemTP) to compete with
ATP actively. As shown in Figure 11, the triphosphate of RemTP has other interactions
with crucial residues compared to ATP interactions to inhibit NSP12. The adenosine of
ATP and the Remdesivir® core also interacted differently from each other in the binding
pocket. Additionally, RemTP affected D618, which is an essential residue for the function
of SARS-CoV-2 RdRp by forming a hydrogen bond with K798. The binding free energies of
ATP and RemTP were represented by FEP calculations, which showed that RemTP binds
more strongly than ATP in the pocket of SARS-CoV-2 RdRp with approximately 800 folds
in Kd value to effectively inhibit SARS-CoV-2 RdRp activity in RNA reproduction [44].
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In addition, Grein et al. [45] further investigated Remdesivir® clinical application
conducted within a cohort of hospitalized patients diagnosed with COVID-19. The data
were collected from 53 patients across three continents. The majority of patients (34 out of
53) had severe symptoms and were under invasive oxygen support. The treatment plan
was designed for a 10-day course with 200 mg administered intravenously on day 1 and
100 mg daily for the next nine days. Only 40 patients completed ten days of treatments,
while others discontinued treatment due to serious adverse effects. After 18 days of day one
treatment, 12 patients (100%) previously with no oxygen or low-flow oxygen support were
discharged. Five out of seven patients (71%) previously under non-invasive ventilation
were also discharged. Nineteen out of thirty-four showed improvement within the oxygen-
support group, as they were discharged without oxygen aid and under non-invasive
oxygen support. The other patients in this group either showed no improvement (9 out of
34) or died (6 out of 34). About 83% experienced various common to serious adverse effects.
Overall, Remdesivir in this study showed improvement in the treatment of COVID-19 based
on the oxygen support scale. Among the patients, 68% showed improvement in oxygen
supporting status or were fully discharged, with a 13% mortality rate after treatment.

5. Pyrazole

Pyrazole is an aromatic heterocycle composed of a five-membered ring with two
nitrogens. Pyrazole core structures have been employed in wide applications from natural
components to pharmaceutical activities [46]. With high electron densities of nitrogen at
positions 1 and 2, pyrazole is considered as a π-excessive heterocycle. The ring is avail-
able for various modifications with multiple reagents in synthetic reactions. Substituted
pyrazole can form chelation with metal ions to inhibit enzymes [47].

Currently, HIV-1 is still considered one of the most threatening infectious diseases to
people with a high rate of infection. The crucial step of viral infection is the integration
of viral RNA into host DNA by reverse transcriptase (RT). RT is composed of a DNA
polymerase domain and a ribonuclease H domain (RNase H) [48]. Messore et al. [49]
reported the synthesis of specific inhibitory analogs to target RNase H. As shown in
Scheme 11, the synthesis started with the aldol condensation of substituted benzaldehyde 46
with acetone, then its reaction with TosMIC to furnish pyrrole derivative 47. Compound 47
coupled with substituted aryl or alkyl chloride for the N-substitution of pyrrole ring to form
compound 48. Diethyl oxalate was coupled with intermediate 48 for aldol condensation
product 49. Then, hydrazine reacted with compound 49 for the formation of the pyrazole
ring of product 50. The ester of product 50 was hydrolyzed under a basic condition to yield
carboxylic acid for a separate analysis of antiviral activity.
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Scheme 11. Synthesis of inhibitors against HIV-1 RNase H.

In in vitro screening of RNase H inhibitory activity, compound 50 showed better
inhibitory activity of 0.27 ± 0.05 µM compared to its ester version 50 (17.8 ± 1.2). However,
compound 50 had a better effective concentration (EC50), higher cytotoxicity, and selectivity
index; hence, compound 50 was chosen for analysis in the docking study, as shown in
Figure 12. The nitrogen of pyrazole ring and ester moiety formed ligands with two
magnesium ions in the core of RNase H ligands. The ester moiety also had hydrogen
interaction with H539, while the substituted benzyl group was possibly linked with W535
and K540 by π–cation interaction. The phenyl moiety was linked with Y501, S499, Q475,
E478, N474, and Q475. The scaffold exhibited high potency with the HIV-1 RT pocket and
could be optimized for drug development.
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Annually, the influenza virus causes respiratory infection, known as flu, in millions
of people in the United States and worldwide. A vaccine is available to prevent the
massive outbreak of the disease, but it does not efficiently protect children and elders
from the infection. Hence, inhibitors were continuously developed for a long-term battle
against influenza viruses. Among many molecular drug targets of influenza viruses, only
neuraminidase (NA) inhibitors were approved for treatment [50,51]. Meng et al. [52]
synthesized pyrazole derivatives as neuraminidase inhibitors. As shown in Scheme 12,
4-methoxy substituted benzaldehyde 52, phenylhydrazine 53, and ethyl acetoacetate 54
were allowed to react in the presence of cerium (IV) ammonium nitrate (CAN) and PEG 400
in a one-pot synthesis. The reaction time and yield were optimized with CAN compared to
other catalysts to yield pyrazole derivative 55.
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RNA retrovirus using the reverse transcription of RNA progenome. Jia et al. [53] devel-
oped non-nucleoside HBV inhibitors to combat HBV. As shown in Scheme 13, diethyl 
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Scheme 12. One-pot synthesis of influenza neuraminidase inhibitor.

As shown in Table 7, compound 55 has a high potency to inhibit the replication of
viruses with an IC50 of 5.4 ± 0.34 µM and a high selectivity index of 102.20 µM in the assay
with the influenza A (H1N1) virus. Additionally, the analog also showed great potency
(1.32 ± 0.06 µM) against neuraminidase. As shown in Figure 13, the molecular docking of
compound 55 in the 3D structure of neuraminidase (NA) was observed. Compound 55 can
fit into the binding pocket of neuraminidase and form two hydrogen bonds with residues
Arg371 and Arg118 from the methoxy of the compound. The aromatic ring also stabilized
with Arg152 through π–cation interaction. With all of the interacted factors in the binding
site of NA, compound 55 efficiently exerted inhibitory activity against the targeted protein.

Table 7. The inhibitory activity of compound 55 against influenza H1N1 virus and neuraminidase.

Compound CC50 (µM)
Influenza H1N1 Virus NA Inhibitor

IC50 (µM)IC50 (µM) SI (CC50/ IC50) (µM)

55 552.14 ± 187.34 5.4 ± 0.34 102.20 1.32 ± 0.06
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Hepatitis B is another viral infection that is caused by a member of the Hepadnaviridae
family. Hepatitis B virus (HBV) has infected millions of people worldwide and the deaths
of more than 700,000 people per year. Its replication process is similar to that of RNA
retrovirus using the reverse transcription of RNA progenome. Jia et al. [53] developed
non-nucleoside HBV inhibitors to combat HBV. As shown in Scheme 13, diethyl carbonate
56 coupled with 4-methylpentan-2-one to produce diketone 57. Compound 57 reacted
with 1,1-dimethoxy-N, N-dimethylmethanamine for α-substitution to furnish compound
58. The substituted hydrazine condensed with compound 58 for pyrazole ring formation
of compound 59. Pyrazole derivative 60 was produced via base hydrolysis of compound
59. The carboxylic acid of 60 continued to react with an aryl-substituted amine under the
coupling condition to form amide 61.
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As shown in Table 8, compound 61 demonstrated excellent cytotoxicity in the SAR
study. Comparing the inhibitory activity, compound 61 seemed to inhibit viral proteins
(HBeAg) of HBV more effectively with a lower IC50 (2.22 µM) and corresponding selectivity
index (37.69 µM) than the surface antigen (HBsAg). According to the study, compound 61
showed moderate inhibitory activity of approximately 50% against HBV DNA replication.
As a result, compound 61 needs further investigation to optimize its inhibitory properties
in targeting viral proteins and inhibiting the fusing of viral DNA into host cells.

Table 8. The SAR study of compound 61 against HBV.

Compound CC50 (µM)
HBsAg HBeAg

IC50 (µM) SI IC50 (µM) SI

61 83.67 24.33 3.44 2.22 37.69

6. Quinoline

Quinoline is a heterocycle made of benzene and a fused pyridine ring found in shale oil,
coal, and petroleum. This heterocycle attracted attention in organic chemistry for its feasible
synthesis and availability for substitution modifications. Quinoline derivatives have been
employed in various applications, including those in the pharmaceutical, bioorganic, and
industrial chemistry fields [54]. Quinoline skeletons exhibited a broad range of antiviral
activities and were submitted for potential clinical applications.

With the progress in developing inhibitors at the RNase H of HIV RT, quinoline
scaffolds also joined the race to combat HIV-1. While HIV RT synthesizes DNA from viral
RNA, RNase H plays a crucial role in degrading RNA to form double-stranded DNA.
Overacker et al. [55] synthesized quinoline derivatives to target HIV RNase H. As shown
in Scheme 14, the methanolysis of carbamate moiety in compound 62 took place to afford
quinol derivative 63, which then underwent Williamson ether synthesis, converting to
isopropyl ether to furnish product 64.
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As shown in Table 9, quinoline derivative 64 required a low concentration for antiviral
activity and a high concentration for cytotoxicity in the in vitro infectivity assay with
pseudoviruses. The compound also had a high selectivity index to inhibit the growth of
HIV. For the mode of action, the compound showed better inhibition against the HIV-1
RNase H enzyme compared to weak inhibition (>100 µM) in HIV-1 integrase and HIV-1
RT. As shown in Figure 14, no changes could be detected from the UV spectra, indicating
that compound 64 did not chelate with Mg2+ ion in RNase H’s core despite varying
concentrations. The structure possibly acted differently in a cell environment or worked as
a non-competitive inhibitor of RNase H. This compound was a lead compound for further
modification to target RNase H.

Table 9. The inhibitory activity of compound 64 against different HIV strains and HIV-1 RNase H.

Compound
HIV-IC50 (µM) CC50 (µM)

TZM-bl
SI (CC50/

IC50)
IC50 (µM)

HIV-1 RNase HHXB2 YU2 89.6

64 6.7 ± 0.9 8.9 ± 0.6 4.7 ± 1.6 68.5 ± 17.1 14.6 46.8 ± 7.3
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candidate MK-5172 (Figure 15), with a quinoline moiety instead of quinoxaline. As shown 
in Scheme 15, compound 65 was synthesized by linking the amine derivative with quino-
line via five steps. The hydroxyl group was protected using N-Boc-4-hydroxypiperidine 
before the methyl ester was hydrolyzed and coupled with an amine-acyl sulfonamide 
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Due to the rapid emergence of hepatitis C virus (HCV) drug resistance, Shah et al. [56]
reported the synthesis of quinoline derivatives as HCV drug candidates to target the
NS3/4a protease, which plays crucial roles in processing viral protein and replicating viral
RNA. It also inhibits the production of interferons that can enhance the immune system
against viral infection [57]. The new scaffold was developed based on previous clinical
candidate MK-5172 (Figure 15), with a quinoline moiety instead of quinoxaline. As shown
in Scheme 15, compound 65 was synthesized by linking the amine derivative with quinoline
via five steps. The hydroxyl group was protected using N-Boc-4-hydroxypiperidine before
the methyl ester was hydrolyzed and coupled with an amine-acyl sulfonamide chain. The
N-Boc-piperidine was then deprotected for the addition of bicyclic piperidine to produce
product 66.
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Compound 66 exhibited improved potency against HCV genotype 3a and A165 mu-
tants compared to reference MK-5172 and had a moderate pharmacokinetic profile in rats 
in the SAR study. Compared to MK-5172, the replacement of quinoxaline for quinoline in 
compound 66 enhanced its interaction with the binding pocket HCV NS3 protease. As 
shown in Figure 15, the substitution at C-4 of quinoline mainly improved the interaction 
with D79. The replacement of t-butyl with cyclohexane near P3 or modifying cyclopropyl 
group seemed to not impact the activity of the scaffold in the HCV NS3 protease binding 
pocket.  
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Wang et al. [58] reported the synthesis of indoloquinoline or quindoline derivatives 
as potential anti-influenza A agents to counter drug resistance of viral strains. As shown 
in Scheme 16, the 11-chloroquindoline 67 reacted with benzene-1,2-diamine to produce 
compound 68. In the study, benzene-1,2-diamine could be changed to 1,3 and 1,4-diamine, 
which then further affected the position of carboxyphenylboronic acid for different ana-
logs of the scaffold. The final product, compound 69, was produced by the coupling reac-
tion of compound 68 and 2-carboxyphenylboronic acid. 
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Scheme 16. Synthesis of quindoline derivative 69 as anti-influenza A agent. 

Compound 69 exhibited superior properties compared to other derivatives in this 
scaffold with low cytotoxicity. As shown in Figure 16, the plaque reduction assay showed 
that plaque development was effectively inhibited, indicating that the compound could 
inhibit the replication of influenza H1N1 and H3N1. In the confocal imaging, compound 
69 was detected in the cytoplasm to target viral neuraminidase and prevent the import of 
viruses. Compound 69 could interfere with cellular signaling pathways that are essential 
for viral replication and improve the survival rate of the mouse model in a histopathology 
study. The quindoline with boronic acid possessed broad anti-influenza A activity for fu-
ture references and applications. 

Figure 15. Visualization of 66 in the HCV NS3 gt-1b protease active site for interaction with sub-
sites [56].
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Compound 66 exhibited improved potency against HCV genotype 3a and A165 mu-
tants compared to reference MK-5172 and had a moderate pharmacokinetic profile in rats in
the SAR study. Compared to MK-5172, the replacement of quinoxaline for quinoline in com-
pound 66 enhanced its interaction with the binding pocket HCV NS3 protease. As shown
in Figure 15, the substitution at C-4 of quinoline mainly improved the interaction with
D79. The replacement of t-butyl with cyclohexane near P3 or modifying cyclopropyl group
seemed to not impact the activity of the scaffold in the HCV NS3 protease binding pocket.

Wang et al. [58] reported the synthesis of indoloquinoline or quindoline derivatives
as potential anti-influenza A agents to counter drug resistance of viral strains. As shown
in Scheme 16, the 11-chloroquindoline 67 reacted with benzene-1,2-diamine to produce
compound 68. In the study, benzene-1,2-diamine could be changed to 1,3 and 1,4-diamine,
which then further affected the position of carboxyphenylboronic acid for different analogs
of the scaffold. The final product, compound 69, was produced by the coupling reaction of
compound 68 and 2-carboxyphenylboronic acid.
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Compound 69 exhibited superior properties compared to other derivatives in this
scaffold with low cytotoxicity. As shown in Figure 16, the plaque reduction assay showed
that plaque development was effectively inhibited, indicating that the compound could
inhibit the replication of influenza H1N1 and H3N1. In the confocal imaging, compound
69 was detected in the cytoplasm to target viral neuraminidase and prevent the import of
viruses. Compound 69 could interfere with cellular signaling pathways that are essential
for viral replication and improve the survival rate of the mouse model in a histopathology
study. The quindoline with boronic acid possessed broad anti-influenza A activity for
future references and applications.
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at different concentrations [58].

In the early study of COVID-19, besides Remdesivir®, Chloroquine®, an anti-malarial
drug (Figure 17), exhibited antiviral activity against 2019-n-CoVs infection in vitro. As
shown in Figure 18, Chloroquine® could effectively inhibit viral infection at a low con-
centration and with good cytotoxicity compared to other FDA-approved antiviral agents.
Additionally, Chloroquine® also effectively reduced viral copies with 10 µM after 48 h
post-infection in the nucleoprotein through immunofluorescence assay [43].
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Figure 18. (A) Percentage of inhibition measured by qRT-PCR and cytotoxicity of Chloroquine®

when treating 2019 n-CoV infected Vero E6 cells. (B) Immunofluorescence assay of viral infection
with Chloroquine® treatment [43].

As shown in Figure 18, Chloroquine showed its effectiveness in blocking virus infec-
tion at EC50 = 1.13 µM concentration with a high selectivity index (SI). The immunofluo-
rescence assay also confirmed the efficiency of Chloroquine in inhibiting viruses, as the
viral nucleoproteins were eliminated completely with 10 µM. Together with Chloroquine®,
Hydroxychloroquine® was also tested for its anti-2019-nCoV activity. Hydroxychloro-
quine possessed less toxicity in cells compared to Chloroquine® with anti-inflammatory
properties [59]. However, both Chloroquine® and Hydroxychloroquine® have side effects,
interfering with lysosomal activity and causing cardiac and skeletal muscle problems [60].

7. Conclusions

Nitrogen-containing heterocycle derivatives have a long history against a broad spec-
trum of viral agents. Their structures are similar to the biological components that are vital
for the infection mechanism and replication of viruses. Incorporating nitrogen-containing
heterocycles enhances the binding affinity of the scaffolds by increasing interaction with
residues and matching with the pocket shape to deactivate the function of targeted en-
zymes. This article summarized the history, synthesis, and antiviral applications of various
nitrogen-containing heterocycle scaffolds, such as indoles, pyrroles, pyrimidines, pyrazoles,
and quinolines. The scaffolds were applied to a variety of viruses, ranging from HIV and
HCV/HBV to VZV/HSV, SARS-CoV, and influenza viruses. Some approved scaffolds
exhibit multiple functions in targeting different viruses, similar to applying Remdesivir®,
Chloroquine®, and Hydrochloroquine® for the recent SARS-Co-V 2 viruses. Most scaffolds
exhibited potential antiviral activity that could lead to further optimization and in vivo
studies for drug development. For example, for HCV treatment, FDA-approved drugs such
as Grazoprevir, Voxilaprevir, and Glecaprevir were modified from scaffold 66. Viruses have
high rates of emergence that demand continual drug discovery of new antiviral agents.
Research on nitrogen heterocycles will progressively expand for future drug development.
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