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Abstract: In this research work, a hematite (α-Fe2O3) nanoparticle was prepared and then mixed
with oxidized multi-walled carbon nanotubes (O-MWCNT) to form a stable suspension of an α-
Fe2O3/O-MWCNTs nanocomposite. Different characterization techniques were used to explore the
chemical and physical properties of the α-Fe2O3/O-MWCNTs nanocomposite, including XRD, FT-IR,
UV-Vis, and SEM. The results revealed the successful formation of the α-Fe2O3 nanoparticles, and the
oxidation of the MWCNT, as well as the formation of stable α-Fe2O3/O-MWCNTs nanocomposite.
The electrochemical behaviour of the α-Fe2O3/O-MWCNTs nanocomposite was investigated using
cyclic voltammetry (CV) and linear sweep voltammetry (LSV), and the results revealed that modifica-
tion of α-Fe2O3 nanoparticles with O-MWCNTs greatly enhanced electrochemical performance and
capacitive behaviour, as well as cycling stability.

Keywords: hematite; nanoparticle; MWCNT; electrochemical performance; capacitive behaviour

1. Introduction

Nanotechnology is a general term focused on the manipulation and applications of
nanoparticles (NPs), such as metals, metal oxides, semiconductors, ceramics, and poly-
mers, due to their outstanding structural, physicochemical and morphological properties,
which allows them to be used in a wide variety of applications, especially in the energy
sector. For example, many metal oxides are used as electrodes for lithium-ion batteries
(LIBs) due to their outstanding and efficient surface area, as well as for their chemical
suitability and stability, as they intercalate/deintercalate lithium ions into their layered
structure [1–3], which significantly enhances LIB storage capacities even beyond their
theoretical values [4]. Hematite (α-Fe2O3) nanostructures are one of the promising metal
oxide nanoparticles which have attracted the attention of researchers and are used for a
variety of applications, including splitting of water and the production of hydrogen gas [5],
magnetic storage devices [6], potential gas sensors [7], targeted drug delivery [8], and
biomedical applications [9], as well as LIB production [10–13].

Oxygen evolution reaction (OER) has become the common power source for sus-
tainable energy development technology, especially the photoelectrochemical (PEC) cells,
which use solid-state electrodes in a similar way to conventional electrolysers such as
in oxygen evolution reactions (OER, oxidation) and hydrogen evolution reactions (HER,
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reduction), which take place at two different solid/liquid junctions. In PEC cells, at least
one of the electrodes consists of a semiconductor capable of absorbing the incoming light, in
which a depletion (or space-charge, SC) region is formed at equilibrium, and the photogen-
erated charges are separated by the electric field in the SC region and travel to a solid/liquid
junction where they take part in either the HER or the OER. The electro-catalysts of non-
noble metals have been interesting in this field; reportedly, Hematite has an outstanding
performance of oxygen evolution reaction (OER), with an optical narrow bandgap around
~2.2 eV, which absorbs light up to 560 nm and which allows it to absorb 40% of solar irradi-
ance. Hematite is a naturally abundant, low-cost material, and has good chemical stability
in aqueous solutions in a broad pH range. The position of the valence band is suitable
for oxygen evolution, which makes it an ideal candidate photoanode material for solar
water splitting [14,15]. Conversely, hematite has shown low efficiency because of its poor
electrical conductivity. The critical reasons are high recombination of electrons and holes,
low mobility of the holes/short holes diffusion length and trapping of electrons by oxygen
deficiency sites. Various techniques are reported in the literature to improve the efficiency
of hematite by inserting the effective materials in the lattice without disturbing the structure
of the crystal. Enhancing the efficiency of hematite for photoelectrochemical water splitting
was carried out by doping with elements/ions such as Ti4+ [16], manganese [17], zirconium
and tin [18], tantalum [19], boron [20], phosphorous [21], rhodium [22], and tetravalent
dopants (Si4+, Sn4+, Ti4+, and Zr4+) [23]. Few works have been dedicated to doping with
carbon-based materials such as carbon dots [24,25] and graphene [26,27]. Although, one
of the computational studies showed that the water splitting of hematite could be signifi-
cantly improved by forming composites with carbon nanotubes [28]; the number of studies
focusing on this topic is scarce in the literature [29].

In this work, the electrochemical behaviour of the hematite/oxidized multi-walled
carbon nanotubes (O-MWCNT) nanocomposite was studied and explored. First, hematite
was prepared using the hydrothermal method and was then mixed with the oxidized
MWCNTs to form a stable nanocomposite. The hematite/O-MWCNTs nanocomposite was
then characterized by XRD in order to explore the chemical and physical characteristics.
The electrochemical behaviour of the O-MWCNT/hematite nanocomposite were investi-
gated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) to explore their
possible applications.

2. Experimental
2.1. Chemicals and Materials

Ferric chloride hexahydrate (FeCl3·6H2O) was obtained from Lobachemie and was
used as received without further purification. Multi-walled carbon nanotubes (MWCNT)
were provided from Sigma-Aldrich (St. Louis, MI, USA). Sulfuric acid—95–99% (H2SO4)
and nitric acid—65% (HNO3) were purchased from Chem-Lab. (Bunkyo, Tokyo). Potassium
hydroxide (KOH) was obtained from Fluka Chemie AG (Buchs, Switzerland). All aqueous
solutions were prepared with distilled water.

2.2. Preparation of Hematite (α-Fe2O3) Nanoparticles

The hematite nanoparticles were prepared according to the procedure used by Faust
et al. [30]. Initially, 30 mL solution of 0.1 M FeCl3·6H2O was dissolved in distilled water
and added dropwise into 120 mL stirred boiling water; subsequently, the solution was
refluxed for 5 min and finally cooled in an ice bath. The colloidal α-Fe2O3 suspension had
a dark red colour and was acidic:

2 FeCl3 + 3 H2O→ α-Fe2O3 + 6 HCl

The colloid was dialyzed by using a dialysis tube (Medicell International, MWCO
12,000–14,000) in the distilled water, which changed several times until the pH had reached
pH~6 and the electrical conductivity was below 20 S cm−1. The product was kept in
the dark.
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2.3. Oxidation of MWCNT

The purification and oxidation of MWCNTs were performed as follows: 1.0 g of the
pristine MWCNTs was added to 200 mL solution of concentrated HNO3/H2SO4 (1:3; v/v)
in an ice bath. The mixture was sonicated for 4 h in an ultrasonic bath at 40 ◦C. The
resulting solution was then transferred to a 1000 mL beaker with distilled water to reduce
the acidity of the product, which was then neutralized by using a dialysis tube (Medicell
International, MWCO 12,000–14,000) in the distilled water, that were changed several times
until achieving a neutral pH.

2.4. Preparation of α-Fe2O3/O-MWCNTs Nanocomposite

The hematite was deposited onto the surface of MWCNTs by mixing at RT for one
hour under ultrasonication with different concentrations of MWCNT.

All prepared suspensions before and after mixing were dried overnight in an oven at
50 ◦C. For further characterisation, the solutions and the powder were obtained in the dark.

For XRD measurements, the resulting powder was calcined at 200 ◦C for 2 h at a
heating rate of 5 ◦C min−1 in a preheated muffle furnace.

2.5. Electrode Fabrication

The α-Fe2O3 and α-Fe2O3/O-MWCNTs electrodes were prepared for electrochemical
investigations. Approximately 50 µL of the prepared suspensions was dropcasted upon
the glassy carbon electrode (GCE) in a rotating ring disk electrode system (RRDE), which
was used as a working electrode.

2.6. Characterization

The optical absorptions of the prepared hematite with different pH values were
investigated by using a MultiSpec-1501 UV–Vis Spectrophotometer (SHIMADZU). The
determination of the functional group on the surface of the MWCNTs was performed
with a PerkinElmer Spectrum 100 infrared spectrometer (FTIR spectra), where the dried
samples were mixed with potassium bromide (ratio of 1:10) and pressurized to produce
KBr pellet for FTIR measurements. The identification of crystalline phases of the samples
was recorded using a Bruker D2 Phaser X-ray diffractometer. The XRD measurements
were carried out by CuKα radiation (1.5418 Å). The XPS experiments were performed on a
Kratos Axis Ultra DLD instrument equipped with a monochromatic Al Kα X-ray source
(hν = 1486.6 eV) operating at a power of 75 W and under UHV conditions in the range of
∼10−9 mbar. All spectra were recorded in hybrid mode using electrostatic and magnetic
lenses and an aperture slot of 300 × 700 µm. The survey and high-resolution spectra were
acquired at fixed analyser pass energies of 160 and 20 eV, respectively. The samples were
mounted in floating mode in order to avoid differential charging. Thereafter, XPS spectra
were acquired using charge neutralization. The XPS experiments were performed on a
Kratos Axis Ultra DLD instrument equipped with a monochromatic Al Kα X-ray source
(hν = 1486.6 eV) operating at a power of 75 W and under UHV conditions in the range of
∼10−9 mbar. All spectra were recorded in hybrid mode using electrostatic and magnetic
lenses and an aperture slot of 300 × 700 µm. The survey and high-resolution spectra were
acquired at fixed analyser pass energies of 160 and 20 eV, respectively. The samples were
mounted in floating mode in order to avoid differential charging. Thereafter, XPS spectra
were acquired using charge neutralization.

2.7. Electrochemical Measurements

The electrochemical measurements included cyclic voltammetry (CV) and linear sweep
voltammetry (LSV), and the electrochemical impedance spectroscopy (EIS) studies were
performed using the CorrTest electrochemical workstation with an RRDE three-electrode
system. The working electrodes were fabricated by dropcasting a sample as described in
the experimental Section 2.5. The Ag/AgCl was the reference electrode and Pt wire the
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counter electrode in 1.0 M KOH as the electrolyte. CV and LSV curves of α-Fe2O3 were
recorded at a potential of 100 Hz and with a scan rate of 100 mV s–1.

3. Results and Discussion
3.1. Characterization

The optical properties of the freshly prepared α-Fe2O3 nanoparticles at various pH val-
ues were investigated using UV–Vis absorption spectroscopy, and the results are presented
in Figure 1. It is clear that the absorption of the colloidal α-Fe2O3 begins below 560 nm,
indicating that the prepared α-Fe2O3 is a visible-light-active photocatalyst. Moreover, the
absorption below 560 nm is due to the absorption of shorter wavelengths of the visible
region (yellow to ultraviolet photons), and the good transmission of red light which yields
the characteristic red colour of hematite.
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Figure 1. The UV–Visible absorption curves of hematite nanoparticles at different pH values.

FT-IR was used to investigate the successful oxidation of the MWCNTs and preparation
of α-Fe2O3, as well as the α-Fe2O3/O-MWCNTs nanocomposite, and the results are shown
in Figure 2. The FTIR spectrum of the pristine MWCNTs showed the characteristic vibration
peaks at 1680–1640 cm−1 (C=C stretch) and 1500–1400 cm−1 (C-C stretch) due to the carbon
hexagonal ring of the MWCNT. In contrast, the oxidized MWCNTs (O-MWCNT) spectrum
showed a clear and strong absorption peak at 1730 cm−1 and a weak peak at 1130 cm−1,
which could be attributed to the stretching vibration of C=O corresponding to the stretching
vibration of C=O from the carboxylic acid groups (-COOH) and C-O stretching from either
a phenol or lactone, which confirmed the successful oxidation of the MWCNTs [31]. The
FTIR spectrum of α-Fe2O3 showed characteristic Fe-O sharp peaks at 478 and 568 cm−1

due to the vibrational mode [32]. Furthermore, the FTIR spectrum of the α-Fe2O3/O-
MWCNTs nanocomposite showed three new peaks in the range of 1760–1100 cm−1, which
appeared after the mixing of α-Fe2O3 with O-MWCNT, and band shifting occurred from
600 to 628 cm−1, which indicated that the hematite surface was modified by the oxidized
MWCNT. A broad peak at approximately 3500 cm−1 for all the investigated samples could
be assigned to O-H stretching, due to moisture from the environment, and/or alcoholic,
phenolic, or carboxylic groups at the oxidized MWCNTs surface due to oxidation.
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MWCNTs nanocomposite.

Figure 3 illustrates the XRD patterns of the prepared α-Fe2O3 nanoparticles, O-
MWCNTs and the α-Fe2O3/O-MWCNTs nanocomposite. According to the XRD, the
characteristic peaks of the hexagonal crystal system α-Fe2O3 nanoparticles were identi-
fied from the diffraction peaks at 2θ = 24.20◦, 33.21◦, 35.70◦, 40.92◦, 49.60◦, 54.15◦, 57.90◦,
62.50◦, and 64.10◦, related to (012), (104), (110), (113), (024), (116), (112), (214), and (300),
respectively (JCPDS card no 96-900-9783). Moreover, the sharp peaks of the α-Fe2O3
nanoparticles indicate the highly crystalline structure of the hexagonal crystal system, with
an average crystallite size of 18.55 nm, as calculated from the Scherer equation. Conversely,
O-MWCNTs exhibits two diffraction peaks: one at 26.14◦ (002 plane) and the other at 44.22◦

(100 plane), corresponding to graphitic carbon (JCPDS card no 89-8487). Furthermore, the
XRD pattern of the α-Fe2O3/O-MWCNTs nanocomposite exhibits the characteristic peaks
of both the hexagonal crystal system of α-Fe2O3 nanoparticles and the oxidized MWCNTs.

The surface binding state and elemental speciation of α-Fe2O3 and α-Fe2O3/O-
MWCNTs composite were analysed by XPS, and the wide-scan XPS survey spectra are
presented in Figure 4. The XPS survey spectrum of α-Fe2O3 showed sub-peaks at binding
energies 711.3, 714.6, and 718.8 eV, as well as their corresponding Fe2p11/2 sub-peaks,
corresponding to Fe3+ in α-Fe2O3 NPs; these sub-peaks are consistent with the oxygen
bonds indicated as O1s A, O1s B, and O1s C at binding energies 529.6, 530.7, and 532.3 eV,
respectively [33]. In addition, the presence of an insignificant amount of carbon and chlo-
rine within the α-Fe2O3 sample may be attributed to the preparation process [33]. The XPS
survey spectrum of the α-Fe2O3/O-MWCNTs composite and the binding energies for the
C 1s and O 1s peaks were observed at approximately 284.5 and 531.0 eV, respectively, corre-
sponding to the carbon and oxygen of the O-MWCNTs [34]. In addition to the sub-peaks of
the α-Fe2O3, there were no signs of any other impurities in both samples according to the
XPS analysis.
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3.2. Electrochemical Measurements

The prepared α-Fe2O3 nanoparticles and its nanocomposite were investigated as an
electrode material for supercapacitors, and the electrochemical properties were investigated
using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). Figure 5 shows the
cyclic voltammograms of the prepared α-Fe2O3 in a 1.0 mol/L KOH solution at different
pH values in the potential window range of−0.3 to 0.6 V. In general, the CV of the prepared
α-Fe2O3 nanoparticles exhibited a rectangular shape without redox peaks, indicating the
pseudocapacitive behaviour with fast and reversible surface reactions and good capacitive
characteristics, which suggests that the α-Fe2O3 nanoparticle electrode is an excellent
candidate for electrochemical double-layer capacitors. The consistent CV also indicated that
the prepared α-Fe2O3 nanoparticles exhibited regular capacitive behaviour and excellent
cycling stability [35,36].

Moreover, the voltammograms showed an increase in the current density, especially for
the cathodic current, with lower pH values which may be due to the reductive dissolution
of the α-Fe2O3 surface [37]. Moreover, the changes in the anodic current with pH were not
significant compared with the cathodic current, and they may result from the oxidation of
Fe(III) to Fe(IV) [38].
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Moreover, the electrochemical behaviour of the α-Fe2O3 nanoparticles in the absence
and presence of O-MWCNTs was studied, and the results are presented in Figure 6. The
voltammogram of the O-MWCNTs showed typical double-layer behaviour, and the feature-
less CV probably resulted from the distribution of the nanotubes, as well as the variations
in length, diameter, and helicity of the arrangement of carbon hexagon rings at the working
electrode [39]. Conversely, the voltammogram of the α-Fe2O3/O-MWCNTs nanocomposite
showed the same characteristics as the pseudocapacitive behaviour, which were similar
to α-Fe2O3, but with higher current density, especially for the cathodic current, which
may indicate the enhancement of the reductive dissolution of the α-Fe2O3 surface in the
presence of the O-MWCNT. The total capacitance is a result of α-Fe2O3 pseudocapaci-
tance and EDLC capacitance of the O-MWCNTs [40,41]. Moreover, the variation in the
O-MWCNTs within the α-Fe2O3/O-MWCNTs nanocomposite had a significant effect, as
is presented in Figure 7, as the current density increased when increasing the amount of
O-MWCNTs within the α-Fe2O3/O-MWCNTs nanocomposite, which may attribute to the
enhancement of the specific surface area of the α-Fe2O3 electrode upon mixing with more
carbon nanotubes.

Figure 8 shows the linear sweep voltammograms (LSV) of O-MWCNT, α-Fe2O3
nanoparticles, and α-Fe2O3/O-MWCNTs nanocomposite (1.0 mL O-MWCNT) in 1.0 M
KOH. It is clear from the figure that the generated current of the α-Fe2O3 nanopar-
ticles are greatly enhanced upon the addition of the O-MWCNT, from 5.5 × 10−2 to
9.6 × 10−2 mA/cm2 for the α-Fe2O3 nanoparticles and α-Fe2O3/O-MWCNTs nanocom-
posite, respectively, which is almost 1.74 times higher, indicating the improvement of
photoelectrochemical (PEC) performance. This enhancement in PEC performance could be
due to the change in the morphology and hydrophilicity of the interface and consequently
the faradic current upon the addition of the O-MWCNT, which is presented in Figure 8, as
the charging current enhancement greatly depends on the amount of O-MWCNTs loaded.
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The electrochemical impedance spectroscopy (EIS) of the hematite and its composite
with O-MWCNTs was explored, as the EIS measures the opposition of alternating current
flow of various frequencies applied to an electrochemical cell, such as a hematite body
in contact with an aqueous solution. Figure 9 presents the Nyquist plot of the α -Fe2O3,
O-MWCNTs, and α -Fe2O3/O-MWCNT. The inset in Figure 8 is the suggested equivalent
circuit. The fitting results for α -Fe2O3, O-MWCNT, and α -Fe2O3/O-MWCNTs are sum-
marized in Table 1. Rs is the solution/electrolyte resistance, which includes the contact and
charge transfer resistances at the counter electrode/electrolyte (electrode interface) [42].
Rct is the charge-transfer resistance, CPE is the constant phase element, which represents
the double-layer capacitance, and Ws is the Warburg impedance, which corresponds to
the diffusion of the reactive species at the surface of the electrodes. The contribution of
the electrochemical behaviour of the α -Fe2O3/O-MWCNTs nanocomposite is identified
by the decrease in Rct and the increase in the double-layer capacitance in the presence
of the O-MWCNT. The value of the charge-transfer resistance Rct for the a-Fe2O3 elec-
trode decreases from 9454.9 Ω to 7236 Ω upon the addition of the O-MWCNTs and the
formation of the α -Fe2O3/O-MWCNTs composite, while the value of CPE increases from
4.49 mF × cm−2 before adding O-MWCNTs to 5.53 mF × cm−2 after adding O-MWCNTs.
The faster charge transfer is in the α -Fe2O3/O-MWCNTs nanocomposite, which may be
attributed to an enhancement in the electrochemical behaviour and conductivity of the α

-Fe2O3/O-MWCNTs nanocomposite.

Table 1. Electrochemical double-layer capacitance, charge transfer resistance and solution resistance
of α-Fe2O3, MWCNT, and α-Fe2O3/MWCNT.

Cdl
(mF cm−2)

Rct
(Ω)

Rs
(Ω)

Fe2O3 4.49 9454.9 0.51
Fe2O3/0.5 mL O-MWCNT 5.53 7236 0.49

MWCNT 9.49E 4656 0.64
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Finally, the chemical stability of the α-Fe2O3/O-MWCNTs composite after the electro-
chemical measurement was explored using the XPS measurement, and the results revealed
no change in the XPS survey after the electrochemical measurement (Figure 10), indicating
the chemical stability of the α-Fe2O3/O-MWCNTs composite.
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4. Conclusions

The α-Fe2O3/O-MWCNTs nanocomposite was successfully prepared using wet chem-
istry, and it was then characterized chemically and physically using different character-
ization techniques. UV–Vis absorption spectroscopy showed that the absorption of the
colloidal α-Fe2O3 begins below 560 nm, indicating that the prepared α-Fe2O3 is a visible-
light-active photocatalyst, and the FT-IR measurements showed the successful oxidation
of the MWCNTs and preparation of the α-Fe2O3, as well as the α-Fe2O3/O-MWCNTs
nanocomposite through the presence of their characteristic vibration peaks, whereas the
XRD measurements showed the characteristic diffraction peaks of graphitic carbon nan-
otubes. The electrochemical behaviour of the α-Fe2O3/O-MWCNTs nanocomposite was
investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and elec-
trochemical impedance spectroscopy, and the results revealed that modification of the
α-Fe2O3 nanoparticles with O-MWCNTs greatly enhanced electrochemical performance,
conductivity and capacitive behaviour, as well as cycling stability.
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