Isolation of Echimidine and Its C-7 Isomers from Echium plantagineum L. and Their Hepatotoxic Effect on Rat Hepatocytes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatography Investigation
2.2. NMR Analysis
2.3. Hepatotoxicity Assessment
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. NMR Spectroscopy
3.5. Hepatotoxicity Assay
3.5.1. Animals
3.5.2. Hepatocyte Isolation and Cultivation
3.5.3. MTT Assay
3.5.4. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Smith, L.W.; Culvenor, C.C.J. Plant sources of hepatotoxic pyrrolizidine alkaloids. J. Nat. Prod. 1981, 44, 129–152. [Google Scholar] [CrossRef] [PubMed]
- Stegelmeier, B.L.; Edgar, J.A.; Colegate, S.M.; Gardner, D.R.; Schoch, T.K.; Coulombe, R.A.; Molyneux, R.J. Pyrrolizidine alkaloid plants, metabolism and toxicity. J. Nat. Toxins 1999, 8, 95–116. [Google Scholar] [PubMed]
- Coulombe, R.A. Pyrrolizidine alkaloids in foods. Adv. Food Nutr. Res. 2003, 45, 61–99. [Google Scholar] [PubMed]
- El-Shazly, A.; Wink, M. Diversity of Pyrrolizidine Alkaloids in the Boraginaceae. Structures, Distribution, and Biological Properties, (review). Diversity 2014, 6, 188–282. [Google Scholar] [CrossRef] [Green Version]
- Valese, A.C.; Molognoni, L.; de Sá Ploȇncio, L.A.; de Lima, F.G.; Gonzaga, L.V.; Górniak, S.L.; Daguer, H.; Barreto, F.; Costa, A.C.O. A fast and simple LC-ESI-MS/MS method for detecting pyrrolizidine alkaloids in honey with full validation and measurement uncertainty. Food Control 2016, 67, 183–191. [Google Scholar] [CrossRef]
- Martinello, M.; Borin, A.; Stella, R.; Bovo, D.; Biancotto, G.; Gallina, A.; Mutinelli, F. Development and validation of a QuEChERS method coupled to liquid chromatography and high-resolution mass spectrometry to determine pyrrolizidine and tropane alkaloids in honey. Food Chem. 2017, 234, 295–302. [Google Scholar] [CrossRef]
- Fu, P.P.; Chou, M.W.; Xia, Q.; Yang, Y.C.; Yan, J.; Doerge, D.R.; Chan, P.C. Genotoxic pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides-mechanisms leading to DNA adduct formation and tumorigenicity. J. Environ. Sci. Health Part C 2001, 19, 353–385. [Google Scholar] [CrossRef]
- Chou, M.W.; Wang, Y.P.; Yan, J.; Yang, Y.C.; Berger, R.D.; Williams, L.D.; Doerge, D.R.; Fu, P.P. Riddelliine N-oxide is a phytochemical and mammalian metabolite with genotoxic activity that is comparable to the parent pyrrolizidine alkaloid riddelliine. Toxicol. Lett. 2003, 145, 239–247. [Google Scholar] [CrossRef]
- Hartmann, T.; Witte, L. Chemistry, Biology and Chemoecology of the Pyrrolizidine Alkaloids. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S.W., Ed.; Pergamon Press: Oxford, UK, 1995; Volume 9, pp. 155–233. [Google Scholar]
- Lucchetti, M.A.; Glauser, G.; Kilchenmann, V.; Dübecke, A.; Beckh, G.; Praz, C.; Kast, C. Pyrrolizidine Alkaloids from Echium vulgare in Honey Originate Primarily from Floral Nectar. J. Agric. Food Chem. 2016, 64, 5267–5273. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Opinion of the scientific panel on contaminants in the food chain on a request from the European Commission related to pyrrolizidine alkaloids as undesirable substances in animal feed. EFSA J. 2007, 447, 1–51. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA panel of contaminants in the food chain. EFSA J. 2011, 9, 2406. [Google Scholar]
- Griffin, C.T.; Mitrovic, S.M.; Danaher, M.; Furey, A. Development of a fast isocratic LC-MS/MS method for the high-throughput analysis of pyrrolizidine alkaloids in Australian honey. Food Addit. Contam. Part A 2015, 32, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Bundesinstitut für Risikobewertung/The Federal Institute of Risk Assessment. Chemical Analysis and Toxicity of Pyrrolizidine Alkaloids and Assessment of the Health Risks Posed by Their Occurrence in Honey. BfR Opinion No. 038/2011. 2011. Available online: https://www.bfr.bund.de/cm/349/chemical-analysis-and-toxicity-of-pyrrolizidine-alkaloids-and-assessment-of-the-health-risks-posed-by-their-occurence-in-honey.pdf (accessed on 10 November 2021).
- Culvenor, C.C.J.; Edgar, J.A.; Smith, L.W. Pyrrolizidine alkaloids in honey from Echium plantagineum L. J. Agric. Food Chem. 1981, 29, 958–960. [Google Scholar] [CrossRef] [PubMed]
- Colegate, S.M.; Edgar, J.A.; Knill, A.M.; Lee, S.T. Solid-phase Extraction and HPLC-MS Profiling of Pyrrolizidine Alkaloids and their N-oxides: A Case Study of Echium plantagineum. Phytochem. Anal. 2005, 16, 108–119. [Google Scholar] [CrossRef]
- Mehrabani, M.; Ghannadi, A.; Sajjadi, E.; Ghassemi, N.; Shams-Ardakani, M. Toxic pyrrolizidine alkaloids of Echium amoenum Fisch. & Mey. DARU 2006, 14, 122–127. [Google Scholar]
- Piggin, C. The biology of Australian weeds: 8. Echium plantagineum L. J. Aust. Inst. Agric. Sci. 1982, 48, 3–16. [Google Scholar]
- Weston, P.A.; Weston, L.A.; Hildebrand, S. Metabolic profiling in Echium plantagineum: Presence of bioactive pyrrolizidine alkaloids and napthoquinones from accessions across southeastern Australia. Phytochem. Rev. 2013, 12, 831–837. [Google Scholar] [CrossRef]
- Wang, W.; Jin, J.; Xu, H.; Shi, Y.; Boersch, M.; Yin, Y. Comparative analysis of the main medicinal substances and applications of Echium vulgare L. and Echium plantagineum L.: A review. J. Ethnopharmacol. 2022, 285, 114894. [Google Scholar] [CrossRef]
- Roeder, E.; Rengel, B. Pyrrolizidine alkaloids from Lithospermum erythrorhizon. Phytochemistry 1990, 29, 690–693. [Google Scholar] [CrossRef]
- El-Shazly, A.; Sarg, T.; Ateya, A.; Abdel Aziz, E.; El-Dahmy, S.; Witte, L.; Wink, M. Pyrrolizidine and tetrahydroisoquinoline alkaloids from Echium humile. Phytochemistry 1996, 42, 225–230. [Google Scholar] [CrossRef]
- El-Shazly, A.; Abdel-All, M.; Tei, A.; Wink, M. Pyrrolizidine alkaloids from Echium rauwolfii and Echium horridum (Boraginaceae). Z. Naturforsch. C J. Biosci. 1999, 54, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Roeder, E.; Liu, K.; Bourauel, T. Pyrrolizidine alkaloids from Echium pininana. Phytochemistry 1991, 30, 3107–3110. [Google Scholar] [CrossRef]
- Carvalho, J.C.B.; Almeida, H.S.; Lobo, J.F.R.; Ferreira, J.L.P.; Oliveira, A.P.; Rocha, L. Pyrrolizidine alkaloids in two endemic capeverdian Echium species. Biochem. Syst. Ecol. 2013, 50, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Luckert, C.; Braeuning, A.; Lampen, A.; Hessel-Pras, S. PXR: Structure-specific activation by hepatotoxic pyrrolizidine alkaloids. Chem. Biol. Interac. 2018, 288, 38–48. [Google Scholar] [CrossRef]
- National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. The National Academies Collection: Reports Funded by National Institutes of Health, 8th ed.; National Academies Press (US): Washington, DC, USA, 2011.
- Brazil. Law n.° 11.794. 8 November 2008.
- Seglen, P.O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976, 13, 29–83. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Position | Peak (A) | Peak (B) | ||||
---|---|---|---|---|---|---|
Major Component (1.00) Echihumiline | Minor Component (0.33) Hydroxymyoscorpine | Echimidine | ||||
δ (13C), Multiplicity | δ (1H) J in Hz | δ (13C), Multiplicity | δ (1H) J in Hz | δ (13C), Multiplicity | δ (1H) J in Hz | |
1 | 132.9, C | 132.8, C | 132.9, C | |||
2 | 128.1, CH | 5.84 bs | 128.2, CH | 5.86 bs | 128.2, CH | 5.85 bs |
3 | 62.4, CH2 | 4.00 bd (15.2) | 62.7, CH2 | 4.00 bd (15.2) | 62.5, CH2 | 4.01 bd (15.2) |
3.42 m | 3.41 m | 3.40 m | ||||
5 | 53.7, CH2 | 3.39 m | 53.8, CH2 | 3.39 m | 53.8, CH2 | 3.42 m |
2.70 m | 2.70 m | 2.71 m | ||||
6 | 34.3, CH2 | 2.11 m (2H) | 34.3, CH2 | 2.11 m (2H) | 34.4, CH2 | 2.13 m (2H) |
7 | 73.6, CH | 5.40 m | 73.6, CH | 5.40 m | 73.6, CH | 5.45 m |
8 | 75.8, CH | 4.48 bs | 75.9, CH | 4.44 bs | 75.9, CH | 4.50 bs |
9 | 62.3, CH2 | 4.92 d (13.1) | 62.5, CH2 | 4.89 (overlapped) | 62.3, CH2 | 4.90 d (13.2) |
4.64 d (13.1) | 4.63 d (13.2) | 4.65 d (13.2) | ||||
10 | 174.2, C | 174.2, C | 174.2, C | |||
11 | 82.9, C | 82.9, C | 83.1, C | |||
12 | 69.7, CH | 4.18 q (6.3) | 69.7, CH | 4.18 q (6.4) | 69.7, CH | 4.17 q (6.4) |
13 | 18.5, CH3 | 1.24 d (6.3) | 18.5, CH3 | 1.24 d (6.4) | 18.5, CH3 | 1.24 d (6.4) |
14 | 72.7, C | 72.7, C | 73.7, C | |||
15 | 25.9, CH3 | 1.22 s | 25.9, CH3 | 1.21 s | 26.0, CH3 | 1.21 s |
16 | 24.8, CH3 | 1.29 s | 24.8, CH3 | 1.28 s | 24.8, CH3 | 1.28 s |
17 | 165.7, C | 167.0, C | 166.8, C | |||
18 | 115.5, CH | 5.57 m | 128.4, C | 127.2, C | ||
19 | 158.4, C | 138.0, CH | 6.75 qd (6.2; 1.5) | 139.6, CH | 6.09 qq (7.3; 1.6) | |
20 | 27.5, CH3 | 1.88 d (0.9) | 14.5, CH3 | 1.76 dd | 15.8, CH3 | 1.94 dd (7.3; 1.6) |
21 | 20.3, CH3 | 2.12 d (0.9) | 11.9, CH3 | 1.75 bs | 20.5, CH3 | 1.79 d (1.6) |
Compound | IC50 | 95% CI | Imax (%) |
---|---|---|---|
“echimidine” peak consisitng of Echimidine, Echihumiline and Hydroxymyoscorpine | 14.14 µg/mL | 9.01 to 22.17 | 70.96 |
Echimidine | 13.79 µg/mL | 7.84 to 24.24 | 67.37 |
Echihumiline/Hydroxymyoscorpine Mixture | 9.26 µg/mL | 4.33 to 19.81 | 66.51 |
Echiumine | 7.47 µg/mL | 3.26 to 17.11 | 71.64 |
Acetaminophen | 3.82 mg/mL | 2.0 to 7.32 | 68.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gleńsk, M.; Dudek, M.K.; Kinkade, P.; Santos, E.C.S.; Glinski, V.B.; Ferreira, D.; Seweryn, E.; Kaźmierski, S.; Calixto, J.B.; Glinski, J.A. Isolation of Echimidine and Its C-7 Isomers from Echium plantagineum L. and Their Hepatotoxic Effect on Rat Hepatocytes. Molecules 2022, 27, 2869. https://doi.org/10.3390/molecules27092869
Gleńsk M, Dudek MK, Kinkade P, Santos ECS, Glinski VB, Ferreira D, Seweryn E, Kaźmierski S, Calixto JB, Glinski JA. Isolation of Echimidine and Its C-7 Isomers from Echium plantagineum L. and Their Hepatotoxic Effect on Rat Hepatocytes. Molecules. 2022; 27(9):2869. https://doi.org/10.3390/molecules27092869
Chicago/Turabian StyleGleńsk, Michał, Marta K. Dudek, Peter Kinkade, Evelyn C. S. Santos, Vitold B. Glinski, Daneel Ferreira, Ewa Seweryn, Sławomir Kaźmierski, Joao B. Calixto, and Jan A. Glinski. 2022. "Isolation of Echimidine and Its C-7 Isomers from Echium plantagineum L. and Their Hepatotoxic Effect on Rat Hepatocytes" Molecules 27, no. 9: 2869. https://doi.org/10.3390/molecules27092869
APA StyleGleńsk, M., Dudek, M. K., Kinkade, P., Santos, E. C. S., Glinski, V. B., Ferreira, D., Seweryn, E., Kaźmierski, S., Calixto, J. B., & Glinski, J. A. (2022). Isolation of Echimidine and Its C-7 Isomers from Echium plantagineum L. and Their Hepatotoxic Effect on Rat Hepatocytes. Molecules, 27(9), 2869. https://doi.org/10.3390/molecules27092869