Chemometric Investigation and Antimicrobial Activity of Salvia rosmarinus Spenn Essential Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Variations of the Essential Oils Yield
2.2. Variations of the Essential Oil Compositions
Compounds | RI * | RI Lit * | Cooperative | Harvest Period | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period 1 | Period 2 | Period 3 | Period 4 | Period 5 | Period 6 | Period 7 | Period 8 | Period 9 | |||||
% Relative Peak Area | α-pinene | 939 | 938 | C1 * | 14.8 ± 3.5 | 12.1 ± 1.2 | 9.9 ± 0.2 | 11.9± 0.2 | 12.4 ± 0.7 | 15.4 ± 1.4 | 15.0 ± 1.1 | 15.0 ± 1.1 | 12.9 ± 0.1 |
C2 | 14.1 ± 3.4 | 12.1 ± 0.0 | 11.6 ± 0.5 | 13.7± 0.5 | 13.8 ± 0.5 | 14.8 ± 1.6 | 14.6 ± 1.5 | 14.6 ± 1.5 | 13.1 ± 1.0 | ||||
C3 | 13.5 ± 2.1 | 11.9 ± 0.5 | 10.7 ± 0.5 | 11.7 ± 0.3 | 13.2 ± 0.3 | 16.2 ± 0.3 | 14.5 ± 0.4 | 14.6 ± 0.4 | 12.7 ± 0.4 | ||||
Camphene | 953 | 952 | C1 | 3.5 ± 1.1 | 3.5 ± 1.1 | 2.9 ± 0.7 | 2.9 ± 0.4 | 3.9 ± 1.4 | 5.0 ± 0.6 | 3.4 ± 0.0 | 4.6 ± 0.6 | 4.1 ± 1.5 | |
C2 | 6.8 ± 0.3 | 6.3 ± 0.2 | 6.3 ± 0.2 | 4.8 ± 0.7 | 3.8 ± 0.3 | 7.2 ± 0.5 | 4.2 ± 0.6 | 5.3 ± 1.3 | 5.1 ± 1.0 | ||||
C3 | 7.4 ± 0.1 | 5.9 ± 0.4 | 5.9 ± 0.4 | 4.9 ± 0.8 | 4.7 ± 0.1 | 6.5 ± 1.0 | 4.6 ± 1.1 | 4.6 ± 0.5 | 5.4 ± 0.1 | ||||
β-pinene | 976 | 980 | C1 | 7.1 ± 0.1 | 6.1 ± 1.0 | 6.1 ± 1.0 | 6.1 ± 1.0 | 6.8 ± 0.7 | 4.4 ± 1.1 | 4.3 ± 0.9 | 6.8 ± 0.6 | 6.1 ± 0.1 | |
C2 | 7.3 ± 0.6 | 7.3 ± 0.6 | 7.3 ± 0.6 | 7.3 ± 0.6 | 6.1 ± 0.3 | 4.1 ± 1.8 | 3.6 ± 1.5 | 5.1 ± 0.9 | 6.7 ± 0.2 | ||||
C3 | 6.9 ± 1.2 | 6.9 ± 1.2 | 6.8 ± 1.2 | 6.8 ± 1.2 | 6.5 ± 1.2 | 6.5 ± 1.2 | 6.1 ± 1.1 | 6.7 ± 0.4 | 6.5 ± 0.6 | ||||
Myrcene | 990 | 993 | C1 | 3.0 ± 2.6 | 3.0 ± 2.6 | 2.9 ± 1.7 | 1.9 ± 0.6 | 1.6 ± 0.1 | 1.6 ± 0.1 | 2.6 ± 0.1 | 1.1 ± 0.1 | 2.7 ± 1.8 | |
C2 | 1.2 ± 1.0 | 0.0 ± 0.0 | 1.0 ± 0.1 | 1.6 ± 0.4 | 1.6 ± 0.1 | 1.6 ± 0.1 | 2.6 ± 0.1 | 1.1 ± 0.1 | 1.2 ± 0.4 | ||||
C3 | 1.3 ± 1.1 | 1.3 ± 1.1 | 1.4 ± 0.5 | 1.7 ± 0.5 | 1.9 ± 0.5 | 1.9 ± 0.4 | 2.4 ± 0.0 | 1.3 ± 0.2 | 1.5 ± 0.3 | ||||
Limonene | 1030 | 1031 | C1 | 0.0 ± 0.0 | 1.9 ± 1.8 | 1.9 ± 0.1 | 2.5 ± 0.4 | 1.5 ± 0.4 | 1.5 ± 0.4 | 1.4 ± 0.4 | 0.9 ± 0.0 | 2.8 ± 0.5 | |
C2 | 0.1 ± 0.1 | 1.0 ± 0.8 | 1.6 ± 0.4 | 1.4 ± 0.1 | 1.3 ± 0.2 | 1.3 ± 0.2 | 1.4 ± 0.1 | 0.8 ± 0.1 | 1.5 ± 0.7 | ||||
C3 | 0.0 ± 0.0 | 1.1 ± 0.7 | 1.8 ± 0.0 | 2.4 ± 0.5 | 1.9 ± 0.1 | 1.9 ± 0.1 | 1.5 ± 0.0 | 0.7 ± 0.1 | 1.0 ± 0.1 | ||||
1,8-cineole | 1033 | 1033 | C1 | 33.2 ± 0.7 | 39.2 ± 0.3 | 51.1 ± 1.8 | 47.1± 2.8 | 42.3 ± 1.0 | 37.8 ± 0.5 | 32.3 ± 1.0 | 33.2 ± 0.7 | 43.4 ± 1.1 | |
C2 | 29.8 ± 1.8 | 37.8 ± 0.3 | 46.2 ± 0.3 | 42.2 ± 0.3 | 41.9 ± 0.6 | 35.9 ± 0.4 | 31.8 ± 0.6 | 29.8 ± 1.8 | 41.1 ± 2.0 | ||||
C3 | 28.6 ± 0.8 | 38.6 ± 0.8 | 47.3 ± 0.8 | 43.1 ± 1.3 | 42.2 ± 0.4 | 34.2 ± 0.7 | 32.1 ± 0.3 | 28.6 ± 0.8 | 38.5 ± 0.6 | ||||
Camphor | 1143 | 1144 | C1 | 14.3 ± 0.3 | 10.8 ± 1.1 | 7.3 ± 0.5 | 8.3 ± 0.5 | 7.2 ± 0.6 | 16.8 ± 2.3 | 18.2 ± 1.8 | 18.8 ± 0.3 | 5.9 ± 1.2 | |
C2 | 12.8 ± 1.2 | 12.8 ± 1.2 | 5.8 ± 0.2 | 6.8 ± 0.2 | 6.3 ± 0.3 | 16.8 ± 0.8 | 17.8 ± 0.9 | 18.8 ± 0.1 | 8.7 ± 0.7 | ||||
C3 | 15.5 ± 0.0 | 15.3 ± 0.1 | 5.3 ± 0.1 | 8.8 ± 2.4 | 7.8 ± 1.2 | 15.4 ± 0.1 | 16.4 ± 1.1 | 17.4 ± 1.1 | 10.0 ± 0.5 | ||||
α-Terpineol | 1185 | 1189 | C1 | 2.2 ± 1.6 | 1.7 ± 1.1 | 1.4 ± 0.2 | 1.2 ± 0.2 | 1.2 ± 0.1 | 0.8 ± 0.2 | 0.8 ± 0.1 | 0.8 ± 0.1 | 1.6 ± 0.5 | |
C2 | 1.7 ± 0.1 | 1.7 ± 0.1 | 1.2 ± 0.0 | 1.4 ± 0.1 | 1.3 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 1.1 ± 0.1 | ||||
C3 | 0.0 ± 0.0 | 1.4 ± 0.5 | 1.1 ± 0.1 | 1.3 ± 0.1 | 1.3 ± 0.0 | 0.9 ± 0.0 | 0.9 ± 0.0 | 0.9 ± 0.0 | 0.4 ± 0.4 | ||||
Total% | C1 | 78.1 ± 2.3 | 78.4 ± 2.3 | 83.3 ± 0.6 | 81.9 ± 1.8 | 77.0 ± 1.9 | 83.4 ± 0.6 | 78.2 ± 0.3 | 81.2 ± 2.6 | 79.5 ± 0.2 | |||
C2 | 73.8 ± 4.6 | 78.9 ± 0.0 | 81.0 ± 0.7 | 79.2 ± 0.5 | 76.2 ± 1.4 | 82.5 ± 2.3 | 76.9 ± 0.9 | 76.1 ± 2.3 | 78.6 ± 2.5 | ||||
C3 | 73.2 ± 0.1 | 82.2 ± 3.3 | 80.3 ± 0.9 | 80.7 ± 4.0 | 79.4 ± 1.5 | 84.0 ± 2.1 | 78.4 ± 3.1 | 74.7 ± 1.1 | 76.0 ± 0.2 |
2.3. Principal Component Analysis
2.4. Hierarchical Cluster Analysis
2.5. Antimicrobial Activity
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil Extraction
3.3. Gas Chromatography/Mass Spectrometry Analysis
3.4. Antimicrobial Activity
3.4.1. Bacterial Strains
3.4.2. Disc Diffusion Method
3.4.3. Minimal Inhibitory Concentration
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Khia, A.; Ghanmi, M.; Satrani, B.; Aafi, A.; Aberchane, M.; Quaboul, B.; Chaouch, A.; Amusant, N.; Charrouf, Z. Effet de La Provenance Sur La Qualité Chimique et Microbiologique Des Huiles Essentielles de Rosmarinus officinalis L. Du Maroc. Phytotherapie 2014, 12, 341–347. [Google Scholar] [CrossRef]
- Zrira, S. Some Important Aromatic and Medicinal Plants of Morocco. Med. Aromat. Plants World—Africa 2017, 3, 91–125. [Google Scholar] [CrossRef]
- Jamaleddine, M.; El Oualidi, J.; Taleb, M.S.; Thévenin, T.; El Alaoui-Faris, F.E. Inventaire et État de Conservation Des Plantes Aromatiques et Médicinales (PAM) Au Maroc. Phytotherapie 2017, 15, 114–122. [Google Scholar] [CrossRef]
- de Macedo, L.M.; Dos Santos, É.M.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L., Syn Salvia Rosmarinus Spenn.) and Its Topical Applications: A Review. Plants 2020, 9, 651. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, B. Rosemary. In Handbook of Herbs and Spices, 2nd ed.; Woodhead Publishing: Sawston, UK, 2012; Volume 1, pp. 452–468. Available online: https://www.sciencedirect.com/science/article/pii/B9780857090393500256 (accessed on 10 January 2022). [CrossRef]
- Oussaid, A.; Azzouzi, M.; Ibn Mansour, A.; Azouagh, M.; Koudad, M.; Oussaid, A. Moroccan Journal of Chemistry Assessment of the Chemical/Biological Activities of Extracts and Essential Oil of Rosmarinus officinalis L. from the Oriental Region of Morocco. Mor. J. Chem. 2020, 8, 732–744. [Google Scholar]
- Chetouani, M.; Mzabri, I.; Aamar, A.; Boukroute, A.; Kouddane, N.; Berrichi, A. Morphological-Physiological and Biochemical Responses of Rosemary (Rosmarinus officinalis) to Salt Stress. Mater. Today Proc. 2019, 13, 752–761. [Google Scholar] [CrossRef]
- Naggar, M.; Iharchine, K. Pour Une Valorisation Durable Des Produits Forestiers Non Ligneux: Cas Des Facies à Romarin de l’Oriental (Maroc). In Proceedings of the 14th Congrès Forestier Mondial—FAO, Durban, South Africa, 11 September 2015; pp. 7–11. [Google Scholar]
- Sabbahi, M.; El Hassouni, A.; Tahani, A.; El Bachiri, A. Moroccan Journal of Chemistry Altitude Effect on the Chemical Composition and Antioxidant Activity of Rosemary in the Region of Talsint (Morocco). J. Chem. 2020, 8, 866–875. [Google Scholar]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis Essential Oil: A Review of Its Phytochemistry, Anti-Inflammatory Activity, and Mechanisms of Action Involved. J. Ethnopharmacol. 2018, 229, 29–45. [Google Scholar] [CrossRef]
- De Oliveira, J.R.; Camargo, S.E.A.; De Oliveira, L.D. Rosmarinus officinalis L. (Rosemary) as Therapeutic and Prophylactic Agent. J. Biomed. Sci. 2019, 26, 1–22. [Google Scholar] [CrossRef]
- Hamidpour, R. Rosmarinus officinalis (Rosemary): A Novel Therapeutic Agent for Antioxidant, Antimicrobial, Anticancer, Antidiabetic, Antidepressant, Neuroprotective, Anti-Inflammatory, and Anti-Obesity Treatment. Biomed. J. Sci. Technol. Res. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Sedighi, R.; Zhao, Y.; Yerke, A.; Sang, S. Preventive and Protective Properties of Rosemary (Rosmarinus officinalis L.) in Obesity and Diabetes Mellitus of Metabolic Disorders: A Brief Review. Curr. Opin. Food Sci. 2015, 2, 58–70. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Goswami, P.; Verma, S.K.; Darokar, M.P. Chemical Composition of Melaleuca Linarrifolia Sm. from India: A Potential Source of 1,8-Cineole. Ind. Crops Prod. 2015, 63, 264–268. [Google Scholar] [CrossRef]
- Aziz, E.; Batool, R.; Akhtar, W.; Shahzad, T.; Malik, A.; Shah, M.A.; Iqbal, S.; Rauf, A.; Zengin, G.; Bouyahya, A.; et al. Rosemary Species: A Review of Phytochemicals, Bioactivities and Industrial Applications. S. Afr. J. Bot. 2021; in press. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, N.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Liu, X.L. Chemical Composition and Antimicrobial Activity of the Essential Oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Chraibi, M.; Farah, A.; Elamin, O.; Iraqui, H.; Fikri-Benbrahim, K. Characterization, Antioxidant, Antimycobacterial, Antimicrobial Effcts of Moroccan Rosemary Essential Oil, and Its Synergistic Antimicrobial Potential with Carvacrol. J. Adv. Pharm. Technol. Res. 2020, 11, 25–29. [Google Scholar] [CrossRef]
- Borrás-Linares, I.; Stojanović, Z.; Quirantes-Piné, R.; Arráez-Román, D.; Švarc-Gajić, J.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Rosmarinus officinalis Leaves as a Natural Source of Bioactive Compounds. Int. J. Mol. Sci. 2014, 15, 20585–20606. [Google Scholar] [CrossRef]
- Begum, A.; Sandhya, S.; Ali, S.S.; Vinod, K.R.; Reddy, S.; Banji, D. An In-Depth Review on the Medicinal Flora Rosmarinus officinalis (Lamiaceae). Acta Sci. Pol. Technol. Aliment. 2013, 12, 61–73. [Google Scholar]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Rosmarinus officinalis (Rosemary)-Derived Ingredients as Used in Cosmetics. Int. J. Toxicol. 2018, 37, 12S–50S. [Google Scholar] [CrossRef] [Green Version]
- Fakchich, J.; Elachouri, M. Ethnobotanical Survey of Medicinal Plants Used by People in Oriental Morocco to Manage Various Ailments. J. Ethnopharmacol. 2014, 154, 76–87. [Google Scholar] [CrossRef]
- Wollinger, A.; Perrin, É.; Chahboun, J.; Jeannot, V.; Touraud, D.; Kunz, W. Antioxidant Activity of Hydro Distillation Water Residues from Rosmarinus officinalis L. Leaves Determined by DPPH Assays. Comptes Rendus Chim. 2016, 19, 754–765. [Google Scholar] [CrossRef]
- Elyemni, M.; Louaste, B.; Nechad, I.; Elkamli, T.; Bouia, A.; Taleb, M.; Chaouch, M.; Eloutassi, N. Extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation. Sci. World J. 2019, 2019, 3659432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendel, N.; Napoli, E.; Sarri, M.; Saija, A.; Cristani, M.; Nostro, A.; Ginestra, G.; Ruberto, G. Essential Oil from Aerial Parts of Wild Algerian Rosemary: Screening of Chemical Composition, Antimicrobial and Antioxidant Activities. J. Essent. Oil-Bearing Plants 2019, 22, 1–17. [Google Scholar] [CrossRef]
- Yeddes, W.; Aidi Wannes, W.; Hammami, M.; Smida, M.; Chebbi, A.; Marzouk, B.; Saidani Tounsi, M. Effect of Environmental Conditions on the Chemical Composition and Antioxidant Activity of Essential Oils from Rosmarinus officinalis L. Growing Wild in Tunisia. J. Essent. Oil-Bearing Plants 2018, 21, 972–986. [Google Scholar] [CrossRef]
- Rehman, R.; Hanif, M.A.; Mushtaq, Z.; Al-Sadi, A.M. Biosynthesis of Essential Oils in Aromatic Plants: A Review. Food Rev. Int. 2016, 32, 117–160. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Riabov, P.A.; Micić, D.; Božović, R.B.; Jovanović, D.V.; Tomić, A.; Šovljanski, O.; Filip, S.; Tosti, T.; Ostojić, S.; Blagojević, S.; et al. The Chemical, Biological and Thermal Characteristics and Gastronomical Perspectives of Laurus Nobilis Essential Oil from Different Geographical Origin. Ind. Crops Prod. 2020, 151, 112498. [Google Scholar] [CrossRef]
- El-Zaeddi, H.; Calín-Sánchez, Á.; Noguera-Artiaga, L.; Martínez-Tomé, J.; Carbonell-Barrachina, Á.A. Optimization of Harvest Date According to the Volatile Composition of Mediterranean Aromatic Herbs at Different Vegetative Stages. Sci. Hortic. 2020, 267, 109336. [Google Scholar] [CrossRef]
- Khalid, K.A. Harvest Stages and Their Influences on Lantana camara L. Essential Oil. Biocatal. Agric. Biotechnol. 2019, 22, 101403. [Google Scholar] [CrossRef]
- Ben Ayed, R.; Moreau, F.; Ben Hlima, H.; Rebai, A.; Ercisli, S.; Kadoo, N.; Hanana, M.; Assouguem, A.; Ullah, R.; Ali, E.A. SNP discovery and structural insights into OeFAD2 unravelling high oleic/linoleic ratio in olive oil. Comput. Struct. Biotechnol. J. 2022, 20, 1229–1243. [Google Scholar] [CrossRef]
- Raffo, A.; Mozzanini, E.; Ferrari Nicoli, S.; Lupotto, E.; Cervelli, C. Effect of Light Intensity and Water Availability on Plant Growth, Essential Oil Production and Composition in Rosmarinus officinalis L. Eur. Food Res. Technol. 2019, 246, 167–177. [Google Scholar] [CrossRef]
- Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Trejo, A.; Guerrero-Beltrán, J. CO2-Supercritical Extraction, Hydrodistillation and Steam Distillation of Essential Oil of Rosemary (Rosmarinus officinalis). J. Food Eng. 2017, 200, 81–86. [Google Scholar] [CrossRef]
- Sadeh, D.; Nitzan, N.; Chaimovitsh, D.; Shachter, A.; Ghanim, M.; Dudai, N. Interactive Effects of Genotype, Seasonality and Extraction Method on Chemical Compositions and Yield of Essential Oil from Rosemary (Rosmarinus officinalis L.). Ind. Crops Prod. 2019, 138, 111419. [Google Scholar] [CrossRef]
- Hannour, K.; Boughdad, A.; Maataoui, A.; Bouchelta, A. Chemical Composition of Rosmarinus officinalis (Lamiaceae) Essential Oils and Evaluation of Their Toxicity against Bruchus Rufimanus (Coleoptera: Chrysomelidae: Bruchinae) in Morocco. Int. J. Trop. Insect Sci. 2017, 38, 192–204. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical Composition of Mentha Pulegium and Rosmarinus officinalis Essential Oils and Their Antileishmanial, Antibacterial and Antioxidant Activities. Microb. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef]
- Ainane, A.; Khammour, F.; Charaf, S.; Elabboubi, M.; Elkouali, M.; Talbi, M.; Benhima, R.; Cherroud, S.; Ainane, T. Chemical Composition and Insecticidal Activity of Five Essential Oils: Cedrus Atlantica, Citrus Limonum, Rosmarinus officinalis, Syzygium Aromaticum and Eucalyptus Globules. Mater. Today Proc. 2018, 13, 474–485. [Google Scholar] [CrossRef]
- Farhat, A.; Benmoussa, H.; Bachoual, R.; Nasfi, Z.; Elfalleh, W.; Romdhane, M.; Bouajila, J. Efficiency of the Optimized Microwave Assisted Extractions on the Yield, Chemical Composition and Biological Activities of Tunisian Rosmarinus officinalis L. Essential Oil. Food Bioprod. Process. 2017, 105, 224–233. [Google Scholar] [CrossRef]
- Zhelev, I.; Petkova, Z.; Kostova, I.; Damyanova, S.; Stoyanova, A.; Dimitrova-Dyulgerova, I.; Antova, G.; Ercisli, S.; Assouguem, A.; Kara, M.; et al. Chemical Composition and Antimicrobial Activity of Essential Oil of Fruits from Vitex agnus-castus L., Growing in Two Regions in Bulgaria. Plants 2022, 11, 896. [Google Scholar] [CrossRef]
- Leporini, M.; Bonesi, M.; Loizzo, M.R.; Passalacqua, N.G.; Tundis, R. The Essential Oil of Salvia Rosmarinus Spenn. From Italy as a Source of Health-Promoting Compounds: Chemical Profile and Antioxidant and Cholinesterase Inhibitory Activity. Plants 2020, 9, 798. [Google Scholar] [CrossRef]
- Pitarokili, D.; Tzakou, O.; Loukis, A. Composition of the Essential Oil of Spontaneous Rosmarinus officinalis from Greece and Antifungal Activity against Phytopathogenic Fungi. J. Essent. Oil Res. 2008, 20, 457–459. [Google Scholar] [CrossRef]
- Özcan, M.M.; Chalchat, J.C. Chemical Composition and Antifungal Activity of Rosemary (Rosmarinus officinalis L.) Oil from Turkey. Int. J. Food Sci. Nutr. 2008, 59, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An Update Review of Its Phytochemistry and Biological Activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Upadhyay, R.K.; Singh, V.R. Productivity and Essential Oil Composition of Rosemary (Rosmarinus officinalis L.) Harvested at Different Growth Stages under the Subtropical Region of North India. J. Essent. Oil Res. 2019, 32, 144–149. [Google Scholar] [CrossRef]
- Skender, A.; Hadžiabuli, S.; Ercisli, S.; Hasanbegovic, J.; Dedic, S.; Almeer, R.; Sayed, A.A.; Ullah, R.; Assouguem, A. Morphological and Biochemical Properties in Fruits of Naturally Grown sustainability Morphological and Biochemical Properties in Fruits of Naturally Grown Cornelian Cherry (Cornus mas L.) Genotypes in Northwest Bosnia and Herzegovina. Sustainability 2022, 14, 4579. [Google Scholar] [CrossRef]
- Miwa, T.; Tsukamura, M.; Majima, T.; Ando, Y.; Koketsu, Y.; Nosaka, S.; Nakagawa, H.; Horie, S.; Nakagawa, S.; Kondo, I. The Effects of Tuberactinomycin—n (Tum—n) for Severe Pulmonary Tuberculosis. Kekkaku (Tuberculosis) 1993, 50, 229–233. [Google Scholar] [CrossRef]
- Melito, S.; Petretto, G.L.; Chahine, S.; Pintore, G.; Chessa, M. Seasonal Variation of Essential Oil in Rosmarinus officinalis Leaves in Sardinia. Nat. Prod. Commun. 2019, 14, 1934578X19864005. [Google Scholar] [CrossRef] [Green Version]
- Ismaili, M.R.; Rahouti, M.; Kabouchi, B.; Ramzi, H.; Aberchane, M.; Fidah, A.; Famiri, A.; Lamzoudi, O. Improvement of Harvesting Practices for Sustainable Development of Moroccan Rosemary Mediterranean’s Scrublands. J. Essent. Oil-Bearing Plants 2017, 20, 1266–1274. [Google Scholar] [CrossRef]
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Endringer, D.C.; Scherer, R. Seasonality Modifies Rosemary’s Composition and Biological Activity. Ind. Crops Prod. 2015, 70, 41–47. [Google Scholar] [CrossRef]
- Bajalan, I.; Rouzbahani, R.; Ghasemi Pirbalouti, A.; Maggi, F. Quali-Quantitative Variation of Essential Oil from Iranian Rosemary (Rosmarinus officinalis L.) Accessions According to Environmental Factors. J. Essent. Oil Res. 2018, 30, 16–24. [Google Scholar] [CrossRef]
- Sarmoum, R.; Haid, S.; Biche, M.; Djazouli, Z.; Zebib, B.; Merah, O. Effect of Salinity and Water Stress on the Essential Oil Components of Rosemary (Rosmarinus officinalis L.). Agronomy 2019, 9, 214. [Google Scholar] [CrossRef] [Green Version]
- Vahdat, S.M.; Khavarpour, M.; Kazemi, S. Chemical Composition, Antimicrobial and Analgesic Properties of Rosmarinus officinalis L. from North of Iran. J. Med. Plants By-products 2019, 1, 107–114. [Google Scholar]
- Megzari, A.; Farah, A.; Houssaini, M.I.; EL Hadrami, E.M. Provenance Effect on the Yield, Chemical Composition and Antibacterial Activity of Moroccan Rosemary Essential Oils. Der Pharma Chem. 2015, 7, 9–22. [Google Scholar]
- Bajalan, I.; Rouzbahani, R.; Pirbalouti, A.G.; Maggi, F. Antioxidant and Antibacterial Activities of the Essential Oils Obtained from Seven Iranian Populations of Rosmarinus officinalis. Ind. Crops Prod. 2017, 107, 305–311. [Google Scholar] [CrossRef]
- Abdellaoui, M.; Derouich, M.; El-Rhaffari, E.L. Essential Oil and Chemical Composition of Wild and Cultivated Fennel (Foeniculum vulgare Mill.): A Comparative Study. S. Afr. J. Bot. 2020, 135, 93–100. [Google Scholar] [CrossRef]
- Chahboun, N.; Esmail, A.; Rhaiem, N.; Abed, H.; Amiyare, R.; Barrahi, M.; Berrabeh, M.; Oudda, H.; Ouhssine, M. Extraction and Study of the Essential Oil Rosmarinus officinalis Cuellie in the Region of Taza, Morocco. Der Pharma Chem. 2014, 6, 367–372. [Google Scholar]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined Treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. Essential Oils against Salmonella Typhimurium: Optimization of Antibacterial Activity by Mixture Design Methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef]
- Messaoudi Moussii, I.; Nayme, K.; Timinouni, M.; Jamaleddine, J.; Filali, H.; Hakkou, F. Synergistic Antibacterial Effects of Moroccan Artemisia Herba Alba, Lavandula Angustifolia and Rosmarinus officinalis Essential Oils. Synergy 2019, 10, 100057. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Ortega-Ramirez, L.A.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Antimicrobial, Antioxidant, and Sensorial Impacts of Oregano and Rosemary Essential Oils over Broccoli Florets. J. Food Process. Preserv. 2019, 43, e13889. [Google Scholar] [CrossRef]
- JAFARI-SALES, A.; PASHAZADEH, M. Study of Chemical Composition and Antimicrobial Properties of Rosemary (Rosmarinus officinalis) Essential Oil on Staphylococcus Aureus and Escherichia Coli in Vitro. Int. J. Life Sci. Biotechnol. 2020, 3, 62–69. [Google Scholar] [CrossRef]
- Stojiljkovic, J. Antibacterial Activities of Rosemary Essential Oils and Their Components against Pathogenic Bacteria. Adv. Cytol. Pathol. 2018, 3, 93–96. [Google Scholar] [CrossRef] [Green Version]
- de Rapper, S.L.; Tankeu, S.Y.; Kamatou, G.; Viljoen, A.; van Vuuren, S. The Use of Chemometric Modelling to Determine Chemical Composition-Antimicrobial Activity Relationships of Essential Oils Used in Respiratory Tract Infections. Fitoterapia 2021, 154, 105024. [Google Scholar] [CrossRef] [PubMed]
- Kovač, J.; Šimunović, K.; Wu, Z.; Klančnik, A.; Bucar, F.; Zhang, Q.; Možina, S.S. Antibiotic Resistance Modulation and Modes of Action of (-)-α-Pinene in Campylobacter Jejuni. PLoS ONE 2015, 10, e0122871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojeda-Sana, A.M.; van Baren, C.M.; Elechosa, M.A.; Juárez, M.A.; Moreno, S. New Insights into Antibacterial and Antioxidant Activities of Rosemary Essential Oils and Their Main Components. Food Control 2013, 31, 189–195. [Google Scholar] [CrossRef]
- Miladinović, D.L.; Dimitrijević, M.V.; Mihajilov-Krstev, T.M.; Marković, M.S.; Ćirić, V.M. The Significance of Minor Components on the Antibacterial Activity of Essential Oil via Chemometrics. LWT 2021, 136, 110305. [Google Scholar] [CrossRef]
- Administrative Division of Morocco; Ministry of National; Urban Development, Housing and Urban Policy. High Commission for Planning of Morocco. 2018. Available online: https://www.hcp.ma/ (accessed on 15 January 2022).
- Clevenger, J.F. American Pharmaceutical Association 345 Apparatus for the Determination of Volatile Oil. J. Pharm. Sci. 1928, 17, 345–349. [Google Scholar] [CrossRef]
- Charles, D.J.; Simon, J.E. Comparison of Extraction Methods for the Rapid Determination of Essential Oil Content and Composition of Basil. J. Am. Soc. Hortic. Sci. 1990, 115, 458–462. [Google Scholar] [CrossRef] [Green Version]
- Fadil, M.; Farah, A.; Haloui, T.; Rachiq, S. Optimisation Des Paramètres Influençant l’hydrodistillation de Rosmarinus officinalis L. Par La Méthodologie de Surface de Réponse Optimization of Parameters Influencing the Hydrodistillation of Rosmarinus officinalis L. by Response Surface Methodology. J. Mater. Environ. Sci 2015, 6, 2346–2357. [Google Scholar]
- Jordán, M.J.; Martínez, R.M.; Martínez, C.; Moñino, I.; Sotomayor, J.A. Polyphenolic Extract and Essential Oil Quality of Thymus Zygis Ssp. Gracilis Shrubs Cultivated under Different Watering Levels. Ind. Crops Prod. 2009, 29, 145–153. [Google Scholar] [CrossRef]
- Marion, C.; Pelissier, Y.; Sabatier, R.; Andary, C.; Bessiere, J.M. Calculation of Essential Oil Yield without Prior Extraction—Application to the Genus Forsythia Vahl. (Oleaceae). J. Essent. Oil Res. 1994, 6, 379–387. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative Evaluation of 11 Essential Oils of Different Origin as Functional Antioxidants, Antiradicals and Antimicrobials in Foods. Food Chem. 2004, 91, 621–632. [Google Scholar] [CrossRef]
- Basri, D.F.; Luoi, C.K.; Azmi, A.M.; Latip, J. Evaluation of the Combined Effects of Stilbenoid from Shorea Gibbosa and Vancomycin against Methicillin-Resistant Staphylococcus Aureus (MRSA). Pharmaceuticals 2012, 5, 1032–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Components | |||
---|---|---|---|
PC1 * | PC2 | PC3 | |
α-pinene | −0.8 | 0.3 | 0.1 |
Camphene | −0.4 | −0.7 | −0.3 |
β-pinene | 0.3 | −0.7 | 0.5 |
Myrcene | 0.2 | 0.8 | 0.2 |
Limonene | 0.7 | 0.4 | −0.4 |
1,8-cineole | 0.9 | −0.0 | −0.2 |
Camphor | −0.9 | 0.2 | −0.0 |
α-Terpineol | 0.5 | 0.1 | 0.8 |
Yield | 0.9 | −0.1 | −0.2 |
Eigenvalue | 4.3 | 2.0 | 1.2 |
Percentage of explained variability (%) | 47.5 | 22.5 | 12.9 |
Cumulative percentage (%) | 47.5 | 70.0 | 82.9 |
MIC v/v | ||||||||
---|---|---|---|---|---|---|---|---|
Cooperative | Strains | |||||||
C1 * | M. smegmatis | - | - | - | - | - | + | + |
E. coli | - | - | - | - | - | + | + | |
B. subtilis | - | - | - | - | - | + | + | |
C2 | M. smegmatis | - | - | - | - | + | + | + |
E. coli | - | - | - | - | + | + | + | |
B. subtilis | - | - | - | - | - | + | + | |
C3 | M. smegmatis | - | - | - | - | - | + | + |
E. coli | - | - | - | + | + | + | + | |
B. subtilis | - | - | - | - | - | + | + |
Cooperative | Rural Community | Province | Region | Altitude (m) | Latitude N | Longitude W | Maximal Annual Mean Temperature (°C) | Minimal Annual Mean Temperature (°C) | Annual Mean Precipitation (mm) |
---|---|---|---|---|---|---|---|---|---|
C1 | Talsint | Figuig | Oriental | 1 332 | 32°32′7.8 | 3°26′22.1 | 26.0 | 13.8 | 140.0 |
C2 | Boumeriem | Figuig | Oriental | 1025 | 33°42′56.2 | 4°36′5.4 | 21.3 | 8.6 | 184.2 |
C3 | Talsint | Figuig | Oriental | 1760 | 32°38′39.8 | 3°29′4.6 | 20.1 | 7.8 | 156.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annemer, S.; Farah, A.; Stambouli, H.; Assouguem, A.; Almutairi, M.H.; Sayed, A.A.; Peluso, I.; Bouayoun, T.; Talaat Nouh, N.A.; El Ouali Lalami, A.; et al. Chemometric Investigation and Antimicrobial Activity of Salvia rosmarinus Spenn Essential Oils. Molecules 2022, 27, 2914. https://doi.org/10.3390/molecules27092914
Annemer S, Farah A, Stambouli H, Assouguem A, Almutairi MH, Sayed AA, Peluso I, Bouayoun T, Talaat Nouh NA, El Ouali Lalami A, et al. Chemometric Investigation and Antimicrobial Activity of Salvia rosmarinus Spenn Essential Oils. Molecules. 2022; 27(9):2914. https://doi.org/10.3390/molecules27092914
Chicago/Turabian StyleAnnemer, Saoussan, Abdellah Farah, Hamide Stambouli, Amine Assouguem, Mikhlid H. Almutairi, Amany A. Sayed, Ilaria Peluso, Taoufik Bouayoun, Nehal Ahmed Talaat Nouh, Abdelhakim El Ouali Lalami, and et al. 2022. "Chemometric Investigation and Antimicrobial Activity of Salvia rosmarinus Spenn Essential Oils" Molecules 27, no. 9: 2914. https://doi.org/10.3390/molecules27092914
APA StyleAnnemer, S., Farah, A., Stambouli, H., Assouguem, A., Almutairi, M. H., Sayed, A. A., Peluso, I., Bouayoun, T., Talaat Nouh, N. A., El Ouali Lalami, A., & Ez zoubi, Y. (2022). Chemometric Investigation and Antimicrobial Activity of Salvia rosmarinus Spenn Essential Oils. Molecules, 27(9), 2914. https://doi.org/10.3390/molecules27092914