Highly Efficient Photocatalysts for Methylene Blue Degradation Based on a Platform of Deposited GO-ZnO Nanoparticles on Polyurethane Foam
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction
2.2. FT-IR Analysis
2.3. Scanning Electron Microscopy (SEM)
2.4. The Scanning Transmission Electron Microscope (STEM):
2.5. Surface Area Measurements for Nanoparticles
2.6. UV–Visible Measurements
2.7. Photocatalytic Activity
3. Materials and Methods
3.1. Materials
3.2. Fabrication of PUF/rGO-ZnO Nanocomposites
3.3. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Chen, X.; Fang, L.; Gao, H.; Han, M.; Chen, X.; Xia, Y.; Xie, L.; Yang, H. Double Heterojunction CQDs/CeO2/BaFe12O19 Magnetic Separation Photocatalysts: Construction, Structural Characterization, Dye and POPs Removal, and the Interrelationships between Magnetism and Photocatalysis. Nucl. Anal. 2022, 1, 100026. [Google Scholar] [CrossRef]
- Manickam, A.; Selvakumaran, D.; Narendran, K.; Abdul Razack, S.; Selvakumar, S.; Krishnamurthy, B. Fabrication of Gum Acacia Protected Zinc Oxide Nanoparticles for UV Assisted Photocatalysis of Methyl Green Textile Dye. Chem. Phys. Lett. 2022, 800, 139662. [Google Scholar] [CrossRef]
- Pandey, S.; Son, N.; Kang, M. Synergistic Sorption Performance of Karaya Gum Crosslink Poly(Acrylamide-Co-Acrylonitrile) @ Metal Nanoparticle for Organic Pollutants. Int. J. Biol. Macromol. 2022, 210, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Maher, S.; Mahmoud, M.; Rizk, M.; Kalil, H. Synthetic Melanin Nanoparticles as Peroxynitrite Scavengers, Photothermal Anticancer and Heavy Metals Removal Platforms. Environ. Sci. Pollut. Res. 2020, 27, 19115–19126. [Google Scholar] [CrossRef] [PubMed]
- Kalil, H.; Maher, S.; Bose, T.; Bayachou, M. Manganese Oxide/Hemin-Functionalized Graphene as a Platform for Peroxynitrite Sensing. J. Electrochem. Soc. 2018, 165, G3133. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Chen, P.; Liu, M.; Wu, P.; Liu, C.; Jiang, W. One-Step Dye Wastewater Treatment by Combined Adsorption, Extraction, and Photocatalysis Using g-C3N4 Pickering Emulsion. Colloids Surf. A Physicochem. Eng. Asp. 2022, 644, 128814. [Google Scholar] [CrossRef]
- Van Bao, H.; Dat, N.M.; Giang, N.T.H.; Thinh, D.B.; Tai, L.T.; Trinh, D.N.; Hai, N.D.; Khoa, N.A.D.; Huong, L.M.; Nam, H.M.; et al. Behavior of ZnO-Doped TiO2/RGO Nanocomposite for Water Treatment Enhancement. Surf. Interfaces 2021, 23, 100950. [Google Scholar] [CrossRef]
- Singhal, N.; Selvaraj, S.; Sivalingam, Y.; Venugopal, G. Study of Photocatalytic Degradation Efficiency of RGO/ZnO Nano-Photocatalyst and Their Performance Analysis Using Scanning Kelvin Probe. J. Environ. Chem. Eng. 2022, 10, 107293. [Google Scholar] [CrossRef]
- Lu, S.; Ma, Y.; Zhao, L. Production of ZnO-CoOx-CeO2 Nanocomposites and Their Dye Removal Performance from Wastewater by Adsorption-Photocatalysis. J. Mol. Liq. 2022, 364, 119924. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Tseng, W.J. Multifunctional Fe3O4@Ag@TiO2-XNx Core-Shell Composite Particles for Dye Adsorption and Visible-Light Photocatalysis. Ceram. Int. 2022, 48, 13906–13913. [Google Scholar] [CrossRef]
- Dai, H.; Huang, H. Modified Pineapple Peel Cellulose Hydrogels Embedded with Sepia Ink for Effective Removal of Methylene Blue. Carbohydr. Polym. 2016, 148, 1–10. [Google Scholar] [CrossRef]
- Sun, E.; Bai, X.; Chang, Y.; Li, Q.; Hui, X.; Li, Y.; Wang, Y. Preparation of PMMA Electrospun Fibers Bearing Porphyrin Pendants and Photocatalytic Degradation of Organic Dyes. Molecules 2022, 27, 8132. [Google Scholar] [CrossRef]
- Liu, D.; Song, J.; Chung, J.S.; Hur, S.H.; Choi, W.M. ZnO/Boron Nitride Quantum Dots Nanocomposites for the Enhanced Photocatalytic Degradation of Methylene Blue and Methyl Orange. Molecules 2022, 27, 6833. [Google Scholar] [CrossRef]
- Razali, N.S.; Abdulhameed, A.S.; Jawad, A.H.; Alothman, Z.A.; Yousef, T.A.; Al-duaij, O.K.; Alsaiari, N.S. High-Surface-Area-Activated Carbon Derived from Mango Peels and Seeds Wastes via Microwave-Induced ZnCl2 Activation for Adsorption of Methylene Blue Dye Molecules: Statistical Optimization and Mechanism. Molecules 2022, 27, 6947. [Google Scholar] [CrossRef]
- Liu, T.; Sun, S.; Zhou, L.; Li, P.; Su, Z.; Wei, G. Polyurethane-Supported Graphene Oxide Foam Functionalized with Carbon Dots and TiO2 Particles for Photocatalytic Degradation of Dyes. Appl. Sci. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Chandan, M.R.; Goyal, S.; Rizwan, M.; Imran, M.; Shaik, A.H. Removal of Textile Dye from Synthetic Wastewater Using Microporous Polymer Nanocomposite. Bull. Mater. Sci. 2021, 44, 272. [Google Scholar] [CrossRef]
- Fakhry, H.; El-Sonbati, M.; Omar, B.; El-Henawy, R.; Zhang, Y.; EL-Kady, M. Novel Fabricated Low-Cost Hybrid Polyacrylonitrile/Polyvinylpyrrolidone Coated Polyurethane Foam (PAN/PVP@PUF) Membrane for the Decolorization of Cationic and Anionic Dyes. J. Environ. Manag. 2022, 315, 115128. [Google Scholar] [CrossRef]
- Qian, Y.; Wan, X.; Cui, H.; Mo, L.; Jia, J.; Ding, G.; Cheng, G.; Zhang, W.; Zhong, D. Design of Bentonite/Polyurethane Composite Membrane with a High Flux in Treatment of Organic Wastewater by Using the Pigment Volume Concentration Theory. Appl. Clay Sci. 2022, 229, 106666. [Google Scholar] [CrossRef]
- Leudjo Taka, A.; Pillay, K.; Yangkou Mbianda, X. Nanosponge Cyclodextrin Polyurethanes and Their Modification with Nanomaterials for the Removal of Pollutants from Waste Water: A Review. Carbohydr. Polym. 2017, 159, 94–107. [Google Scholar] [CrossRef]
- El-Feky, M.S.; El-Khodary, S.A.; Morsy, M. Optimization of Hybrid Cement Composite with Carbon Nanotubes and Nano Silica Using Response Surface Design. Egypt. J. Chem. 2019, 62, 57–67. [Google Scholar] [CrossRef]
- Tung, T.T.; Robert, C.; Castro, M.; Feller, J.F.; Kim, T.Y.; Suh, K.S. Enhancing the Sensitivity of Graphene / Polyurethane Nanocomposite Fl Exible Piezo-Resistive Pressure Sensors with Magnetite Nano-Spacers. Carbon 2016, 108, 450–460. [Google Scholar] [CrossRef]
- Moustafa, H.; Ahmed, E.M.; Morsy, M. Bio-Based Antibacterial Packaging from Decorated Bagasse Papers with Natural Rosin and Synthesised GO-Ag Nanoparticles. Mater. Technol. 2022, 37, 1–11. [Google Scholar] [CrossRef]
- Darwish, E.R.; Kalil, H.; Alqahtani, W.; Moalla, S.M.N.; Hosny, N.M.; Amin, A.S.; Martin, H.B.; Bayachou, M. Fast and Reliable Synthesis of Melanin Nanoparticles with Fine-Tuned Metal Adsorption Capacities for Studying Heavy Metal Ions Uptake. Nanotechnol. Sci. Appl. 2021, 14, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M. Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene. J. Korean Phys. Soc. 2018, 73, 1437–1443. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Liu, X.; Sheng, D.; Ji, F.; Dong, L.; Xu, S.; Wu, H.; Yang, Y. Multifunctional ZnO/Polyurethane-Based Solid-Solid Phase Change Materials with Graphene Aerogel. Sol. Energy Mater. Sol. Cells 2019, 193, 13–21. [Google Scholar] [CrossRef]
- Bharathi, D.; Thiruvengadam Nandagopal, J.G.; Rajamani, R.; Pandit, S.; Kumar, D.; Pant, B.; Pandey, S.; Kumar Gupta, P. Enhanced Photocatalytic Activity of St-ZnO Nanorods for Methylene Blue Dye Degradation. Mater. Lett. 2022, 311, 131637. [Google Scholar] [CrossRef]
- Park, J.B.; Song, M.S.; Ghosh, R.; Saroj, R.K.; Hwang, Y.; Tchoe, Y.; Oh, H.; Baek, H.; Lim, Y.; Kim, B.; et al. Highly Sensitive and Fl Exible Pressure Sensors Using Position- and Dimension-Controlled ZnO Nanotube Arrays Grown on Graphene Fi Lms. NPG Asia Mater. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Moustafa, H.; Duquesne, S.; Haidar, B.; Vallat, M.F. Influence of the Degree of Exfoliation of an Organoclay on the Flame-Retardant Properties of Cross-Linked Ethylene-Co-Propylene-Co-Diene Monomer-g-Maleic Anhydride-Based Composites. Polym. Compos. 2017, 38, 966–973. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Liu, X.; He, S.; Jin, J.; Meng, H. Green Preparation of Ag-ZnO-RGO Nanoparticles for Efficient Adsorption and Photodegradation Activity. Colloids Surf. A Physicochem. Eng. Asp. 2020, 584, 124011. [Google Scholar] [CrossRef]
- Moustafa, H.; Karmalawi, A.M.; Youssef, A.M. Development of Dapsone-Capped TiO2 Hybrid Nanocomposites and Their Effects on the UV Radiation, Mechanical, Thermal Properties and Antibacterial Activity of PVA Bionanocomposites. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100482. [Google Scholar] [CrossRef]
- Wang, C.-C.; Shieu, F.-S.; Shih, H.C. Enhanced Photodegradation by RGO/ZnO Core-Shell Nanostructures. J. Environ. Chem. Eng. 2020, 8, 103589. [Google Scholar] [CrossRef]
- Sodeinde, K.O.; Olusanya, S.O.; Lawal, O.S.; Sriariyanun, M.; Adediran, A.A. Enhanced Adsorptional-Photocatalytic Degradation of Chloramphenicol by Reduced Graphene Oxide-Zinc Oxide Nanocomposite. Sci. Rep. 2022, 12, 17054. [Google Scholar] [CrossRef]
- Nisar, A.; Saeed, M.; Muneer, M.; Usman, M.; Khan, I. Synthesis and Characterization of ZnO Decorated Reduced Graphene Oxide (ZnO-RGO) and Evaluation of Its Photocatalytic Activity toward Photodegradation of Methylene Blue. Environ. Sci. Pollut. Res. 2022, 29, 418–430. [Google Scholar] [CrossRef]
- Duarah, R.; Karak, N. Hyperbranched Polyurethane/Reduced Carbon Dot-Zinc Oxide Nanocomposite-Mediated Solar-Assisted Photocatalytic Degradation of Organic Contaminant: An Approach towards Environmental Remediation. Chem. Eng. J. 2019, 370, 716–728. [Google Scholar] [CrossRef]
- Ouda, E.; Yousf, N.; Morsy, M.; Duraia, E.-S.M. Flexible humidity sensor based on light-scribed graphene oxide. J. Mater. Sci. Mater. Electron. 2022, 33, 18241–18251. [Google Scholar] [CrossRef]
- Morsy, M.; Yahia, I.S.; Zahran, H.Y.; Ibrahim, M. Hydrothermal Synthesis of CNTs/Co3O4 @rGO Mesopours Nanocomposite as a Room Temperature Gas Sensor for VOCs. J. Inorg. Organomet. Polym. Mater. 2019, 29, 416–422. [Google Scholar] [CrossRef]
- Leng, W.; Li, J.; Cai, Z. Synthesis and Characterization of Cellulose Nanofibril-Reinforced Polyurethane Foam. Polymers 2017, 9, 597. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, H.; Morsy, M.; Ateia, M.A.; Abdel-haleem, F.M. Sensors and Actuators A: Physical Ultrafast Response Humidity Sensors Based on Polyvinyl Chloride / Graphene Oxide Nanocomposites for Intelligent Food Packaging. Sens. Actuators A. Phys. 2021, 331, 112918. [Google Scholar] [CrossRef]
- Wang, C.; Luo, S.; Liu, C.; Liu, X.; Chen, C. Photocatalytic Performance of Single Crystal ZnO Nanorods and ZnO Nanorods Films under Natural Sunlight. Inorg. Chem. Commun. 2020, 114, 107842. [Google Scholar] [CrossRef]
- Shivaraj, B.; Prabhakara, M.C.; Naik, H.S.B.; Naik, E.I.; Viswanath, R.; Shashank, M.; Swamy, B.E.K. Optical, Bio-Sensing, and Antibacterial Studies on Ni-Doped ZnO Nanorods, Fabricated by Chemical Co-Precipitation Method. Inorg. Chem. Commun. 2021, 134, 109049. [Google Scholar] [CrossRef]
- Morsy, M.; Ibrahim, M.; Yuan, Z.; Meng, F. Graphene Foam Decorated with ZnO as a Humidity Sensor. IEEE Sensors J. 2019, 20, 1721–1729. [Google Scholar] [CrossRef]
- Moustafa, H.; Darwish, N.A.; Youssef, A.M. Rational Formulations of Sustainable Polyurethane/Chitin/Rosin Composites Reinforced with ZnO-Doped-SiO2 Nanoparticles for Green Packaging Applications. Food Chem. 2022, 371, 131193. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, H.; Isawi, H.; El, S.M.A. Environmental Nanotechnology, Monitoring & Management Utilization of PVA Nano-Membrane Based Synthesized Magnetic GO-Ni-Fe2O4 Nanoparticles for Removal of Heavy Metals from Water Resources. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100696. [Google Scholar] [CrossRef]
- Moustafa, H.; Youssef, A.M.; Nour, M.A. Investigation of Morphology, Mechanical, Thermal and Flame Retardant Properties of an EVA/EPDM Blend by Combination of Organoclay with Na+-Tripolyphosphate. RSC Adv. 2016, 6, 36467. [Google Scholar] [CrossRef]
- Achehboune, M.; Khenfouch, M.; Boukhoubza, I.; Mothudi, B.M.; Zorkani, I.; Jorio, A. Holmium (Ho)-Coated ZnO Nanorods an Investigation of Optoelectronic Properties. J. Mater.Sci. Mater. Electron. 2020, 31, 4595–4604. [Google Scholar] [CrossRef]
- Eyssa, H.M.; Afifi, M.; Moustafa, H. Improvement of the Acoustic and Mechanical Properties of Sponge Ethylene Propylene Diene Rubber/Carbon Nanotube Composites Crosslinked by Subsequent Sulphur and Electron Beam Irradiation. Polym. Int. 2022, 72, 87–98. [Google Scholar] [CrossRef]
- Gea, S.; Situmorang, S.A.; Pasaribu, N.; Piliang, A.F.R.; Attaurrazaq, B.; Sari, R.M.; Pasaribu, K.M.; Goutianos, S. Facile Synthesis of ZnO–Ag Nanocomposite Supported by Graphene Oxide with Stabilised Band-Gap and Wider Visible-Light Region for Photocatalyst Application. J. Mater. Res. Technol. 2022, 19, 2730–2741. [Google Scholar] [CrossRef]
- Al-Rawashdeh, N.A.F.; Allabadi, O.; Aljarrah, M.T. Photocatalytic Activity of Graphene Oxide/Zinc Oxide Nanocomposites with Embedded Metal Nanoparticles for the Degradation of Organic Dyes. ACS Omega 2020, 5, 28046–28055. [Google Scholar] [CrossRef]
- Krishna, P.G.; Chandra Mishra, P.; Naika, M.M.; Gadewar, M.; Ananthaswamy, P.P.; Rao, S.; Boselin Prabhu, S.R.; Yatish, K.V.; Nagendra, H.G.; Moustafa, M.; et al. Photocatalytic Activity Induced by Metal Nanoparticles Synthesized by Sustainable Approaches: A Comprehensive Review. Front. Chem. 2022, 10, 917831. [Google Scholar] [CrossRef]
- Yasin, M.; Saeed, M.; Muneer, M.; Usman, M.; ul Haq, A.; Sadia, M.; Altaf, M. Development of Bi2O3-ZnO Heterostructure for Enhanced Photodegradation of Rhodamine B and Reactive Yellow Dyes. Surf. Interfaces 2022, 30, 101846. [Google Scholar] [CrossRef]
- Chandan, M.R.; Radhakrishnan, K.; Bal, D.K.; Rizwan, M.; Shaik, A.H. Flexible Polyurethane Foam-ZnO Nanocomposite for Photocatalytic Degradation of Textile Dye. Fibers Polym. 2020, 21, 2314–2320. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, C.; Wang, M.; Guo, Q.; Wang, B.; Luo, W.; Wang, Y.; Zhang, C.; Zhou, L.; Zhang, D.; et al. Efficient Photocatalytic Degradation of Malachite Green in Seawater by the Hybrid of Zinc-Oxide Nanorods Grown on Three-Dimensional (3D) Reduced Graphene Oxide(RGO)/Ni Foam. Materials 2018, 11, 1004. [Google Scholar] [CrossRef]
NPs Name | Surface Area m2/g | Average Pore Diameter nm | Total Pore Volume cm3 g−1 |
---|---|---|---|
ZnO | 2.2 | 4.3 | 0.13 |
GO | 71.5 | 13.2 | 0.20 |
GO/ZnO | 30.8 | 56.2 | 0.169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morsy, M.; Abdel-Salam, A.I.; Gomaa, I.; Moustafa, H.; Kalil, H.; Helal, A. Highly Efficient Photocatalysts for Methylene Blue Degradation Based on a Platform of Deposited GO-ZnO Nanoparticles on Polyurethane Foam. Molecules 2023, 28, 108. https://doi.org/10.3390/molecules28010108
Morsy M, Abdel-Salam AI, Gomaa I, Moustafa H, Kalil H, Helal A. Highly Efficient Photocatalysts for Methylene Blue Degradation Based on a Platform of Deposited GO-ZnO Nanoparticles on Polyurethane Foam. Molecules. 2023; 28(1):108. https://doi.org/10.3390/molecules28010108
Chicago/Turabian StyleMorsy, Mohamed, Ahmed I. Abdel-Salam, Islam Gomaa, Hesham Moustafa, Haitham Kalil, and Ahmed Helal. 2023. "Highly Efficient Photocatalysts for Methylene Blue Degradation Based on a Platform of Deposited GO-ZnO Nanoparticles on Polyurethane Foam" Molecules 28, no. 1: 108. https://doi.org/10.3390/molecules28010108
APA StyleMorsy, M., Abdel-Salam, A. I., Gomaa, I., Moustafa, H., Kalil, H., & Helal, A. (2023). Highly Efficient Photocatalysts for Methylene Blue Degradation Based on a Platform of Deposited GO-ZnO Nanoparticles on Polyurethane Foam. Molecules, 28(1), 108. https://doi.org/10.3390/molecules28010108