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Abstract: Vascular endothelial growth factor receptor 2 (VEGF-R2) is a marker of angiogenesis
and metastasis of cancer. Two biosensors for the determination of VEGF-R2 in plasma have been
developed. One of them is based on a pure gold chip, and the other on a silver/gold bimetallic chip;
both have the receptor, monoclonal rabbit antibody specific for human VEGF-R2, attached to the
chip via a cysteamine linker. The biosensor with the gold chip exhibits linearity of the analytical
signal between 0.03 and 2 ng/mL, a precision of 1.4% and recovery between 99% and 102%. The
biosensor with the bimetallic chip exhibits linearity between 0.03 and 1 ng/mL, a precision of 2.2%
and recovery between 99% and 103%. Both biosensors tolerate a 1:100 excess of VEGF, VEGF-R1
and VEGF-R3. Both biosensors were validated by parallel determination of VEGF-R2 in 27 different
plasma samples using the ELISA immunosensor assay, with very good agreement of the results.
Thermodynamic parameters of the interaction of VEGF-R2 with the antibody were determined by
QCM (Quartz Crystal Microbalance) and SPRi (Surface Plasmon Resonance imaging) measurements.

Keywords: array SPRi biosensor; VEGF-R2; angiogenesis marker; blood plasma; silver/gold chip

1. Introduction

Vascular endothelial growth factor receptor 2 (VEGF-R2), together with VEGF-A,
plays an important role in physiological and pathological angiogenesis, including tumor
angiogenesis [1] that is, in the formation of new blood vessels. A growing tumor requires
an enhanced stream of nutrition. Therefore, it forms a network of new blood vessels,
using VEGF-R2 for this purpose. Increased VEGF-R2 concentration is a symptom of the
occurrence of metastasis, the most dangerous stage of cancer. Therefore, one aim in the
treatment of cancer patients is the lowering of VEGF-R2 concentration by the introduction
of VEGF-R2 inhibitors [1]. VEGF-R2 is a transmembrane receptor consisting of the extracel-
lular ligand-binding domain, a transmembrane domain, a tyrosine kinase domain [2] and
1356 amino acids (200 kDa). In spite of being fixed in the membrane, the VEGF-R2 receptor
is present in the plasma of patients with pancreatic cancer [3] and in the serum of patients
with endometrial cancer [4]. Furthermore, changes in serum levels of VEGF-A, VEGF-R1
and VEGF-R2 were studied in pediatric acute lymphoblastic leukemia using ELISA. The
role and concentrations of VEGF-R2 in this tumor have not yet been fully described. The
studies were conducted on samples from patients at the time of diagnosis (day 0) and at

Molecules 2023, 28, 155. https://doi.org/10.3390/molecules28010155 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28010155
https://doi.org/10.3390/molecules28010155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1829-7466
https://orcid.org/0000-0002-9788-6957
https://doi.org/10.3390/molecules28010155
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28010155?type=check_update&version=2


Molecules 2023, 28, 155 2 of 20

the end of the induction phase (day 35), and in the control group. The median VEGF-R2
concentration on day 0 was 17,577.5 pg/mL, and on day 35 it was 20,507.5 pg/mL, while
in the control group the median VEGF-R2 concentration was 22,267.5 pg/mL [5]. A study
was also conducted to determine the effect of VEGF-R2 on ovarian cancer-free survival and
recurrence, using immunohistochemistry. Based on the results of the study, the authors
concluded that the VEGF-R2 status was associated primarily with the type of tumor and
recurrence of the disease. It also appears that positive expression of VEGF-R2 results in
positive progression-free survival [6]. In addition, a Western Blot study showed higher
VEGFR-2 concentrations in ovarian cancer tumors at FIGO stages I and II compared to
FIGO stages III and IV [7]. Available data show that VEGF-R2 concentration in serum
ranges from 6 to approx. 23 ng/mL [4,5]. To our knowledge, quantitative VEGF-R2 determi-
nation is a poorly researched area. To date, an electrochemical sensor capable of detecting
VEGF-R2 has been developed [8], which enables the determination of VEGF-R2 within the
range of 0.4–100 pM (0.8–20 ng/mL). The ELISA immunoassay has also been used for this
purpose [3,4]. The development of new analytical tools for VEGF-R2 determination can be
expected to facilitate wider application of this promising biomarker.

An antibody or antigen may be immobilized on the surface of the biosensor. Due to
the nature of this research, we will focus on the binding of antibodies to the surface of the
biosensor. In Table 1, we present known methods of binding antibodies to the biosensor
surface, along with their advantages and disadvantages.

Table 1. Types of immobilizations on the biosensor surface.

Type of
Immobilization Strategy Description Advantages Disadvantages Ref.

Immobilization via
binding proteins

A layer of proteins is
formed on the surface
of the biosensor that is

specific to the
respective regions of

the antibodies.

1. Increased sensitivity
compared to random

immobilization.
2. No need to modify the
surface with an antibody.
3. Possibility of multiple

regeneration of the
biosensor (if cross-linking

is used).

1. The use of cross-linking may
reduce sensitivity, and without it,

regeneration is not possible,
making the biosensor disposable.
2. Possibility to use this type of
immobilization only for some

classes of antibodies.

[9]

Immobilization by
antibody fragments

Disruption of disulfide
bridges in the antibody

and immobilization
with sulfhydryl groups

1. Increase in sensitivity
compared to random

immobilization.
2. The possibility of

regulating the affinity of
the antibody to the antigen

(with the use of
recombinant Fab’).

3. The possibility of
multiple regeneration.

1. Dense surface packing can
cause steric hindrance.

2. Potential loss of antibody
biological activity due to

chemical reduction.
3. Low stability of

antibody fragments.
4. Possible denaturation in case
of direct contact of the antibody

with the gold surface of
the biosensor.

Immobilization by
an oxidized

oligosaccharide moiety

Oxidation of the
oligosaccharide moiety

followed by
conjugation to

molecules with amino
or hydrazine groups

1. Increase in sensitivity
compared to random

immobilization.
2. No need to modify

amino acids.
3. The possibility of

multiple regeneration.

1. High impact of changes in
analysis conditions.

2. Possible damage to the
antibody structure
during oxidation.

Random
immobilization and
physical adsorption

Formation of a
covalent bond by
amine coupling

1. Good sensitivity
provided the appropriate
spatial arrangement of the

antibody molecules.
2. The possibility of

multiple regeneration.

1. Lower sensitivity for random
immobilization compared

to targeted
immobilization methods.
2. In the case of physical

adsorption–denaturation, low
stability and random spatial

orientation of proteins.
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Array SPRi is a technique used to determine molecular biomarkers in body fluids, in
what is called ‘liquid biopsy’. The technique is gradually gaining importance in clinical
investigations, e.g., [10–13]. Almost 30 biosensors have been developed for use with
array SPRi or conventional SPR, including sensors for the determination of the known
cancer biomarkers CA-125 [14], HE-4 [15] and CEA [16], as well as new promising cancer
biomarkers such as circulating microRNA [17] or exosomes [18] in the case of breast cancer
biomarkers. The array SPRi technique enables the determination of biomarkers within
the ranges of concentration characteristic for cancer patients and for healthy subjects,
without the need for any biomarker accumulation or signal enhancement (e.g., with gold
nanoparticles). The technique differs from classic fluidic SPR in two respects: (i) the
biosensor is formed ex situ, while in classic SPR it is formed in situ during measurement;
(ii) the SPRi measurement is performed after the removal of processing liquids (in classic
SPR measurement it is performed in the presence of processing liquids). By using an array
of measuring points, several samples (usually nine) can be measured simultaneously. An
advantage of the technique is the simple construction of the biosensor. Thus, array SPRi
is potentially a suitable tool for the determination of VEGF-R2, provided that a suitable
biosensor can be developed.

Literature reports show that the use of a bimetallic biosensor should primarily increase
the sensitivity of the method based on it. As in examples of such studies, we cite a biosensor
based on bimetallic Pd@Au rods for the determination of pesticides [19], optimization
of the thickness of the Ag/Au bimetallic layer in order to achieve the highest possible
sensitivity [20], and increasing the sensitivity of a biosensor based on nanocomposites of
titanium, graphene and barium using a bimetallic configuration (Ag/Au) [21].

The aim of this work was to develop a new method for the quantitative determination
of the circulating factor VEGF-R2 based on the use of SPRi biosensors and determination
of its analytical parameters. It is one of the few methods of VEGF-R2 determination in
natural samples. The successful development of a tool for the determination of circulating
VEGF-R2 in plasma/serum should facilitate the detection of cancer metastasis. The medical
industry have the right to expect the creation of new tools for cancer detection and grading
from the analytical chemistry. To increase the chances of success, two versions of the
biosensor were investigated: one built on a standard commercially available gold chip
and the other using a bimetallic chip with gold and silver in the correct proportions. The
silver–gold chip is just as suitable as the pure gold chips for building biosensors for use
with the SPRi array. Due to the difference in plasmonic properties, these two chips created
different calibration conditions, which made it possible to increase the sensitivity of the
newly developed method. The work presents, for the first time, thermodynamic studies
of the biological system (ligand-VEGF-R2) with the use of QCM and SPRi as well as the
characteristics of the sensor surface.

2. Results
2.1. Sensors Preparation

Gold and bimetallic chips were used in the research. Chips with pure gold as the
plasmonic material were purchased directly from the manufacturer (SSens, http://www.
ssens.nl/, accessed on 10 March 2021). The bimetallic chips consisted of a glass base
(microscope slides, nD = 1.51), a Cr adhesive layer (1 nm), an Ag layer (40 nm) and an
Au layer (4 6 nm). On each of the chips, special separating layers were printed to create
nine independent measurement locations. Elpemer SD 2457 polymer was used for this
purpose. The exact procedure for preparing the sensors has been described in previous
articles [22,23]. The immobilization of the linker, cysteamine, and the ligand–monoclonal
antibody, for both sensors, was carried out according to Figure 1.

The first step was to coat the sensor with a self-assembled monolayer of the linker, in
our case cysteamine (1). Then, the EDC and NHS solutions were mixed in a 1:1 volume ratio
in the presence of a carbonate buffer to ensure the appropriate pH of the reaction medium,
and then the mixture was introduced into the antibody solution, after which the whole

http://www.ssens.nl/
http://www.ssens.nl/


Molecules 2023, 28, 155 4 of 20

product was mixed again (2). The third step was to place the previously prepared mixture
onto the sensor with a linker layer. It was incubated for 1 h at 37 ◦C (3). After completion
of the above steps, the biosensor was ready to be used for quantitative determinations in
biological fluids (4).
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The components of the SPRi spectrometer are a light source (diode laser, λ = 635 nm)
and a system of lenses focusing the incident radiation, and polarizers, which are responsible
for extracting the polarization of p or s radiation. Then, the radiation with the appropriate
polarization is directed to an equilateral glass prism made of BK-glass 7, on which the
biosensor is placed after prior application of an immersion oil with a refractive index of
nD = 1.54 (consistent with the refractive index of the prism). The immersion oil prevents the
formation of a glass–air interface between the prism surface and the base of the biosensor.
The radiation reflected from the surface of the biosensor goes to the detector, which is a
monochrome CCD camera with a resolution of 1.4 MP. ImageJ 1.51k (NIH Image) software
is used to process the images in order to obtain an analytical signal.

The SPR curves were recorded by experimentally forming successive layers of the
biosensor components on one of its active sites and analyzing the resulting images. The
data obtained were used to plot the SPR curves using WinSpall software.

The formation of subsequent layers of the biosensor is evidenced by shifts of the SPR
curves characterizing a given layer towards higher angle values, compared with the SPR
curve for the biosensor layer immediately preceding the one currently being analyzed.

Figure 2 shows the SPR curves for both biosensors. In the case of the biosensor with
only a gold layer as the plasmonic material, the shifts of the SPR angle between consecutive
individual sensor elements are of the order of 0.1–0.2◦. In the case of the biosensor with
silver and gold, an imperceptible difference in the SPR angle change is observed between
the metal layer and cysteamine. The successive layers of the biosensor cause shifts of 0.3◦.
Moreover, the minima of the SPR curves in this case are sharper. All of these properties
suggest that the use of two plasmonic metals leads to an increase in the sensitivity of the
analytical method, and therefore to more accurate results.
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Table 2 shows the values of the parameters used to model the SPR curves (Figure 2)
in order to fit them to the experimental data. The table contains information on the
thickness of individual layers of the biosensor, and values of the real and imaginary parts
of the permittivity.

Table 2. Parameters used to model the SPR curves. ε’—real part of the permittivity, ε”—imaginary
part of the permittivity.

Gold Chip Bimetallic Chip
prism triangular prism triangular

prism angle 60o prism angle 60o

Layer Thickness [nm] ε’ ε” Layer Thickness [nm] ε’ ε”
BK-7 0 2.29 0 BK-7 0 2.29 0

chromium 1 −6.3 30 chromium 2 −6.3 30
gold 46 −12.45 1.3 silver 40 −16 0.6

cysteamine 1 1.5 0 gold 6 −12.45 1.3
ligand 1.8 1.55 0 cysteamine 1 2.5 0

VEGF-R2 2.2 1.57 0 ligand 1.2 3 0
VEGF-R2 1.33 4 0

Taking into account the characteristics of the surface, the determined thicknesses of
individual layers should be treated as averaged values. Previous studies have shown that
gold and bi-metallic chips differ in their roughness. The RMS roughness values were as
follows: 2.12 nm for the bimetallic chip and 0.15 nm for the gold chip [23]. This may have a
potential impact on the attachment of individual molecules to the biosensor surface and
the availability of antibody molecules for the analyte. A less rough surface ensures a more
even distribution of particles on the surface of the biosensor. They are densely packed and
steric hindrance can occur; hence not all ligand molecules have the opportunity to bind to
the analyte. On the surface with higher roughness, elevations and depressions are formed.
They provide better separation of molecules binding to the biosensor surface, which results
in more ligand molecules having a chance to bind to the biosensor surface and thus more
analyte molecules having a chance to interact with the ligand. Steric hindrance is also
minimized. However, such a surface has the disadvantage of possible non-uniformity. The



Molecules 2023, 28, 155 6 of 20

point here is that the surface of a bimetallic chip may contain islands composed of Ag/Au
and patches where there is only silver on the surface, or there is so little gold that it is
impossible to attach a thiol to the surface of the biosensor. Such a phenome-non is unlikely
to be observed on uniform surfaces. Failure to attach a thiol will result in the lack of a ligand
in a given place and further inability to capture the analyte from the solution. Therefore, in
order for the advantages of a bimetallic chip to be fully exploited, it is necessary to carry
out detailed and comprehensive control of its surface during production.

To prevent non-specific adsorption on the biosensor surface, which may negatively
affect the results (e.g., false positives), 3 µL BSA (1 mg/mL) was applied to the active sites
of the biosensor before the ligand–analyte binding step, for about 10 min. Next, the surface
of the active sites was rinsed with water to remove excess BSA.

2.2. Saturation of Sensor Surfaces with Antibody (Ligand)

The curves were obtained in a neutral environment (physiological pH = 7.4). Eight
standard ligand solutions were prepared, which were then placed on a previously prepared
sensor with a cysteamine layer as the linker. The whole resulting product was incubated for
one hour at 37 ◦C. After this time, excess ligands were removed by washing the biosensor
surface with milliQ water and HBS-ES solution. An equal concentration (C = 5 ng/mL) of
VEGF-R2 was applied to the active sites of the biosensor. The concentration of the analyte
was lower than the maximum concentration of the surface saturation with the ligand
due to the fact that the method of immobilization of the ligand to the surface (random
immobilization) does not guarantee that all molecules will be bound to it. Therefore,
in order not to obtain an artificially high signal caused by non-specific adsorption, the
concentration of the analyte was lower than the concentration of the ligand. If it were too
low, the saturation curve would not reach a plateau. This would require repeating the
experiment with a correspondingly higher concentration of the analyte. There was also a
reference site, to which blank (PBS) was applied. The time allowed for interaction between
the ligand and VEGF-R2 was 10 min, after which the biosensor surface was washed again
with milliQ water and HBS-ES solution. Figure 3 shows the ligand saturation curves of the
sensor surface.
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Both sensors lead to a characteristic monomolecular adsorption curve (as described
by Langmuir). This suggests the formation of a ligand monolayer, which is desirable due
to the characteristics of the tests. The plateau is established at a ligand concentration of
20 ng/mL for both biosensors. Above this concentration, further binding of VEGF-R2 to
the ligand is no longer possible, since it is impossible to immobilize more ligands and all
available ligands on the surface of the biosensors have been bound.



Molecules 2023, 28, 155 7 of 20

The maximum detector response of the instrument occurs only when all ligand binding
sites are occupied by the analyte. It depends on the number of ligand particles that have
been immobilized on the sensor surface, as well as the mass of ligand and analyte, i.e., the
size ratio of the ligand–analyte complex. Additionally, the detector response depends on
the number of ligand binding sites. There is also a risk that binding of the analyte to a
ligand-dense surface may result in the screening of more than one ligand binding site (e.g.,
the formation of random protein agglomerates). In such a situation, the maximum detector
response signal calculated from equation (1) will be lower than that obtained in the course
of the experiment.

SPRimax =
SPRiligand ManalyteValencyligand

Mligand
(1)

where:
SPRiligand—maximum SPRi signal for maximum ligand coverage of the sensor surface;

[Au: 2040.20 au; AgAu: 3254.05 au]—the response of the device detector when there is only
a linker and a ligand on the surface of the biosensor;

Manalyte—molar mass of the tested analyte [200 kDa];
Valencyligand—the number of ligand binding sites [1];
Mligand—molar mass of the ligand [151 kDa];
SPRimax is, respectively, for the gold chip SPRimax = 2702.24 au, and for the bimetallic

chip SPRimax = 4310 au.—the response of the device’s detector when a ligand–analyte
complex is formed on the surface of the biosensor.

In general, the amount of ligand actually active is unknown, and is highly variable
depending on the immobilization technique used. Covalent coupling chemistry gives the
best results in terms of obtaining highly active biological surfaces. A required condition,
however, is that the reactive group that forms the covalent bond be as far away as possible
from the group that interacts with the analyte [24–26].

The maximum SPRi signal (SPRimax) that the device detector can give for the tested
systems, assuming that the ligand is covered with a monolayer of analyte, was calculated
from the following formula (1). The SPRimax values were used when constructing the
saturation plots and the calibration relationships for both biosensors.

The SPRimax value indicates the maximum signal that the device should receive with
the assumed measurement parameters.

Since the theoretically determined SPRimax values are in agreement with the experi-
mental values (Figure 3), we can conclude that the ligand (antibody) used has one binding
site. This assumption is supported by the fact that the value of the maximum SPRi signal
obtained as a result of the experiment (2683.70 Au; 4302.42 Ag/Au) is consistent with
the value calculated theoretically (2702.24 Au; 4310.00 Ag/Au). If the antibody had two
binding sites, each of the experimental signals would be doubled

2.3. Method Calibration

Eight standard solutions of VEGF-R2 with concentrations of 0.03, 0.05, 0.10, 0.50,
1.00, 2.00 and 5.00 ng/mL were prepared, and these were applied to the individual active
sites of the biosensor. One of the sites was used as a reference (with PBS applied). The
working range of the calibration curves is shown in Figure 4, while the full range of the
calibration curves is shown in Figure A1 in the Appendix A. The plateaus were determined
at the following concentrations of VEGF-R2: for the biosensor with only gold as the
plasmonic material, CVEGF-R2 = 2 ng/mL; and for the biosensor coated with silver and gold,
CVEGF-R2 = 1 ng/mL.

From the above calibration relationship, the working range was selected (from LOQ
to 2 ng/mL for the gold chip, and from LOQ to 1 ng/mL for the bimetallic chip), and
regression equations were determined and used for further analyses.

The calibration curve characterizing the silver- and gold-coated chip has a slope
approximately 2.9 times greater than that of the calibration curve of the gold chip (3385.4
vs. 1176.4). This is another observation suggesting that the combination of two plasmonic
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metals increases the functional value of the constructed biosensor. The functional value
of the biosensor is increased due to the increase in sensitivity, which is observed when
two plasmonic metals are used. Silver is considered one of the best plasmonic metals with
the lowest ohmic losses. Its SPR curve looks steeper and has a more accurate minimum
compared with a 100% gold plate [27]. However, it does not have the ability to attach
thiols to its surface (as for example, in our case, cysteamine) and is quickly oxidized.
Therefore, in our research, a thin layer of gold with a thickness of 6 nm sputtered onto
the silver layer. This layer had a double function: to enable binding of the thiol to the
surface of the biosensor and to protect the silver surface against oxidation. By using such a
combination, we exploit the advantages of two plasmonic metals. Silver makes it possible
to achieve maximum differences in the analytical signal, in relation to the difference in
analyte concentrations, while gold allows the thiol to be attached to the surface of the
biosensor and protects silver against oxidation.
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2.4. Methods Precision, LOB, LOD, LOQ

The precision of the developed methods was determined by applying standard solu-
tions with appropriate concentrations of the reference material (CRM) to the active sites of
the biosensors. The concentrations used corresponded to the endpoints of the calibration
curves and the midpoints. For each sample, 10 independent measurements were made, the
mean concentration value (Cquant), standard deviation (SD) and relative standard deviation
(RSD) were calculated, and the recovery value (REC) and the coefficient of variation (CV)
were determined. A further essential validation step is the determination of the limit of
blank (LOB), limit of detection (LOD) and limit of quantification (LOQ). The values are
summarized in Table 3.

Table 3. Validation parameters of the developed methods.

Parameter

Gold Chip Bimetallic Chip

CRM [ng/mL] CRM [ng/mL]

0.030 1.000 2.000 0.030 0.050 1.000

Cquant [ng/mL] 0.030 1.030 2.001 0.031 0.056 1.001

SD [ng/mL] 0.002 0.041 0.006 0.001 0.006 0.103

REC
[%] 100.00 103.00 100.05 103.33 112.00 100.10

CV
[%] 6.60 4.00 0.30 3.23 10.70 10.30

Analytical limits

LOB
[ng/mL] 0.005 0.005

LOD
[ng/mL] 0.010 0.010

LOQ
[ng/mL] 0.030 0.030
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The very good precision of the developed methods is demonstrated by the REC values,
which are in the range 100.00–112.00%. The CV was used to compare the volatility. The
lowest variation was found at the 2.000 ng/mL point for the gold chip (CV = 0.30%), and
the highest at 0.050 ng/mL for the bimetallic chip (CV = 10.70%).

The limit of blank (LOB) was determined on the basis of 10 measurements with a zero
concentration of the analyte tested (pure PBS). The LOB value indicates the permanent
systematic error. LOB was determined using the formula:

LOB = AVERAGE BLANC + 1.645 · SD (2)

LOD was determined by measuring 10 samples of PBS supplemented with the lowest
concentration of VEGF-R2 that could be captured by the detector (C = 0.005 ng/mL). The
arithmetic mean of the obtained results was calculated, and the SD was determined. The
LOD was calculated from the following relationship:

LOD = 0 + 3 · SD (3)

LOQ was determined using the equation:

LOQ = 3 · LOD (4)

The LOB, LOD and LOQ values for both biosensors are the same, which indicates
that in the lowest concentration range, the type of plasmonic metal does not play a
significant role.

2.5. Recovery by the Method of Standard Addition

The first stage of this validation step was the quantification of VEGF-R2 in a randomly
selected control sample (Ccontrol) consisting of plasma taken from smokers (diluted two
times). Then a threefold excess of VEGF-R2 (Cadd) was added, and five independent
measurements of the concentrations of the spiked samples were made. The recovery value
(REC) and standard deviation (SD) were then calculated. The results are presented in
Table 4.

REC =
Cquant − Ccontrol

Cadd
× 100% (5)

Table 4. Recovery by the method of standard addition.

Gold Chip

Ccontrol
[ng/mL]

Cadd
[ng/mL]

Measurement
No

Ctheor
[ng/mL]

Cquant
[ng/mL]

SD
[ng/mL]

REC
[%]

1.74 ± 0.05 5.22

1

6.96

7.07 0.09 102.11

2 7.00 0.10 100.77

3 6.91 0.08 99.04

4 7.07 0.09 102.11

5 7.09 0.06 102.49

Bimetallic chip

Ccontrol
[ng/mL]

Cadd
[ng/mL]

Measurement
No

Ctheor
[ng/mL]

Cquant
[ng/mL]

SD
[ng/mL]

REC
[%]

1.14 ± 0.06 3.42

1

4.56

4.69 0.07 103.80

2 4.54 0.10 99.56

3 4.57 0.09 99.42

4 4.65 0.07 102.63

5 4.63 0.05 102.05



Molecules 2023, 28, 155 10 of 20

Small standard deviations indicate the high precision of the developed methods,
while the good agreement between the experimentally determined concentrations and the
theoretical concentrations proves the methods’ accuracy.

2.6. Selectivity

The selectivity of the developed methods was tested for both chips (gold and bimetal-
lic: Ag/Au). The first step was to test the selectivity of the antibody used against indi-
vidual components of the VEGF family. Potential interferents—VEGF-A, VEGF-R1 and
VEGF-R3—were placed on the chip with the antibody. The procedure was also repeated for
NRP-1 and human albumin. The interferent concentrations were 5 ng/mL. The experiment
is presented schematically in Figure A2 in the Appendix A.

The obtained concentration values after the antibody–antigen interaction are not much
higher than the LOQ (0.03 ng/mL) of the developed methods for the VEGF-A protein and
other VEGF-R receptors. Therefore, it can be concluded that these do not have a major
impact on the quantification of VEGF-R2 in body fluids. The remaining interferents tested
did not react with the antibody in any way.

Next, a series of [VEGF-R2: interferent] solutions were prepared with molar ratios of
concentrations [1:1], [1:10] and [1:100], where the concentrations were always selected so
that the expected VEGF-R2 concentration was 1 ng/mL in the case of the gold chip, and
0.5 ng/mL in the case of the bimetallic chip, which is marked with a dashed line in the
figure. Recovery values (REC) were calculated. The results of the tests are presented in
Figure 5.
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The REC values for both methods are in the range 100–105%. Therefore, we conclude
that no excess of interferent interferes with the correct, selective operation of the biosensor.
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The next step in the research was to test whether VEGF-R2 already bound to the
ligand (antibody) could react with potential interferents (VEGF-A and NRP-1). For this
purpose, VEGF-A solutions were applied in various concentration ratios with respect to
the determined VEGF-R2 concentration. The same was done for NRP-1. The first step was
to apply the VEGF-A, followed by the NRP-1. The methodology is presented schematically
in Figure A3 in the Appendix A.

Figure 6 shows the results of the tests. The REC values of 100–103% indicate that
neither VEGF-A nor NRP-1 react with ligand-bound VEGF-R2.
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2.7. Thermodynamic Studies of the Biological System with the Use of QCM and SPRi and the
Characteristics of the Sensor Surface

A quartz crystal microbalance (QCM) was used to determine the dissociation equilib-
rium constant (KD) and the association equilibrium constant (KA) of the ligand–VEGF-R2
complex. Figure 7 also provided information about the formation of successive layers of
the biosensor.
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Below, the thermodynamic parameters of the tested biological system will be summa-
rized and compared, based on the use of QCM and SPRi (Table 5).
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Table 5. Summary of the characteristics of the tested biological system.

Thermodynamics Parameters
QCM SPRi

KD 2.10 × 10−12 M 2.05 × 10−12 M

KA 4.73 × 1011 1/M 4.00 × 1011 1/M

Surface parameters

Gold chip Bimetallic chip

ligandsites
13.51 pmol/mm2

(2.04 × 103 ng/mm2)
21.55 pmol/mm2

(3.25 × 103 ng/mm2)

ligandfunctional 99.99% 99.82 %

When conducting thermodynamic studies using SPR, care should be taken to ensure
that the density of the sensor surface with the ligand capturing the analyte of interest is as
low as possible, to avoid factors such as mass transfer or spherical blockage. Thermody-
namic studies with the use of SPRi were carried out only for the gold chip. Based on the
previously prepared surface saturation curve (Figure 3), the value SPRimax was determined
high enough for the detector of the device to be able to give reliable results, and low enough
to obtain relatively loosely deposited ligands on the biosensor surface (SPRimax = 1000 au).
This ensures that we create a ligand layer with the lowest possible density on the biosensor
surface, while obtaining a detector response that is not disturbed by factors that may falsify
the measurements, e.g., mass transfer effects or steric hindrances. Then, we calculated
what SPRi signal for the bound ligand (SPRiligand) we expect from the detector, according
to Equation (6):

SPRiligand =
SPRimax Mligand

ManalyteValencyligand
(6)

The value SPRiligand = 755 au was obtained. A curve was plotted for the detector’s
response to the introduced ligand at various concentrations (ranging from 1 to 8 ng/mL)
(Figure 8A). As the SPRi signal should not exceed 755 au, 8 ng/mL was chosen as the
optimal ligand concentration for the study. The next step was the application of the tested
analyte in concentrations between 0.01 and 3.00 ng/mL, and determination of the KD value,
i.e., the analyte concentration which gives a signal corresponding to the saturation of no
more than 50% of the available ligand. In our case, the relevant SPRi signal value was
352 au. (Figure 8B).
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The point 0.5 ng/mL (2.05 × 10−12 M) was closest to the assumed value of the SPRi
signal corresponding to the KD of the biological system, causing the detector to respond
with an SPRi signal equal to 352 au.
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The value KA of the system was determined from Equation (7):

KA =
1

KD
(7)

The results obtained for the thermodynamic characteristics of the studied ligand–
VEGF-R2 system, obtained by means of QCM and SPRi, are summarized in the table below
(Table 5). The table also includes information about the surfaces of the biosensors obtained
by SPRi: the amount of ligand deposited on the surface (ligandsites) and the amount of
functional ligand (ligandfunctional). These considerations are, of course, purely theoretical
and assume the availability of all deposited ligands.

∗ ligandsites =
SPRiligand

MligandValencyligand
(8)

∗ ∗ ligand f unctional =
SPRimax Mligand

SPRiligand Manalit
× 100% (9)

The affinity of the recombinant NTV1 nanobody for domain 3 of VEGF-R2 was tested.
The research led to a value of 49 ± 1.8 nmol/L (4.9 × 10−8 mol/L) [28].

The research methodology described in this article assumes random immobilization.
Although theoretical considerations show that almost 100% of all ligands are functional, it
should be remembered that SPRi is sensitive to mass changes on the surface of the biosensor.
Thus, even when the antibody or test protein is completely or partially destroyed, it may
retain the ability to bind to the surface of the biosensor or bind to its surface by physical
adsorption. In this case, we will also get results indicating the activity of all ligands, but
this will not be accurate. Thus, the result obtained should be regarded as an estimate only.

2.8. Determinations in Natural Samples

To verify the correctness of the developed methods of quantitative determination of
VEGF-R2 in plasma, determinations were made with the use of a commercial ELISA test
(Abcam, ab100665). The biosensor-based method required appropriate dilutions. For the
gold biosensor, all samples were diluted two times, while in the case of the bimetallic
biosensor, the samples were diluted four times.

To compare the concentrations obtained using the developed methods and those
obtained with the use of a commercial ELISA test, scatterplots were produced, and the
Spearman’s rank correlation coefficient (ρS) was calculated, with the statistical significance
level of p < 0.05.

Figure 9 shows a comparison of both newly developed methods for a commercial
ELISA test, while Figure 10 shows a comparison of the VEGF-R2 determination method
based on a gold and bimetallic biosensor.
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3. Discussion and Conclusions

Two biosensors were constructed as promising tools for the quantification of VEGF-R2
in plasma. Two metallic bases were used for the biosensors. The first was constructed on a
commercial gold chip. In the second case, two plasmonic metals—silver and gold—were
used, sputtered on a glass plate in accordance with the method described in a previous
publication. The use of two plasmonic materials is beneficial mainly for increasing the
sensitivity of the method. We observed this on the basis of the minima of the SPR curves,
which were better spaced in the case of the bimetallic chip, than in the case where pure gold
was used (Figure 2). Similarly, the calibration curve of the bimetallic chip is characterized
by a sensitivity almost three times higher than that of the standard gold chip (Figure 4).
Unfortunately, at the same time, it entails a narrowing of the analytically useful range.
The linear response range for the biosensor with the bimetallic chip is between LOQ
(0.01 ng/mL) and 1 ng/mL, while for the biosensor with a pure gold chip it is between 0.01
and 2 ng/mL. Taking into consideration the fact that levels of VEGF-R2 in blood plasma
range from 0.6 to 2.6 ng/mL [this paper] and those in blood serum from approx. 6 to
23 ng/mL [4,5], it is clear that dilution of samples may be necessary. This operation is easier
when the linearity range is wider. A similar situation was observed in the case of VEGF. The
concentrations of this protein in plasma were lower than in serum. The authors of the paper
explain this state of affairs in terms of the probability that VEGF released from platelets has
a greater share of serum concentrations. To minimize variations in VEGF concentrations, it
is recommended to use EDTA glass tubes instead of their plastic counterparts to minimize
the risk of platelet activation [29]. Perhaps a similar relationship exists for VEGF-R2.

Precision and recovery were investigated both under model conditions and by the
spiking of blood plasma (Tables 3 and 4). Surprisingly, the results for the spiked samples are
much better that those in the model investigations, especially in the case of the biosensor
based on the bimetallic chip. Additionally, the results for the biosensor based on the gold
chip are better than those for the bimetallic chip. Despite these differences, the recoveries
are not worse than 112%, while the precision is better than 11% in all cases.

Special attention was paid to testing the selectivity of the developed biosensors. VEGF-
R1 and VEGF-R3, the other members of VEGF-R family, were selected as potential inter-
ferents, as well as VEGF-A and NRP-1, which are involved in angiogenesis jointly with
VEGF-R2. Tolerance of VEGF-A is especially significant because VEGF-A reacts with
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VEGF-R2. None of these potential interferents have a significant influence on the results of
VEGF-R2 determination even at 1:100 excess. This high selectivity of the two developed
biosensors was confirmed in reverse experiments in which VEGF-A in excess, alone or
jointly with NRP-1, interacted with the biosensor already containing entrapped VEGF-
R2. The lack of any influence is evidence that VEGF-R2, entrapped by monoclonal rabbit
antibody specific for human VEGF-R2, had lost the ability to react with VEGF-A. Thus,
excellent selectivity was attained for both versions of the biosensor.

Using QCM and SPRi, basic thermodynamic characteristics of the ligand–VEGF-R2
system were determined. The results are summarized in Table 5. As they are mutually
comparable, we may assume that QCM and SPRi can be used alternatively for this type
of study. The table also includes information about the surfaces of both biosensors: the
theoretical amount of ligands bound on the surface (ligandsites) and functional ligands
(ligandfunctional) capable of capturing VEGF-R2.

Both biosensors were validated by VEGF-R2 determination in 27 real samples and
by parallel determination with an ELISA. The results for both biosensors showed very
good agreement, and good agreement was also obtained between the results from the two
biosensors showing the high equivalence of the two versions of the biosensor. All of the
above features of the newly developed biosensors provide evidence that these biosensors
may be very good complementary methods to those currently used for quantifying VEGF-
R2 in plasma.

4. Materials and Methods
4.1. Reagents and Methodology

The function of the VEGF-R2 capture ligand (recombinant human VEGF-R2, Abcam,
UK) from the probe was performed by a monoclonal rabbit antibody specific for human
VEGF-R2 (Abcam, Cambridge, UK). Recombinant human VEGF-R1, VEGF-R3 and NRP-1
(neuropilin-1) were purchased from Abcam (Cambridge, UK). Commercial ELISA (Abcam,
Cambridge, UK) was used as a comparative method. A 99.98% ethyl alcohol (POCh,
Gliwice, Poland), EDC, NHS, cysteamine, glycine, BSA and human albumin (all Sigma
Aldrich, Steinheim, Germany) were also used during the research. PBS buffer (pH = 7.4)
was used to dilute the test samples. The surface of the biosensor was washed with HBS-ES
(pH = 7.4) to remove non-specifically bound particles. All solution preparation and rinsing
of the biosensor surface were performed with milliQ water.

The QCM investigation was carried out using a quartz crystal microbalance coupled
with a PGSTAT 302N potentiostat/galvanostat (Methrom Autolab B.V., Utrecht, The Nether-
lands). The crystal placed in the measuring cell (3 mL) had a resonance frequency of 6 MHz
and an area of 0.361 cm2. The gold layer was 100 nm thick. QCM analysis was supported
by dedicated NOVA 2.1 software.

SPRi experiments were performed using a stationary device developed by the Uni-
versity of Bialystok and the company AC S.A. The main parts of the SPRi apparatus used
were a diode laser emitting a light beam with a length of 635 nm, a fiber optic collimator,
a linear polarizer, a glass prism and a chip (in Kretschmann configuration), and a CCD
camera as a detector. We used two polarizations: p polarization and s polarization. The p
polarization was used to make basic measurements, and the s polarization to measure the
background, which was then subtracted. The results were processed using ImageJ software
(NIH, version 1.32). The quantity of analyte required for the analysis was only 3 µL.

4.2. Biological Material

Plasma samples were taken from patients with diagnosed brain glioma (G1–G4), and
blood plasma from smokers was used as a control (K). The samples used for the research
came from the Biobank of the Medical University in Bialystok. A total of 27 samples
were tested. The study obtained the consent of the relevant bioethical committee (license
APK.002.171.2021). The tested samples were diluted so that the range of signals received
from the detector lay within the range of the calibration curves. All samples were diluted
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twice for use with the biosensor with a gold layer, and four times for use with the biosensor
with a bimetallic layer.

4.3. Statistical Analysis

Statistical analysis was performed using Statistica 13.3 software (TIBCO Software Inc.,
Palo Alto, CA, USA).
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Appendix B. Robustness of Analytical Methods

To determine the influence of changes in the analytical procedure on the stability of
the results obtained, a robustness test of the analytical method was carried out. Table A1
shows the changes in the analytical procedure and their effect on the quantification results.
Each measurement was carried out in triplicate.

The above experiments show that the changes in the analysis time, for both the gold
and the bimetallic chip, had the greatest impact on the stability of the obtained results.
Concentration values begin to stabilize after approximately 5 min. The optimal time for this
analysis is 8–10 min. In addition, the temperature increase over 2 h has a major influence.
Changes in pH have a slightly smaller influence (the optimum pH for the analysis is 7.40).
It was not observed that the cooling of the sample (to 4 ◦C) or its preparation immediately
before the analysis had a real impact on the results obtained.
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Table A1. Effect of changes in the analytical procedure on the value of the quantification result.

Change in the
Analytical Procedure

Description of the Change in the
Analytical Procedure

VEGF-R2

Gold Chip Bimetallic Chip

XC
[ng/mL]

SD
[ng/mL]

XC
[ng/mL]

SD
[ng/mL]

- sample prepared on the day of analysis
(nominal value) 1.78 0.03 1.22 0.08

T↑ sample heated in an incubator for 2 h (40 ◦C) 1.08 0.05 0.89 0.02

T↓ sample chilled in the refrigerator for 2 h (4 ◦C) 1.75 0.07 1.29 0.04

pH < 7.40 pH = 4.99 1.26 0.04 0.94 0.07

pH > 7.40 pH = 9.50 1.18 0.06 1.08 0.04

shot and gun sample prepared immediately before the
analysis 1.83 0.05 1.19 0.03

time of measurement
(interaction of sample with

biosensor)

change in sample measurement time (sample
prepared on the day of analysis)

30 s 0.29 0.04 0.36 0.02

2 min 0.95 0.06 0.84 0.05

5 min 1.69 0.03 1.12 0.02

8 min 1.77 0.05 1.25 0.04

10 min 1.68 0.04 1.19 0.03

XC—mean concentration in the sample. SD—standard deviation.

It was also investigated how many times it is possible to regenerate biosensors with a
glycine–HCl solution at pH = 2.50 and reuse them for quantification without a significant
decrease in their precision and accuracy. The regeneration of the biosensor surface was
carried out by applying 3 µL of the glycine–HCl solution several times to the surface of
the biosensor. The entire process took no more than 45 s. Regeneration with a glycine–HCl
solution allowed the removal of ligand-bound analyte molecules and the reuse of the same
biosensor plate. The same biological sample was prepared immediately before the analyses
were used for the research. The test results are summarized in Table A2.

Table A2. Investigation of the influence of the number of regeneration cycles on quantification.

Regeneration Cycle Number

VEGF-R2

Gold Chip Bimetallic Chip

XC SD XC SD

0 1.76 0.04 1.25 0.02

1 1.73 0.03 1.19 0.06

2 1.69 0.06 1.24 0.04

3 1.75 0.04 1.22 0.03

4 1.78 0.07 1.20 0.07

5 1.71 0.03 1.12 0.03

6 1.34 0.05 1.04 0.07

7 1.32 0.05 0.78 0.03

8 1.09 0.09 0.45 0.07
XC—mean concentration in the sample. SD—standard deviation.

There was a noticeable decrease in the determined concentration compared with the
original result: for the gold chip after the 6th cycle of biosensor surface regeneration (a
difference of 23.86%), and for the bimetallic chip after the 5th regeneration cycle (a difference
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of 10.40%). Therefore, since each of the biosensors has nine active sites, it is possible to
make a maximum of five series of quantitative determinations (45 samples) using the gold
chip and four series (36 samples) using a bimetallic chip, where quantification is carried
out using the same biosensor plate.
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