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Abstract: The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain
to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines
are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol
derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site
of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library
and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV
polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51
and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active
site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are
expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.

Keywords: SARS-CoV-2; DENV; polyphenol; RdRp; non-nucleoside

1. Introduction

Coronavirus and flavivirus both encode single-stranded positive sense RNA (+RNA),
containing some viruses seriously threatening human health. Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) of β-coronavirus, as the causative pathogen of
Coronavirus Disease 2019 (COVID-19), is now still spreading worldwide [1]. The clinical
manifestations of COVID-19 vary from asymptomatic to common fever, and up to more
severe symptoms such as pneumonia, respiratory failure, multiorgan failure, and eventually
death [2]. According to the World Health Organization (WHO), there were over 630 million
confirmed infections and 6.6 million deaths globally in mid-November 2022 [3]. The emer-
gence of the Omicron variant, which is highly infectious and resistant to the vaccines, has
reduced the effectiveness of the vaccine by at least 40% [4]. Dengue virus (DENV) belongs to
a serotype subgroup of flavivirus which is mainly insect-borne, causing dengue fever (DF),
dengue hemorrhagic fever (DHF), and dengue shock syndrome, with high incidence rate
and mortality. Currently, in some underdeveloped countries and areas, the regular outbreaks
of dengue fever form a double threat along with COVID-19 pandemic [5,6]. Among these
territories, the DENV-SARS-CoV-2 co-infection has been a serious situation, which has been

Molecules 2023, 28, 160. https://doi.org/10.3390/molecules28010160 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28010160
https://doi.org/10.3390/molecules28010160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-9853-3793
https://orcid.org/0000-0002-8911-0649
https://orcid.org/0000-0002-7775-0040
https://orcid.org/0000-0002-7173-6651
https://orcid.org/0000-0002-3872-6558
https://orcid.org/0000-0002-9265-6028
https://orcid.org/0000-0001-8820-6617
https://orcid.org/0000-0001-9232-953X
https://orcid.org/0000-0002-0033-7514
https://orcid.org/0000-0003-3589-8503
https://orcid.org/0000-0003-3256-5850
https://orcid.org/0000-0002-7302-2214
https://doi.org/10.3390/molecules28010160
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28010160?type=check_update&version=2


Molecules 2023, 28, 160 2 of 15

one of the focus issues on COVID-19 epidemiology. Thus, developing broad-spectrum an-
tiviral agents blocking both SARS-CoV-2 and DENV is a promising strategy to alleviate the
public health burden in certain areas around the world [7,8]. Although supportive therapy
of dengue fever remarkably reduced the mortality rate, no specific therapy agents towards
DENV were approved. To end the global pandemic and prevent future outbreaks of highly
contagious RNA viruses, antivirals are expected to act as essential complements to vaccines.

RNA-dependent RNA-polymerase (RdRp) acts as a critical component in the life cycle
of both SARS-CoV-2 and DENV. In the two viruses, RdRp adapts the “Finger-Palm-Thumb”
conformation formed by several conserved motifs, and utilizes two sequential aspartate
residues coordinated with Mg2+ ions as their catalytic centers [9–13]. The conservation of
RdRp among evolutionary distant RNA viruses and the absence of host homologs appar-
ently make it an ideal target for the development of potential antivirus drug candidates to
multiple viruses.

RdRp inhibitors can be classified into nucleoside inhibitors (Nis) and non-nucleoside
inhibitors (NNIs), based on their structures. Nucleoside inhibitors bind to RdRp active
center and could be incorporated into elongating RNA chain, causing chain termination or
lethal mutagenesis. Four repurposed SARS-CoV-2 RdRp inhibitors: Remdesivir, favipiravir,
molnupiravir, and bemnifosbuvir (AT-527) were investigated for their anti-COVID-19
activity (Figure 1) [14]. Among them, remdesivir (EC50 = 0.77 µM) was the first drug
urgently approved to treat COVID-19 in 2020 by the FDA. However, several clinical trials
have demonstrated that the time point of efficacy of remdesivir was not significantly earlier
than that of placebo group [15], and it has failed to significantly improve mortality, cure
rate, recovery time, and other indicators [16–18]. Favipiravir, as a pyrazinecarboxamide
derivative, requires in vivo conversion to ribosylated triphosphate favipiravir, to act as
an antiviral agent. The complex structure of favipiravir and SARS-CoV-2 RdRp was
revealed by electron cryomicroscopy, demonstrated the unexpected base pairing pattern
between favipiravir and pyrimidine residues, and explained its ability to mimic adenine
and guanine nucleotides [19]. Early studies showed favipiravir could alleviate symptoms
and shorten hospitalization; thus, it has been approved in India and Russia. However,
FUJIFILM Toyama Chemical Co., Ltd. announced the cessation of the development of the
anti-influenza drug Avigan for COVID-19 infection on October 14, 2022 [20]. Molnupiravir
(EC50 = 0.3 µM) induces lethal mutagen in SARS-CoV-2 genome. By the end of 2021,
FDA issued emergency use authorization for molnupiravir for it led to a 50% decrease
of hospitalization or death in a clinical trial, but only for non-hospitalized patients when
no other therapies are available [21]. Bemnifosbuvir (EC90 = 0.47 µM) is a repurposed
SARS-CoV-2 RdRp inhibitor, but failed in phase II clinical trial of treating COVID-19 [22].
Further phase II and III trials are setting out to evaluate whether bemnifosbuvir could be
applied in the future [23]. Meanwhile, bemnifosbuvir was also reported to effectively inhibit
DENV2/DENV3 in vitro (EC50 = 0.48/0.77 µM) and in vivo [24]. The current situation
urgently calls for more RdRp inhibitors with definite therapeutic effect.

Non-nucleoside inhibitors may act directly on RdRp active site or bind to its potential
allosteric sites, thus impairing polymerase function [14]. Compared with nucleoside
inhibitors, NNIs do not incorporate into RNA chains, therefore can evade the exonuclease
(Nsp14) excision mechanism, and have greater potential of modification and development.
Meanwhile, targeting the catalytic metal ions by chelators has been proved successful in
inhibiting HIV, HCV, and influenza virus [25–27]. The strategy of utilizing catalytic Mg2+

of SARS-CoV-2/DENV RdRp as an anchoring point of metal chelating agents had been
reported. Flavonoids with polyphenol moiety display potent inhibition towards SARS-
CoV-2 RdRp in computational simulation or experiments. Cyanidin 3-O-rutinoside and
petunidin 3′5-O-diglucoside exhibited outstanding binding affinity in virtual screening [28],
while Baicalein (EC50 = 4.5 µM) and Baicalin (EC50 = 9.0 µM) are potent SARS-CoV-2
inhibitors in both RdRp enzymatic assay and cellular assay (Figure 2) [29]. Docking results
highlighted that the pyrogallol group in these compounds provides multiple hydrogen
bond interactions or chelates with Mg2+ in the RdRp active site. Pyridoxine derivative



Molecules 2023, 28, 160 3 of 15

DMB220 (EC50 = 2.7 ± 0.6 µM) and one quinolone-like compound (EC50 = 3.3 ± 0.5 µM)
with metal-chelating groups [30,31], are reported to inhibit DENV. Yet no metal chelators
targeting virus RdRp have been approved for antivirus therapy.
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In this study, in order to search for potent inhibitors of SARS-CoV-2 and DENV RdRp,
we screened metal ion chelators from an in-house compound library, based on our SARS-
CoV-2 RdRp inhibition screening assay. Two compounds DF-47 and DF-51 were chosen,
then re-evaluated for their IC50 values and cellular activities in vitro. Docking studies and
molecular dynamic simulation studies identified them as active inhibitors towards both
SARS-CoV-2 and DENV RdRp. Discovery of these novel inhibitors offers future choice of
SARS-CoV-2 inhibitor development, and reveals critical residues around RdRp catalytic
site for target-based drug designing.

2. Results and Discussion
2.1. In-House Library Screening For Potent Rdrp Inhibitors

In this study, we evaluated RdRp binding activity of an in-house compound li-
brary containing metal ion chelators with piperazine scaffold (over 100 compounds of
polyphenol, 1-hydroxy-1,8-naphthyridinone, 5-hydroxypyrido [2,3-b]pyrazinone, and 4-
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hydroxyquinazolinone analogues, originally designed and synthesized for anti-HIV-1,
see Supplementary Material) [32–36] screened by established high-throughput enzyme
assays of RdRp complex, as novel antiviral therapeutic candidates for COVID-19 through
target activity verification and cell-based activity evaluation. A polymerase reaction system
was built to evaluate the residual activity of RdRp in the presence of inhibitors [37,38].
Recombinant non-structural proteins were expressed, purified, and mixed in assay buffer
to form the SARS-CoV-2 polymerase complex. The RNA template applied in the assay
was specially designed to form a hairpin structure at 3’ end as the primer of polymerase
reaction, and carries a 6-FAM label at 5’ end. After a reasonable time for polymerase
reaction progress, the system was immediately quenched. The produced RNA chain was
visualized and quantified on gel. The amount of full-length RNA product relates to RdRp
activity. Preliminary screening involves all compounds under a single concentration of 50
µM. A total of 11 compounds with top inhibition rates were selected for RdRp inhibition
tests under gradient concentrations (listed in Table 1). The visualized results from the gel
experiments are displayed in Figure 3.

Table 1. Compounds with top inhibition rates.
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Figure 3. Inhibition of RNA-dependent RNA polymerase activity of 11 compounds. (a) Graphic
representation of the 5′-6 FAM-labeled hairpin RNA substrate as primer-template used to monitor the
inhibition of SARS-CoV-2 RdRp activity. +1 and +11, the positions of the first and the last nucleotide
incorporated, respectively. (b) Gel picture with auto-contrast. Compound concentration: 1. 20; 2. 10; 3.
5 µM; (-): reaction in the absence of rNTPs; (+): reaction in the absence of compound. P: FAM-labeled
RNA primer; FL: full-length RNA product. The data shown are from one representative experiment.
(c) Gel picture with adjusted contrast. (d) Gel pictures of DF-47 and DF-51. The concentrations of the
compounds used are as follows: 1. 100; 2. 40; 3. 16; 4. 6.4; 5. 2.6; 6. 1; 7. 0.4 µM. (e) Dose–response
curves of DF-47 and DF-51.

2.2. Evaluation of Virus Inhibition Activity

For the selected compounds listed above, we further evaluated their enzymatic in-
hibition potency under three concentration gradients (5, 10, and 20 µM), and the density
of visualized stripes represent concentrations of RNA template and product in each well.
At a concentration of 20 µM, most of the compounds still exhibited significant inhibition
of RdRp activity. At 10 µM, DF-36, DF-47, DF-51, and Baicalein remained partially active,
whereas at 5 µM, only limited activity was observed (Figure 3c). To obtain accurate IC50 val-
ues for DF-47 and DF-51, both compounds were again tested under seven concentrations
ranging from 0.4 to 100 µM (Figure 3d) to depict full dose–response curves. DF-47 turned
out to be the most potent SARS-CoV-2 RdRp inhibitor with an IC50 of 9.2 ± 1.1 µM. Unlike
RDV-TP which causes delayed chain-termination during RNA synthesis via incorporation
of the nucleotide analog by the RdRp [39,40], these polyphenols are most likely to act by
chelating with the magnesium ions of active center, thus directly blocking SARS-CoV-2
RdRp function.

To further exploit pan-RNA virus inhibition of the compounds in Table 1, the com-
pounds were evaluated as potential inhibitors of the RdRp domain of DENV NS5. We used
a fluorescent-based assay to screen the compounds from Table 1 as potential DENV RdRp
inhibitors. Only DF-47 and DF-51 were endowed with detectable inhibition towards DENV
RdRp (Table 2). DF-51 displayed a low-micromolar IC50 value of 4.8 ± 0.7 µM towards
DENV RdRp, whereas DF-47 had relatively weaker inhibition, in contrast to the results of
SARS-CoV-2 RdRp.

2.3. Antiviral Activity of DF-47 and DF-51

Subsequently, we measured the antiviral activity of DF-47 and DF-51 towards SARS-
CoV-2 and DENV3 in the BSL-3 (biosafety level 3) laboratory, along with their cytotoxicity
to corresponding cell lines. Remdesivir and Baicalein were employed as positive controls
in cellular SARS-CoV-2 inhibition tests. The test results were depicted in Table 3. The
activity of the positive control was consistent with that reported in the literature [29], which
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proved the validity of our method. Unfortunately, DF-47 and DF-51, despite their good
inhibitory activity against RdRp, displayed no significant antiviral activity against SARS-
CoV-2 in vitro. However, both compounds showed moderate inhibition of DENV3 in A549
cells with measurable EC50 values, consistent to their IC50 values. In addition, DF-47 and
DF-51 displayed no cytotoxicity for either Vero E6 or A549 cells (CC50 > 100 µM).

Table 2. Inhibition of dengue virus RdRp activity assessed in a cell-free fluorescent plate assay.a.

Compounds IC50 (µM)

DF-47 14 ± 2.3
DF-51 4.8 ± 0.7

a IC50 (half-maximal inhibitory concentration) values were determined in RdRp assay using purified recombinant
Dengue virus RdRp. Data are the average ± standard deviation of 2 independent experiments.

Table 3. Antiviral activity and cytotoxicity of polyphenols and positive controls.

Virus/Cells. Compounds EC50 (µM) CC50 (µM) Selective Index

SARS-CoV-2/
Vero E6

DF-47 >100 >100 -
DF-51 >89 >100 -

Remdesivir 0.046 ± 0.0002 10.1 219.6
Baicalein 4.5 86 19.1

DENV3/A549
DF-47 51.9 ± 26.3 >100 >1.9
DF-51 21.5 ± 14.9 >100 >4.6

The absence of antiviral activity towards SARS-CoV-2 might be due to the poor
membrane permeability resulted from multiple phenolic hydroxy groups. To verify this,
we utilized the Membrane permeability prediction module [41,42] in Schrödinger suites
to quantitate cell-entering property of DF-47 and its analogs, along with two proposed
prodrugs DF-47-pro/DF-51-pro (tri-isobutyryl ester). The permeability was evaluated by
the Membrane dG Insert, of which higher absolute value represents lower permeability. As
shown in Table 4, all the DF series compounds possessed extraordinarily low predicted
permeability, compared with their prodrugs. This explains why DF-47 lacked cellular
activity and hints for further modifications. Therefore, we will further chemically modify
the compound according to the design strategy of prodrug.

Table 4. Permeability prediction value of selected compounds.

Compounds Membrane dG Insert Compounds Membrane dG Insert

DF-35 −23.79 DF-51 −19.23
DF-36 −26.28 DF-67 −22.99
DF-47 −21.63 DF-69 −21.97
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2.4. In Silico Study

As DF-47 and DF-51 are non-nucleoside inhibitors with polyphenol group, their
possible mechanism of inhibition might be through binding to the RdRp by chelating with
the Mg2+ at the active site. In order to explore their mechanism, we conducted in silico
studies to determine the possible binding mode between DF-47 and SARS-CoV-2 RdRp.

First, docking results demonstrated that DF-47 could bind to SARS-CoV-2 RdRp with
a binding energy of −7.916 kcal/mol, which displayed stronger binding energy than that
of Remdesivir (−6.5 kcal/mol) [40]. Most importantly, DF-47 is likely to chelate with two
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Mg2+ of RdRp. Therefore, it is a reasonable assumption that DF-47 inhibits RdRp activity
through chelating with Mg2+ and blocking its active site.

Figure 4a,b shows the 2D-interaction diagram and the 3D docking pose of DF-47.
The two Mg2+ directly interacted with the phenolic hydroxyl groups, enabling DF-47 to
anchor in the entry tunnel of NTPs. Meanwhile, Tyr619, Asp760, Asp761, and Glu811
bind to the ligand through metal coordination bonds. Other interactions with essential
residues in conserved motifs or with amino acids responsible for NTP recognition are also
observed [37]; for example, the hydrogen bond interaction between Cys799 and the amino
group of DF-47, as well as between Lys551 and the amide oxygen in the ligand structure.
The benzenesulfonamide and bisphenyl moieties have Pi-Pi stacking with His810 and
His439, respectively, whereas Arg836 and phenyl generated Pi-cation interaction. These
interactions with free RdRp may lead to a loss in its recognition and catalytic activity.
For DF-51, it adopted a slightly different binding position, yet still maintained metal
coordination with the two magnesium ions (Figure 4c,d), according to the docking results.
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Figure 4. The 2D ligand–protein interaction diagram (a)/3D docking pose (b) of DF-47 with DENV3
NS5 and the 2D ligand–protein interaction diagram (c)/3D docking pose (d) of DF-51 with SARS-CoV-
2 RdRp (PDB ID: 7BV2). The pink spheres represent Mg2+. The purple arrows indicate the hydrogen
bonds; the red line represents Pi–cation interaction; the gray line represents metal coordination; the
green lines represent pi-pi stacking.

The docking study also revealed multiple interactions between DF-51 and RdRp
domain of DENV3 NS5 (Figure 5 a,b). The binding energy reached −8.061 kcal/mol, while
chelation of the single Mg2+ and several hydrogen bonds were hypothetically established.
In addition to binding with metal ion, the polyphenol moiety formed cation-π stacking
with protonated Lys689 by its electron-rich phenyl ring. Two amide oxygen atoms snugly
contacted with Cys709 and Ser710, together with the cyano group reaching backbone NH
of Gly536. These H-bonds are supposed to stabilize DF-51 at the hydrophilic pocket of
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RdRp catalytic center. At the far end, the biphenyl sidearm fitted into a shallow groove
formed by Tyr606 and Ile797, which accounts for additional hydrophobic contacts. This
bulky group is supposed to restrict the conformational changes of priming loop, which is
an essential moiety in catalytic function [12,13]. Given that the Mg2+ of DENV3 RdRp may
not mediate catalytic process [43], inhibition of DF-51 most likely resulted from blocking
the NTP tunnel and disturbing priming loop conformation. In another docking study,
DF-47 exhibited a similar binding mode with that of DF-57, but formed less interactions
with nearby residues (Figure 5 c,d).
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Figure 5. The 2D ligand–protein interaction diagram (a)/3D docking pose (b) of DF-51 with DENV3
NS5 and the 2D ligand–protein interaction diagram (c)/3D docking pose (d) of DF-47 with DENV3
NS5 RdRp domain (PDB ID: 2J7U). The pink spheres represent Mg2+. The purple arrows repre-
sent the hydrogen bonds; the red line represents Pi–cation interaction; the gray line represents
metal coordination.

To further evaluate the binding stability of DF-47 and DF-51 towards SARS-CoV-
2/DENV3 RdRp, RMSD and total energy (MMGBSA) were predicted through MD simula-
tion systems. The average position fluctuations of ligand and protein atoms, represented by
RMSD value, were shown in Figure 6. For DF-47 complexed with SARS-CoV-2 RdRp, the
ligand RMSD remained lower than that of protein RMSD, indicating its stable binding in
active site. However, it is also observable that the RMSD value of DF-47 is slightly unstable
(Figure 6a). In the case of DENV3 RdRp and DF-51, significant fluctuations of ligand RMSD
ranges from 0 to 300 ns of simulation. However, the RMSD value of DF-51 remained stable
around 2–2.5 angstroms during the last 200 ns of MD simulation, signifying its well-fitting
into the active site (Figure 6b). The average ligand binding free energy of DF-47 and DF-51
were calculated by MMGBSA evaluation. DF-47 has a biding energy of −124.02 kcal/mol



Molecules 2023, 28, 160 9 of 15

towards SARS-CoV-2 RdRp, while DF-51 has higher binding energy (−81.77 kcal/mol)
with DENV3 RdRp, corresponding to its lower binding stability.
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To evaluate the stability of chelation interaction between pyrogallol group and Mg2+,
the distance between 4-OH group and Mg2+ of SARS-CoV-2/DENV3 RdRp was calculated.
Both models showed a stable and close contact of phenol-OH group and Mg2+ in protein
model during the whole process of simulation, demonstrating that their tight binding are
contributed by metal chelation (Figure 7a,b).

Accumulating studies are proving the inhibition activity of polyphenols towards
different enveloped RNA viruses, such as influenza, dengue, HIV, SARS-CoV, and SARS-
CoV-2 [44,45]. Here, we demonstrated the antiviral activity of DF-47 and DF-51 against
SARS-CoV-2 and DENV3 through interacting with RdRp by metal chelation. Such inhibition
across different RNA viruses is noteworthy. We presume this class of compounds obtain
strong interaction with RdRp by anchoring into the metal-containing catalytic center via
the pyrogallol moiety, and adapting to nearby tunnels with flexible piperazine scaffold
joint with H-bond donor/acceptors. However, additional research on structural biology is
still needed to depict a comprehensive mechanism and key pharmacophores.
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3. Materials and Methods
3.1. Compounds and the Stock Solution

All the compounds were synthesized and published by our laboratory as racemic
mixtures [32–36]. Each compound was prepared as a 10 mM stock solution with dimethyl
sulfoxide (DMSO, Sigma Aldrich, Belgium) and then stored at −20 ◦C. In the cellular
antivirus experiment, MEM (Gibco, NY, USA), containing 2% fetal bovine serum (FBS) was
used to dilute the stock solution into gradients.

3.2. Gel-based SARS-CoV-2 RdRp Assay

Enzyme assays were performed with purified recombinant SARS-CoV-2 RdRp com-
plex nsp12/nsp8/nsp7. The RNA sequence used for the RdRp assay is/56-FAM/rUrUrU
rUrCrA rUrGrC rUrArC rGrCrG rUrArG rUrUr UrUrC rUrArC rGrCrG with hairpin struc-
ture [37,38]. RNA was annealed in 50 mM NaCl and 10 mM Na-HEPES pH 7.5 by heating
the solution to 75 ◦C and gradually cooling to 4 ◦C. Reactions were carried out at 30 ◦C with
500 nM nsp12, 1µM nsp7, 1.5µM nsp8, and 200 nM RNA in the reaction buffer (20 mM
HEPES, pH 7.5, 15 mM NaCl, 5% glycerol, 2 mM MnCl2, 1 mM MgCl2). Test compounds of
desired concentration were added, incubated for 5 min, and the reactions were initiated
by adding rNTPs to 5 µM. RNA extension reactions were stopped at the desired times by
adding 2× stop buffer (8 M urea, 20 mM EDTA, 1× Tris-borate-EDTA (TBE), 0.2% Orange
G). Samples were heated for 5 min at 95 ◦C and separated by electrophoresis in denaturing
20% acrylamide (19:1) gels (8 M urea, 1 × TBE) using BioRad Mini-PROTEAN Tetra System.
The RNA products were visualized and quantified using Typhoon FLA9500 (GE Healthcare)
and ImageQuant software. Dose–response data were analyzed by nonlinear regression
using GraphPad Prism 9.2.0 (Graphpad company) software. The mean of IC50 values and
standard deviation (SD) were determined from the results of two independent experiments.

3.3. Fluorescent Plate DENV RdRp Assay

Expression and purification of recombinant Dengue virus NS5 has been described
previously [46]. Florescent plate assay based on poly rC RNA and the fluorescent dye
PicoGreen was well established for screening inhibitors against Dengue virus RdRp activ-
ity [47,48]. RdRp assays were performed in a 60 µL reaction mixture containing 1.5 µM
DENV NS5, 1 µg poly rC, 100 µM GTP, various concentrations of compounds, 5% DMSO,
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40 mM Tris–HCl (pH 7.0), 2 mM MnCl2, and 5 mM DTT. The reaction was incubated at
30 ◦C for 60 min and terminated with 10 mM EDTA after which 100 µL of 200-fold diluted
fluorescent dye PicoGreen in TE buffer was added to each well and incubated for 5 min
at room temperature. Microplate reader was used to quantitate the amount of dsRNA
Fluorescence, under excitation and emission wavelengths of 480 and 520 nm, respectively.
Dose-response data were analyzed by nonlinear regression using GraphPad Prism 9.2.0
software. The mean of IC50 values and standard deviation (SD) were determined from the
results of two independent experiments.

3.4. Cells and Viruses

The SARS-CoV-2 isolate used in this study was the Beta-Cov/Belgium/GHB-03021/2020
(EPI ISL407976|2020-02-03). The isolate was passaged 7 times on Vero E6 cells which introduced
two series of amino acid deletions in the spike protein [49]. The infectious content of the virus
stock was determined by titration on Vero E6 cells. SARS-CoV-2 was used at 0.001 TCID50/cell.

Vero E6 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Gibco
cat no 41965-039), supplemented with heat-inactivated 10% v/v fetal calf serum (FCS;
HyClone) and 500 µg/mL Geneticin (Gibco cat no 10131-0275) and kept under 5% CO2 at
37 ◦C. All SARS-CoV-2-related experimental work was performed in the certified, high-
containment biosafety level-3 facilities of the Rega Institute at the KU Leuven.

3.5. In Vitro Antiviral Assays

The SARS-CoV-2 antiviral assay is derived from the previously established SARS-
CoV assay [50]. In this assay, fluorescence of VeroE6-eGFP cells (provided by Dr. K.
Andries J&JPRD; Beerse, Belgium) declines after infection with SARS-CoV-2 due to the
cytopathogenic effect of the virus. In the presence of an antiviral compound, the cy-
topathogenicity is inhibited and the fluorescent signal maintained. Stock solutions of the
various compounds in DMSO (10 mM) were prepared. On day -1, the test compounds were
serially diluted in assay medium (DMEM supplemented with 2% v/v FCS). The plates were
incubated (37 ◦C, 5% CO2 and 95% relative humidity) overnight. On day 0, the diluted
compounds were then mixed with SARS-CoV-2 at 20 TCID50/well and VeroE6-eGFP cells
corresponding to a final density of 25,000 cells/well in 96-well blackview plates (Greiner
Bio-One, Vilvoorde, Belgium; Catalog 655090). The plates were incubated in a humidified
incubator at 37 ◦C and 5% CO2. At 4 days p.i., the wells were examined for eGFP expression
using an argon laser-scanning microscope. The microscope settings were excitation at 488
nm and emission at 510 nm and the fluorescence images of the wells were converted into
signal values. The results were expressed as EC50 values defined as the concentration of
compound achieving 50% inhibition of the virus-reduced eGFP signals as compared to the
untreated virus-infected control cells. Toxicity of compounds in the absence of virus was
evaluated in a standard MTS-assay as reported previously [51].

The virus DENV3 clinical strain and A549 cells were used in the cell-based qRT-PCR
antiviral assays. Evaluation of antiviral activity was performed as described previously [52].
Briefly, cells infected by dengue virus in the presence of 5-fold serial dilutions of compounds
were maintained for 72 h. Supernatant was collected and the virus yield was measured by
Cells Direct One-step qRT-PCR kit (Thermo Fisher), according to manufacturer’s instruc-
tions. Dose-response data were analyzed by nonlinear regression using GraphPad Prism
software. The toxicity of compounds was evaluated in standard MTS analysis without
virus in A549 cell line [51]. Graphpad Prism 9.2.0 was used to calculate EC50 (half maximal
effective concentration) and CC50 (half cytotoxic concentration) values.

3.6. In Silico Study

The protein structures for computational simulation were downloaded from the Pro-
tein Database Bank (PDB). SARS-CoV-2 RdRp/RNA complex (PDB ID: 7BV2) and Dengue
Virus NS5 RNA Dependent RNA Polymerase Domain (PDB ID: 2J7U) was selected as
docking receptors.
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Docking simulation procedure: all the calculation processes were supported by the
corresponding modules of Schrodinger 2021-4 suite (www.schrodinger.com accessed on
13 November 2022) and was performed on DELL Precision T5500 workstation. Firstly,
compounds were optimized with the Ligprep model with default parameters, and a pair of
chiral isomers are generated for each compound. The ionic state under the physiological
condition of ligand (pH = 7.0) was added; OPLS4 force filed was selected to optimize
and obtain the ligand molecules required for screening. The preparation of the protein
was completed by the protein preparation wizard module. A series of processes such
as hydrogenation, charging, elimination of conflicting amino acid residues and energy
minimization of the protein crystal structure were carried out with default parameters, and
then the Remdesivir molecule of the composite crystal structure is extracted to obtain the
receptor protein. The binding position of Remdesivir was used to locate the receptor grid
for ligands. Finally, the Glide module [53,54] was used to dock the optimized ligands with
the receptor protein with extra precision (XP). At the same time, baicalein and baicalin were
used as training set to adjust molecular docking method, optimize parameter settings, and
obtain a strong predictive docking model. According to the established docking model,
Schrodinger 2021-4 Glide XP module was used for molecular docking of the compounds.
The docking poses were visualized by Pymol (Schrödinger, LLC. DeLano Scientific, San
Francisco, CA, USA, https://pymol.org accessed on 13 November 2022).

MD simulations were performed to further investigate the dynamic interactions be-
tween RdRp and the polyphenols. All simulations were conducted by using Schrodinger
version 2021-4, and employed OPLS-4 force field. The previously generated polyphe-
nol docking complex was employed as the starting coordinates, which was then filled
into a proper box and solvated with water (TIP3P). The whole system was then added
corresponding Na+ or Cl- to neutralize all charges. Then 0.15 M NaCl was additionally
added to simulate salt concentration under physiological condition. The whole system
was relaxed with default set and the productive simulation was then performed for 500
ns under standard state (300 K, 1 bar). The result trajectories were then analyzed and the
RMSD of the ligand was calculated.

4. Conclusions

Through an overall screening of SARS-CoV-2 RdRp inhibition of our in-house com-
pound library, 11 hit compounds were preliminarily selected. The hit compounds were
verified through SARS-CoV-2 and DENV RdRp inhibition experiment. DF-47 exhibited
the IC50 = 9.2 ± 1.1 µM against SARS-CoV-2 RdRp, meanwhile DF-51 inhibited RdRp
function of DENV with an IC50 value of 4.8 ± 0.7 µM. Subsequently, the binding mode of
ligands and RdRp was predicted through molecular docking, then validated by molecular
dynamics simulation and free energy calculation. The results confirmed our hypothesis
that the polyphenols chelate with two Mg2+ at the active site of RdRp, thereby inhibit-
ing its replication function unlike the reported nucleoside RdRp inhibitors which cause
chain-termination or lethal mutation. Regretfully, the in vitro activity at the cellular level
was unsatisfying, which was attributed to low membrane permeability. Computational
prediction suggested that DF-47 and DF-51 could be modified to their prodrugs to improve
the cell activity. Meanwhile, for this series of polyphenols, antivirus activity screening
towards a broader panel of RNA viruses should be conducted in the future.

In summary, a series of polyphenols that inhibit the activity of SARS-CoV-2 and DENV
RdRp were discovered through library screening, target activity verification, cell activity
determination and biophysical property prediction. The uncommon inhibition towards
both coronavirus and flavivirus hints for their future development to broad-spectrum
non-nucleoside polymerase inhibitors of RNA viruses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules28010160/s1, general experimental methods; synthetic routes; preparation of
intermediates; general procedure for compounds except DF-51; spectral data for compounds except
DF-51; synthetic procedure and spectral data of DF-51; NMR spectra of final compounds; MS spectra

www.schrodinger.com
https://pymol.org
https://www.mdpi.com/article/10.3390/molecules28010160/s1
https://www.mdpi.com/article/10.3390/molecules28010160/s1
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