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Abstract: A topological index as a graph parameter was obtained mathematically from the graph’s
topological structure. These indices are useful for measuring the various chemical characteristics of
chemical compounds in the chemical graph theory. The number of atoms that surround an atom in
the molecular structure of a chemical compound determines its valency. A significant number of
valency-based molecular invariants have been proposed, which connect various physicochemical
aspects of chemical compounds, such as vapour pressure, stability, elastic energy, and numerous
others. Molecules are linked with numerical values in a molecular network, and topological indices
are a term for these values. In theoretical chemistry, topological indices are frequently used to
simulate the physicochemical characteristics of chemical molecules. Zagreb indices are commonly
employed by mathematicians to determine the strain energy, melting point, boiling temperature,
distortion, and stability of a chemical compound. The purpose of this study is to look at valency-based
molecular invariants for SiO4 embedded in a silicate chain under various conditions. To obtain the
outcomes, the approach of atom–bond partitioning according to atom valences was applied by using
the application of spectral graph theory, and we obtained different tables of atom—bond partitions
of SiO4. We obtained exact values of valency-based molecular invariants, notably the first Zagreb,
the second Zagreb, the hyper-Zagreb, the modified Zagreb, the enhanced Zagreb, and the redefined
Zagreb (first, second, and third). We also provide a graphical depiction of the results that explains the
reliance of topological indices on the specified polynomial structure parameters.

Keywords: SiO4 embedded in a chain of silicates; zagreb polynomials; zagreb indices

1. Introduction

A molecular structure is defined as a simple and linked network G, where |G| is the set
of atoms (nodes) and VG is the set of atom–bonds (links between atoms) [1]. If two atoms
ȧ1 and ȧ2 form an atom–bond in G, we write ȧ1 ∼ ȧ2; similarly, if two atoms do not form
an atom–bond in G, we write ȧ1 � ȧ2. The topological index of a chemical composition is a
numerical value or a continuation of a given structure under discussion, which indicates
chemical, physical, and biological properties of a chemical molecule, see for details [2–4].
Topological indices and polynomials capture molecular structural symmetries and provide

Molecules 2023, 28, 201. https://doi.org/10.3390/molecules28010201 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28010201
https://doi.org/10.3390/molecules28010201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-3151-9967
https://orcid.org/0000-0001-9916-2031
https://orcid.org/0000-0002-9620-7692
https://orcid.org/0000-0002-8606-2274
https://orcid.org/0000-0002-3406-0285
https://doi.org/10.3390/molecules28010201
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28010201?type=check_update&version=2


Molecules 2023, 28, 201 2 of 12

mathematical vocabulary for predicting features, such as boiling temperatures, viscosity,
radius of gyrations, and so on [5,6].

Mathematical chemistry describes how to use polynomials and functions to offer
instructions concealed in the symmetry of molecular graphs, and the graph theory has
many applications in modern chemistry, particularly organic chemistry. In chemical graph
theory, the atoms and bonds of a molecular structure are represented by vertices and edges,
respectively [7]. Many applications of topological indices are employed in theoretical chem-
istry, particularly in research pertaining to quantitative structure–property relationships
(QSPRs) and quantitative structure–activity relationships (QSARs) [8–10]. Many famous
researchers have studied topological indices to obtain information about different families
of graphs [11,12]. In (QSPR) and (QSAR), topological indices are utilized directly as simple
numerical descriptors in comparison with physical, biological, and chemical characteristics
of molecules, which are benefits. Many researchers have worked on various chemical
compounds and computed topological descriptors of various molecular graphs during the
last few decades [13,14].

The molecular graph is a simple connected graph in a chemical graph theory that
contains chemical atoms and bonds, which are often referred to as vertices and edges,
respectively, and there must be a linkage between the vertex set VG and edge set EG. The
valency of each atom of G is actually the total number of atoms connected to v of G and is
denoted by dv, [15].

In 1972, Gutman and Trinajstic initiated the idea of computing the branching of the
carbon–atom skeleton, which was, later on, known as the first Zagreb index [16]. In 2004,
Gutman and Das, adulated characteristics of the first and second Zagreb polynomials for
chemical graphs of a chemical compound, which we studied in the research articles [17].
The first Zagreb polynomial corresponding to the first Zagreb index is defined as

M1(G, y) = ∑
uv∈EG

ydu+dv & M1(G) = ∑
u,v∈EG

du + dv (1)

The second Zagreb polynomial, which corresponds to the second Zagreb index [17], is
written as

M2(G, y) = ∑
u,v∈EG

ydudv & M2(G) = ∑
u,v∈EG

dudv (2)

In 2013, Shirdel et al. initiated the concept of the hyper-Zagreb index [18]. The
hyper-Zagreb polynomial and index are defined as follows:

HM(G, y) = ∑
u,v∈EG

y(du+dv)2
& HM(G) = ∑

u,v∈EG

(du + dv)
2 (3)

The modified Zagreb polynomial and index [19] are defined as

MD(G, y) = ∑
u,v∈EG

y
1

dudv & MD(G) = ∑
u,v∈EG

1
dudv

(4)

In 2010, Furtula et al. introduced the augmented Zagreb index [20]. The augmented
Zagreb polynomial and index are defined as

AZI(G, y) = ∑
u,v∈EG

y[
(dudv)

(du+dv−2) ]
3

& AZI(G) = ∑
u,v∈EG

[
(dudv)

(du + dv − 2)
]3 (5)

In 2013, Ranjini, Lokesha, and Usha presented [21] a redesigned version of the Za-
greb indices ReZG1, ReZG2, and ReZG3. The indices and redefined form of the Zagreb
polynomial are as follows:

ReZG1(G, y) = ∑
u,v∈EG

y
du+dv
dudv & ReZG1 = ∑

u,v∈E(G)

du + dv

dudv
(6)
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ReZG2(G, y) = ∑
u,v∈EG

y
dudv

du+dv & ReZG2 = ∑
u,v∈EG

dudv

du + dv
(7)

ReZG3(G, y) = ∑
u,v∈EG

y(dudv)(du+dv) & ReZG3 = ∑
u,v∈EG

(dudv)(du + dv) (8)

In this article, the above-defined eight Zagreb polynomials and Zagreb indices were
constructed by the atom–bond set of silicates, partitioned according to the valencies of the
Si and O2 atoms, [22]. We also investigate silicon tetrahedron SiO4 in a compound structure
and derived the precise formulas of certain essential valency-based Zagreb indices using
the approach of the atom–bond partitioning of the molecular structure of silicates; for
details, see [23,24].

2. Chain of Silicates

The basic unit of silicates is a SiO4 tetrahedron, which is obtained by metal carbonates
with sand or fusing metal oxides [25]. Almost all of the silicates contain SiO4 tetrahedron.
From a chemical point of view, for a tetrahedron SiO4, we consider a pyramid with a
triangular base (single tetrahedron SiO4), as shown in Figure 1, containing oxygen atoms
O2 at the four corners of the tetrahedron, and the silicon atom Si is bonded with equally
spaced atoms of O2. From the resulting SiO4, a silicate tetrahedron joins with other SiO4
horizontally, and a single chain of silicates is obtained. Similarly, when two molecules of
SiO4 join corner-to-corner, then each SiO4 shares its O2 atom with the other SiO4 molecule,
as seen in Figure 1. After completing this process of sharing, these two molecules of SiO4
can be joined with two other molecules. Now, we obtain a chain of silicates SC p

q , where p
and q are the silicate chain numbers formed and the total number of SiO4 in one silicate
chain, respectively. Here, in the chain of silicates SC p

q , pq is the number of tetrahedron SiO4
used, see Figure 1.

Here, in the chain of silicates SC p
q , there are three types of atom–bonds on the basis

of valency of every atom of SC p
p . Therefore, there are two types of atoms, vi and vj, such

that dvi = 3 and dvj = 6, where dvi and dvj mean the valencies of atoms ∀ vi, vj ∈ SC
p
p .

According to valencies 3 and 6 of the atoms, there are three types of atom–bonds, which are
(3 ∼ 3), (3 ∼ 6), and (6 ∼ 6) in SC p

q . On the basis of valency, Table 1 provides the partition
of the set of atom–bonds.

Table 1. Atom–bond partition of SC p
q for p = q.

Type of Atom–Bond E3∼3 E3∼6 E6∼6

Number of
atom–bonds 3p + 2 3(pq + q)− 4 3(pq− 2q) + 2
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Chain of silicates

1

1

= Oxygen atom

= Silicon atom

Figure 1. Chain of SiO4.

3. Zagreb Polynomials and Indices for p, q ≥2, p = q

Theorem 1. For p > 1, the first Zagreb polynomial of SC p
p is (3p + 2)y6 + (3p2 + 3p− 4)y9 +

(3p2 − 6p + 2)y12.

Proof. Using the atom–bond partition from Table 1, in the formula of the first Zagreb
polynomial (1), we have

M1(SC
p
p , y) = ∑

E3∼3

y3+3 + ∑
E3∼6

y3+6 + ∑
E6∼6

y6+6

This gives

M1(SC
p
p , y) = (3p + 2)y6 + (3p2 + 3p− 4)y9 + (3p2 − 6p + 2)y12.

By taking the first derivative of the polynomial in Theorem 1 at y = 1, we obtain the
first Zagreb index of the silicate network SC p

p as follows: For p > 1, the first Zagreb index
of SC p

p is 63p2 − 27p.

Theorem 2. For p > 1, the second Zagreb polynomial of SC p
p is (3p + 2)y9 + (3p2 + 3p− 4)y18

+(3p2 − 6p + 2)y36.

Proof. Using the atom–bond partition from Table 1, in the formula of the second Zagreb
polynomial (2), we have

M2(SC
p
p , y) = ∑

E3∼3

y3×3 + ∑
E3∼6

y3×6 + ∑
E6∼6

y6×6
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This gives

M2(SC
p
p , y) = (3p + 2)y9 + (3p2 + 3p− 4)y18 + (3p2 − 6p + 2)y36.

By taking the first derivative of the polynomial in Theorem 2 at y = 1, we obtain the
second Zagreb index of the chain of silicates SC p

p as follows: For p > 1, the second Zagreb
index of SC p

p is 162p2 − 1135p + 18.

Theorem 3. For p > 1, the hyper-Zagreb polynomial of SC p
p is (3p + 2)y36 + (3p2 + 3p− 4)y81

+(3p2 − 6p + 2)y144.

Proof. Using the atom–bond partition from Table 1, in the formula of the hyper-Zagreb
polynomial (3), we have

HM(SC p
p , y) = ∑

E3∼3

y(3+3)2
+ ∑

E3∼6

y(3+6)2
+ ∑

E6∼6

y(6+6)2

This gives

HM(SC p
p , y) = (3p + 2)y36 + (3p2 + 3p− 4)y81 + (3p2 − 6p + 2)y144.

By taking the first derivative of the polynomial in Theorem 3 at y = 1, we obtain the
hyper-Zagreb index of the chain of silicates SC p

p as follows: For p > 1, the hyper-Zagreb
index of SC p

p is 675p2 + 513p + 36.

Theorem 4. For p > 1, the modified Zagreb polynomial of SC p
p is (3p + 2)y

1
9 + (3p2 + 3p−

4)y
1
18 + (3p2 − 6p + 2)y

1
36 .

Proof. Using the atom–bond partition from Table 1, in the formula of the modified Zagreb
polynomial (4), we have

MD(SC p
p , y) = ∑

E3∼3

y
1

3×3 + ∑
E3∼6

y
1

3×6 + ∑
E6∼6

y
1

6×6

This gives

MD(SC p
p , y) = (3p + 2)y

1
9 + (3p2 + 3p− 4)y

1
18 + (3p2 − 6p + 2)y

1
36 .

By taking the first derivative of the polynomial in Theorem 4 at y = 1, we obtain the
modified Zagreb index of the chain of silicates SC p

p as follows: For p > 1, the modified
Zagreb index of SC p

p is 1
4 p2 + 1

3 p + 1
18 .

Theorem 5. For p > 1, the augmented Zagreb polynomial of SC p
p is (3p + 2)y

729
64 + (3p2 + 3p−

4)y
5832
343 + (3p2 − 6p + 2)y

5832
125 .

Proof. Using the atom–bond partition from Table 1, in the formula of the augmented
Zagreb polynomial (5), we have

AZI(SC p
p , y) = ∑

E3∼3

y(
3×3

3+3−2 )
3
+ ∑

E3∼6

y(
3×6

3+6−2 )
3
+ ∑

E6∼6

y(
6×6

6+6−2 )
3
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This gives

AZI(SC p
p , y) = (3p + 2)y

729
64 + (3p2 + 3p− 4)y

5832
343 + (3p2 − 6p + 2)y

5832
125 .

By taking the first derivative of the polynomial in Theorem 5 at y = 1, we obtain the
augmented Zagreb index of the chain of silicates SC p

p as follows: For p > 1, the augmented
Zagreb index of SC p

p is 8188128
42875 p2 − 53440879

2744000 p + 65967939
1372000 .

Theorem 6. For p > 1, the first redefined Zagreb polynomial of SC p
p is (3p + 2)y

2
3 + (3p2 +

3p− 4)y
1
2 + (3p2 − 6p + 2)y

1
3 .

Proof. Using the atom–bond partition from Table 1, in the formula of the first redefined
Zagreb polynomial (6), we have

ReZG1(SC
p
p , y) = ∑

E3∼3

y(
3+3
3×3 ) + ∑

E3∼6

y(
3+6
3×6 ) + ∑

E6∼6

y(
6+6
6×6 )

This gives

ReZG1(SC
p
p , y) = (3p + 2)y

2
3 + (3p2 + 3p− 4)y

1
2 + (3p2 − 6p + 2)y

1
3 .

By taking the first derivative of the polynomial in Theorem 6 at y = 1, we obtain the
first redefined Zagreb index of the chain of silicates SC p

p as follows: For p > 1, the first
redefined Zagreb index of SCp

p is 5
2 p2 + 2p− 1

2 .

Theorem 7. For p > 1, the second redefined Zagreb polynomial of SC p
p is (3p + 2)y

3
2 + (3p2 +

3p− 4)y2 + (3p2 − 6p + 2)y3.

Proof. Using the atom–bond partition from Table 1, in the formula of the second redefined
Zagreb polynomial (7), we obtain

ReZG2(SC
p
p , y) = ∑

E3∼3

y(
3×3
3+3 ) + ∑

E3∼6

y(
3×6
3+6 ) + ∑

E6∼6

y(
6×6
6+6 )

This gives

ReZG2(SC
p
q , y) = (3p + 2)y

3
2 + (3p2 + 3p− 4)y2 + (3p2 − 6p + 2)y3.

By taking the first derivative of the polynomial in Theorem 7 at y = 1, we obtain
the second redefined Zagreb index of the chain of silicates SC p

p as follows: For p > 1, the
second redefined Zagreb index of SC p

p is 15p2 − 34
3 p + 1.

Theorem 8. For p > 1, the third redefined Zagreb polynomial of SCp
p is (3p + 2)y54 + (3p2 +

3p− 4)y196 + (3p2 − 6p + 2)y432.

Proof. Using the atom–bond partition from Table 1, in the formula of the third redefined
Zagreb polynomial (8), we obtain

ReZG3(SC
p
p , y) = ∑

E3∼3

y(3×3)(3+3) + ∑
E3∼6

y(3×6)(3+6) + ∑
E6∼6

y(6×6)(6+6)



Molecules 2023, 28, 201 7 of 12

This gives

ReZG3(SC
p
p , y) = (3p + 2)y54 + (3p2 + 3p− 4)y196 + (3p2 − 6p + 2)y432.

By taking the first derivative of the polynomial in Theorem 8 at y = 1, we obtain the
third redefined Zagreb index of the chain of silicates SC p

p as follows: For p > 1, the third
redefined Zagreb index of SC p

p is 188p2 − 1842p + 188.

Comparison

In this section, we present a numerical comparison of Zagreb indices in Table 2 and
graphical comparison in Figure 2 of Zagreb polynomials for p, q > 1 and p = q = 2,
3, 4, ..., 12 for the chain of silicates SC p

q .

Table 2. Zagreb topological indices of SC p
q , for p, q ≥2, p = q.

p q M1 M2 HM MD AZI ReZG1 ReZG2 ReZG3

2 2 198 396 2243 1.723 422.4811 13 46 −2744
3 3 486 1071 4278 3.3055 182.6090 27 113.5 −3646
4 4 900 2070 8392 5.388 2324.6907 46 211 −4172
5 5 1440 3393 13,856 7.9722 3848.7256 70 338.5 −4322
6 6 2106 5040 20,670 11.055 5754.7139 99 496 −4096
7 7 2898 7011 28,834 14.6388 8042.6556 133 683.5 −3494
8 8 3816 9306 38,348 18.7222 10,712.5607 172 901 −2516
9 9 4860 11,925 49,212 23.3055 13,764.3992 216 1148.5 −1162
10 10 6030 14,869 55,297 28.3888 17,198.2011 265 1426 568
11 11 7326 18,135 75,990 33.9722 21,013.9564 319 1738.5 2674
12 12 8748 21,726 89,904 40.0555 25,211.6651 378 2071 5156

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

0

5 0 0 0 0

1 0 0 0 0 0  M 1
 M 2
 H M
 M D
 A Z I
 R e Z G 1
 R e Z G 2
 R e Z G 3

Figure 2. Graphical comparison of Zagreb indices for p, q ≥ 2, p = q.

4. Zagreb Polynomials and Indices for p < q and p are Odd

Here, in the chain of silicates SC p
q , we observed for p < q that p is odd and the atom–

bond on the basis of the valency of every atom of SC p
q changed. So, on the basis of valency,

Table 3 provides the partition of the set of atom–bonds.

Table 3. Atom–bond partition of SC p
q ; p is odd and p < q.

Type of atom–bond E3∼3 E3∼6 E6∼6

Number of atom bonds 3(p + 1) 3pq + p + 2q− 5 3pq− 2(2p + q− 1)
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Theorem 9. Let p be odd and p < q. Then the first Zagreb polynomial of SC p
q is 3(p + 1)y6 +

(3pq + p + 2q− 5)y9 + (3pq− 4p− 2q + 2)y12.

Proof. Using the atom–bond partition from Table 3, in the formula of the first Zagreb
polynomial (1), we obtain

M1(SC
p
q , y) = ∑

E3∼3

y3+3 + ∑
E3∼6

y3+6 + ∑
E6∼6

y6+6

This gives

M1(SC
p
q , y) = 3(p + 1)y6 + (3pq + p + 2q− 5)y9 + (3pq− 4p− 2q + 2)y12.

By taking the first derivative of the polynomial in Theorem 9 at y = 1, we obtain the
first Zagreb index of the silicate network SC p

q as follows: Let p be odd and p < q. Then the
first Zagreb index of SC p

q is 63pq− 216p− 6q− 3.

Theorem 10. Let p be odd and p < q. Then the second Zagreb polynomial of SC p
q is 3(p + 1)y9 +

(3pq + p + 2q− 5)y18 + (3pq− 4p− 2q + 2)y36.

Proof. Using the atom–bond partition from Table 3, in the formula of the second Zagreb
polynomial (2), we obtain

M2(SC
p
q , y) = ∑

E3∼3

y3×3 + ∑
E3∼6

y3×6 + ∑
E6∼6

y6×6

This gives

M2(SC
p
q , y) = 3(p + 1)y9 + (3pq + p + 2q− 5)y18 + (3pq− 4p− 2q + 2)y36.

By taking the first derivative of the polynomial in Theorem 10 at y = 1, we obtain the
second Zagreb index of the chain of silicates SC p

q as follows: Let p be odd and p < q. Then
the second Zagreb index of SC p

q is 162pq− 99p− 36q + 9.

Theorem 11. Let p be odd and p < q. Then the hyper-Zagreb polynomial of SC p
q is 3(p + 1)y36 +

(3pq + p + 2q− 5)y81 + (3pq− 4p− 2q + 2)y144.

Proof. Using the atom–bond partition from Table 3, in the formula of the hyper-Zagreb
polynomial (3), we obtain

HM(SC p
q , y) = ∑

E3∼3

y36 + ∑
E3∼6

y81 + ∑
E6∼6

y144

This gives

HM(SC p
q , y) = 3(p + 1)y36 + (3pq + p + 2q− 5)y81 + (3pq− 4p− 2q + 2)y144.

By taking the first derivative of the polynomial in Theorem 11 at y = 1, we obtain the
hyper-Zagreb index of the chain of silicates SC p

q as follows: Let p be odd and p < q. Then
the hyper-Zagreb index of SC p

q is 675pq− 387p− 162q− 9.
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Theorem 12. Let p be odd and p < q. Then the modified Zagreb polynomial of SC p
q is 3(p + 1)y

1
9

+(3pq + p + 2q− 5)y
1

18 + (3pq− 4p− 2q + 2)y
1

36 .

Proof. Using the atom–bond partition from Table 3, in the formula of the modified Zagreb
polynomial (4), we obtain

MD(SC p
q , y) = ∑

E3∼3

y
1

3×3 + ∑
E3∼6

y
1

3×6 + ∑
E6∼6

y
1

6×6

This gives

MD(SC p
q , y) = 3(p + 1)y

1
9 + (3pq + p + 2q− 5)y

1
18 + (3pq− 4p− 2q + 2)y

1
36 .

By taking the first derivative of the polynomial in Theorem 12 at y = 1, we obtain the
modified Zagreb index of the chain of silicates SC p

q as follows: Let p be odd and p < q.
Then the modified Zagreb index of SC p

q is 1
4 pq + 5

8 p + 1
18 q + 1

9 .

Theorem 13. Let p be odd and p < q. Then the augmented Zagreb polynomial of SC p
q is

3(p + 1)y
729
64 + (3pq + p + 2q− 5)y

5832
343 + (3pq− 4p− 2q + 2)y

5832
125 .

Proof. Using the atom–bond partition from Table 3, in the formula of the augmented
Zagreb polynomial (5), we obtain

AZI(SC p
q , y) = ∑

E3∼3

y(
3×3

3+3−2 )
3
+ ∑

E3∼6

y(
3×6

3+6−2 )
3
+ ∑

E6∼6

y(
6×6

6+6−2 )
3

This gives

AZI(SC p
q , y) = 3(p + 1)y

729
64 + (3pq + p + 2q− 5)y

5832
343 + (3pq− 4p− 2q + 2)y

5832
125 .

By taking the first derivative of the polynomial in Theorem 13 at y = 1, we obtain the
augmented Zagreb index of the chain of silicates SC p

q as follows: Let p be odd and p < q.
Then the augmented Zagreb index of SC p

q is 8188128
42475 pq− 1213056

8192 p− 2542752
42875 q + 116535753

2744000 .

Theorem 14. Let p be odd and p < q. Then the first redefined Zagreb polynomial of SC p
q is

3(p + 1)y
2
3 + (3pq + p + 2q− 5)y

1
2 + (3pq− 4p− 2q + 2)y

1
3 .

Proof. Using the atom–bond partition from Table 3, in the formula of the first redefined
Zagreb polynomial (6), we obtain

ReZG1(SC
p
q , y) = ∑

E3∼3

y(
3+3
3×3 ) + ∑

E3∼6

y(
3+6
3×6 ) + ∑

E6∼6

y(
6+6
6×6 )

This gives

ReZG1(SC
p
q , y) = 3(p + 1)y

2
3 + (3pq + p + 2q− 5)y

1
2 + (3pq− 4p− 2q + 2)y

1
3 .

By taking the first derivative of the polynomial in Theorem 14 at y = 1, we obtain the
first redefined Zagreb index of the chain of silicates SC p

q as follows: Let p be odd and p < q.
Then the first redefined Zagreb index of SC p

q is 5
2 pq + 7

6 p + 1
3 q + 1

6 .
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Theorem 15. Let p be odd and p < q. Then the second redefined Zagreb polynomial of SC p
q is

3(p + 1)y
3
2 + (3pq + p + 2q− 5)y2 + (3pq− 4p− 2q + 2)y3.

Proof. Using the atom–bond partition from Table 3, in the formula of the second redefined
Zagreb polynomial (7), we obtain

ReZG2(SC
p
q , y) = ∑

E3∼3

y(
3×3
3+3 ) + ∑

E3∼6

y(
3×6
3+6 ) + ∑

E6∼6

y(
6×6
6+6 )

This gives

ReZG2(SC
p
q , y) = 3(p + 1)y

3
2 + (3pq + p + 2q− 5)y2 + (3pq− 4p− 2q + 2)y3.

By taking the first derivative of the polynomial in Theorem 15 at y = 1, we obtain the
second redefined Zagreb index of the chain of silicates SC p

q as follows: Let p be odd and
p < q. Then the second redefined Zagreb index of SC p

q is 15pq− 11
2 p− 2q + 1

2 .

Theorem 16. Let p be odd and p < q. Then the third redefined Zagreb polynomial of SC p
q is

3(p + 1)y54 + (3pq + p + 2q− 5)y196 + (3pq− 4p− 2q + 2)y432.

Proof. Using the atom–bond partition from Table 3, in the formula of the third redefined
Zagreb polynomial (8), we obtain

ReZG3(SC
p
q , y) = ∑

E3∼3

y(3×3)(3+3) + ∑
E3∼6

y(3×6)(3+6) + ∑
E6∼6

y(6×6)(6+6)

This gives

ReZG3(SC
p
q , y) = 3(p + 1)y54 + (3pq + p + 2q− 5)y196 + (3pq− 4p− 2q + 2)y432.

By taking the first derivative of the polynomial in Theorem 16 at y = 1, we obtain
the third redefined Zagreb index of the chain of silicates SC p

q as follows: Let p be odd and
p < q. Then the third redefined Zagreb index of SC p

q is 984pq− 170p + 128q− 554.

Comparison

In this section, we present a numerical comparison of the Zagreb indices and a graphi-
cal comparison of the Zagreb polynomials for p < q and p is odd; we use p = 3, 5, 7, 9, 11, 13,
15, 17, 19 and q = 4, 6, 8, 10, 12, 14, 16, 18, 20 for the chain of silicates SC p

q (Table 4, Figure 3).

Table 4. Zagreb indices of SC p
q for p < q and p is odd.

p,q M1 M2 HM MD AZI ReZG1 ReZG2 ReZG3

3,4 661 1512 6426 4.1666 1690.6176 35 156 11,256
5,6 1746 4158 17,550 9.3333 4738.6876 83 411 28,884
7,8 3330 8100 34,074 16.5 9314.6712 151 786 54,384

9,10 5418 13,338 55,998 25.66 15,418.2684 239 1281 87,756
11,12 8010 19,872 83,322 36.83 23,049.7792 347 1896 129,000
13,14 11,106 27,702 116,044 50 32,209.1036 475 2631 178,116
15,16 14,706 36,828 154,170 65.16 42,896.2416 623 3486 235,104
17,18 18,810 47,250 197,694 82.33 55,111.1932 791 4461 299,964
19,20 23,418 58,968 246,618 101.5 68,853.9584 979 5556 372,696
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0 2 4 6 8 1 0
0

5 0 0 0 0
1 0 0 0 0 0
1 5 0 0 0 0
2 0 0 0 0 0
2 5 0 0 0 0
3 0 0 0 0 0
3 5 0 0 0 0
4 0 0 0 0 0

 M 1
 M 2
 H M
 M D
 A Z I
 R e Z G 1
 R e Z G 2
 R e Z G 3

Figure 3. Graphical comparisons of Zagreb indices for p < q and p are odd.

5. Conclusions

In the analysis of quantitative structure-property relationships (QSPRs) and (QSARs),
chemical indices are major implements used to approximate the characteristic features of
biological activities, and physical, biomedicine, and molecular compounds. It is ordinary
for questions to emerge about the characterization of silicate networks on the bases of the
nature of Zagreb polynomials. We computed Zagreb polynomials for the chain of silicates
under various situations in this research article. We obtained the first Zagreb, second Zagreb,
hyper-Zagreb, augmented Zagreb, redefined first Zagreb, redefined second Zagreb, and
redefined third Zagreb indices for the chain of silicates SC p

q from these Zagreb polynomials.
For instance, topological indices or Zagreb indices are used to create quantitative structure–
activity relationships (QSARs) that connect the chemical structure of molecules to the
biological activities or other characteristics of such compounds.
Open problems: For the characterization of the chain of silicates, followers are invited to
discuss or research the following open problem:

• Are Zagreb polynomials and Zagreb indices affected when both p and q are even or odd?
• The results will be interesting when p ≥ q.
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