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Abstract: Molecular structure property modeling is an increasingly important tool for predicting
compounds with desired properties due to the expensive and resource-intensive nature and the
problem of toxicity-related attrition in late phases during drug discovery and development. Lately,
the interest for applying deep learning techniques has increased considerably. This investigation com-
pares the traditional physico-chemical descriptor and machine learning-based approaches through
autoencoder generated descriptors to two different descriptor-free, Simplified Molecular Input Line
Entry System (SMILES) based, deep learning architectures of Bidirectional Encoder Representations
from Transformers (BERT) type using the Mondrian aggregated conformal prediction method as
overarching framework. The results show for the binary CATMoS non-toxic and very-toxic datasets
that for the former, almost equally balanced, dataset all methods perform equally well while for the
latter dataset, with an 11-fold difference between the two classes, the MolBERT model based on a large
pre-trained network performs somewhat better compared to the rest with high efficiency for both
classes (0.93–0.94) as well as high values for sensitivity, specificity and balanced accuracy (0.86–0.87).
The descriptor-free, SMILES-based, deep learning BERT architectures seem capable of producing well-
balanced predictive models with defined applicability domains. This work also demonstrates that
the class imbalance problem is gracefully handled through the use of Mondrian conformal prediction
without the use of over- and/or under-sampling, weighting of classes or cost-sensitive methods.
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1. Introduction

Drug discovery is an expensive and resource-intensive process that involves many
challenges, not least within the area of toxicity [1]. A growing concern in drug development
is the high attrition rate in late clinic trials due to issues related to toxicity [2]. Computational
methods, e.g., computer-aided drug design, have thus become standard tools in order to
improve the efficiency of the drug discovery process and to mitigate undesirable toxicity
effects [3–6].

Methods such as molecular structure property modeling have been used for decades
in the pharmaceutical field in order to predict important properties, e.g., biological activity,
solubility and toxicity, for prioritization of compounds with respect to potential toxicity
issues and experimental testing [7]. For a recent review on computational tools, see
reference [8]. The increasing focus on identifying undesirable toxic effects for chemical
structures of interest, real or virtual, is manifested by recent publications such as [9,10] and
recent reviews on machine learning (ML) techniques by Dara and co-workers [11] and by
Matsuzaka and Yashiro [12].

During the last few years, deep learning (DL) techniques have successfully been
applied in various domains, e.g., natural language processing [13] as well as image analy-
sis [14], and have increased the interest for applying such methodologies also for molecular
property predictions [15].

Many of the DL investigations have used the Simplified Molecular Input Line En-
try System (SMILES) notation [16] as a starting point for feature generation and have
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shown impressive performances [17–20]. Several different architectures have been inves-
tigated such as autoencoders [18], convolutional neural networks [21], recurrent neural
networks [22] and transformers [23–25]. Lately, publications using different implemen-
tations of Bidirectional Encoder Representations from Transformers (BERT) have been
published [26,27].

The Mistra SafeChem research program, financed by Mistra (The Swedish Foundation
for Strategic Environmental Research, Stockholm, Sweden), has the overarching aims to
create a sustainable chemical industry and reduce exposure to hazardous substances [28].
One activity, among many other objectives and activities, is to develop and use in silico
predictive models for early prediction and verification of hazardous properties of new
molecules or materials. This includes the development of molecular property models for
predicting toxicity, e.g., acute toxicity.

The well-known CATMoS benchmark dataset [29] has been used in this study for
modeling acute toxicity and the results from both traditional machine learning as well as
deep leaning are presented.

2. Materials and Methods
2.1. CATMoS Datasets

The dataset can be downloaded from reference [29].
The originally defined training and evaluation set in [29] were used.
The training, validation and conformal prediction (CP) calibration sets were randomly

selected from the original training set.
Two different binary classification sets were investigated:
The very toxic (VT; catmos_vt) and the non-toxic (NT; catmos_nt).
Table 1 shows the number of compounds in each set after standardization.

Table 1. Number of compounds in each of the sets.

Dataset Training Set DL
Validation Set Evaluation Set CP

Calibration Set a

catmos_nt 6004 662 2776 1670
catmos_vt 6449 717 2985 1789

a: Conformal prediction calibration set.

2.2. Feature Generation
2.2.1. Structure Standardization

The structures, represented as SMILES, were standardized using the “remove_salt_stereo”
and “organic_filter” functions of the “preprocessing.py” script found in the Continuous
and Data-Driven Descriptors (CDDD) GitHub repository [30], neutralized, followed by
RDKiT smiles tautomer standardization [31]. Additional structures were excluded due to
MolBERT sequence length errors.

2.2.2. RDKit Descriptors

A total of 96 different physiochemical descriptors were calculated using MolecularDe-
scriptorCalculator in RDKit [31] (list of calculated descriptors is available in Supplementary
Materials S2).

2.2.3. CDDD Descriptors

In total, 512 CDDD descriptors of length 512 were calculated using the CDDD GitHub
repository code and model [30]. The RNN architecture-based translation model translating
a SMILES string into its canonical SMILES was used.



Molecules 2023, 28, 217 3 of 10

2.3. Traditional Machine Learning

The binary classification models using RKDit and CDDD descriptors, respectively,
were built using the Scikitlearn RandomForestClassifier [32] with default options (as part
of the conformal prediction model generation, see Section 2.5 for details) [31].

2.4. Deep Learning

Two different approaches were used for generating BERT models.

2.4.1. MolBERT

The MolBERT binary classification models were fine-tuned using the MolBERT GitHub
repository code [33] and the pre-trained model available at reference [34]. The fine-tuning
network consisted of a single linear layer connected to the pooled transformer output.
Default settings were used for fine-tuning. A validation set was used to avoid over-
fitting of the model as well as check-pointing for saving the “best” model according to the
validation set. Ten models were built using different initialization seeds.

A second set of models where fine-tuned using a pre-trained model on 500 k randomly
selected PubChem compounds with a validation set of 50 k compounds.

2.4.2. Molecular-Graph-BERT

The Molecular-graph-BERT binary classification models were fine-tuned using the
Molecular-graph-BERT GitHub repository code [35] and a Molecular-graph-BERT pre-
trained 500 k PubChem model. The fine-tuning network consisted of a two-layer fully
connected neural network attached to the transformer encoder layer output. Default
settings were used for fine-tuning. A validation set was used to avoid over-fitting of the
model as well as check-pointing for saving the “best” model according to the validation set.
Ten models were built using different initialization seeds.

2.5. Conformal Prediction

A conformal predictor (CP) is a member of a family called confidence predictors [36].
These predictors have several useful properties for prediction tasks in biomedical re-
search [37]. A particularly useful property of conformal prediction is that the method
will result in valid predictions based on a user-defined significance level, i.e., a level of
acceptable percentage of errors, given that the data is exchangeable. This property of
validity is based on a mathematical proof by Volk and co-workers [36]. In this investigation,
we used Mondrian (inductive) conformal prediction that guarantees validity for each of
the two classes independently and finally median aggregated the conformal prediction
outcomes from the 10 developed models for each compound and each class for final class
assignment [38].

The nonconformist package [39], where scikit-learn algorithms such as the Random-
ForestClassifier serve as a base classifier, was employed that provide the results from confor-
mal prediction. The following expression was used in the ICP function (Condition = lambda
x: x [1]) in order to enable Mondrian conformal prediction in the nonconformist package.

An in-house script was employed to perform the conversion of predictions (scoring)
from the models using BERT algorithms into results from conformal prediction. This con-
version involves a calibration of the output for each compound and each label (class) in the
evaluation set in relation to the output predictions for the compounds of the corresponding
class in the calibration set.

A CP binary classification problem can have four possible outcomes. A test (evaluation)
compound can be assigned a label for either of the two classes, assigned both labels (both
classification) or none of the labels (empty classification). For a detailed description on how
this calibration is performed, see Norinder and co-workers [40].

A flow chart overview of the employed machine learning approaches and calibration
is depicted in Figure 1.
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Figure 1. A flow chart overview depiction of the employed machine learning approaches. RdKit
and CDDD = RdKit and CDDD descriptor calculation, tr. and val. set. = training and validation set,
respectively, eval. and calibr. set. = evaluation and CP calibration set, respectively.

Validity and efficiency are two key measures in conformal prediction. Validity, for
each class, is the percentage of correct predictions in Mondrian conformal prediction at
a given significance level where the prediction contains the correct class. Thus, in binary
classification the both classification is always correct (contains both available labels) while
the empty classification is always erroneous (contains no labels). Models were considered
valid when the resulting error rate does not exceed the set error rate (significance level) by
more the 2.5%.

Efficiency, for each class, is defined as the percentage of single label predictions (only
one label), regardless of whether the prediction is correct or not, at a given significance
level. High efficiency is therefore desirable since a larger number of predictions are single
label predictions and more informative as they contain only one class.

3. Results and Discussion

The aim of this study is to investigate how different molecular representations and
algorithmic approaches may affect the predictive performance of the derived models. The
present study therefore compares results from the traditionally used Random Forest/physico-
chemical descriptor approach through an intermediate Random Forest/auto encoder repre-
sentation to deep learning BERT/molecular-graph-based approaches.

The results from the study are shown in Table 2 and Supplementary Materials Table S1
and depicted in Figures 2–5.
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Table 2. Aggregated conformal prediction results at significance level 0.2.

Dataset Method a Significance
Level b

Validity
Minority
Class 1

Validity
Majority
Class 0

Efficiency
Minority
Class 1

Efficiency
Majority
Class 0

Sensitivity
(SE)

Specificity
(SP)

Balanced
Accuracy

(BA)

catmos_nt cddd 0.2 0.802 0.824 0.855 0.879 0.769 0.800 0.785
catmos_nt mg_bert 0.2 0.798 0.848 0.814 0.845 0.751 0.821 0.786
catmos_nt molbert_p 0.2 0.791 0.830 0.856 0.864 0.756 0.803 0.779
catmos_nt molbert 0.2 0.797 0.830 0.873 0.892 0.767 0.810 0.788
catmos_nt rdkit 0.2 0.800 0.805 0.909 0.912 0.780 0.786 0.783

catmos_vt cddd 0.2 0.770 0.817
catmos_vt mg_bert 0.2 0.843 0.829 0.923 0.900 0.830 0.810 0.820
catmos_vt molbert_p 0.2 0.798 0.819 0.996 0.991 0.798 0.820 0.809
catmos_vt molbert 0.2 0.815 0.818 0.944 0.931 0.863 0.878 0.871
catmos_vt rdkit 0.2 0.819 0.821 0.996 0.979 0.822 0.839 0.830

a: cddd = RF/cddd 10 models, mg_bert = Molecular-graph-BERT/smiles 10 models, molbert = MolBERT/smiles
10 models, molbert_p = MolBERT/smiles 10 models with PubChem pre-trained model, rdkit = RF/rdkit 10 models,
b = CP significance level.
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Figure 2. Number of valid evaluation set models (maximum 10) for each method type. Methods:
cddd = RF/cddd 10 models, mg_bert = Molecular-graph-BERT/smiles 10 models, molbert = Mol-
BERT/smiles 10 models, molbert_p = MolBERT/smiles 10 models with PubChem pre-trained model,
rdkit = RF/rdkit 10 models, xxx_1 is the corresponding approach based on only 1 model.

From Figure 2, it can be noted that most methods, both ensemble and single models,
produce valid models for significance level 0.1–0.3 with the exception of one CDDD ensem-
ble model and two single MolBERT models based on the PubChem pre-trained model.

Figure 3 shows that both RDKit approaches and the BERT ensemble approaches as
well as many single models result in valid models for both datasets at significance levels of
primary interest, e.g., with error levels (significance levels) set at 10, 15 and 20%.
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Figure 3. Number of valid evaluation set models, at significance levels 0.1, 0.15 and 0.2, for
each method (maximum 2). Methods: cddd = RF/cddd 10 models, mg_bert = Molecular-graph-
BERT/smiles 10 models, molbert = MolBERT/smiles 10 models, molbert_p = MolBERT/smiles 10
models with PubChem pre-trained model, rdkit = RF/rdkit 10 models, xxx_1 is the corresponding
approach based on only 1 model.
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Figure 4. Evaluation set efficiency for class “1” for the 2 datasets (NT model upper row, VT
model lower row), at significance levels 0.1–0.2, for each method. Class “1”: non-toxic class and
very toxic class for the 2 datasets nt and vt, respectively. Methods: cddd = RF/cddd 10 models,
mg_bert = Molecular-graph-BERT/smiles 10 models, molbert = MolBERT/smiles 10 models, mol-
bert_p = MolBERT/smiles 10 models with PubChem pre-trained model, rdkit = RF/rdkit 10 models,
xxx_1 is the corresponding approach based on only 1 model.
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Figure 5. Evaluation set efficiency for class “0” for the 2 datasets (NT model upper row, VT model
lower row), at significance levels 0.1–0.2, for each method. Class “0”: the other binary class for
each dataset as compared to Figure 4. Methods: cddd = RF/cddd 10 models, mg_bert = Molecular-
graph-BERT/smiles 10 models, molbert = MolBERT/smiles 10 models, molbert_p = MolBERT/smiles
10 models with PubChem pre-trained model, rdkit = RF/rdkit 10 models, xxx_1 is the corresponding
approach based on only 1 model.

Figures 4 and 5 show that the efficiencies, i.e., the percentage of single label predictions,
for both class 1 and 0 at an acceptable error level of 10% are, on average, only 60–70%,
which, for most cases, cannot be considered sufficient. At 15% acceptable error rate both the
MolBERT and RDKit approaches show efficiencies for both class 1 and 0 close to or above
80% which ensures a large portion of single-label predictions. The efficiency is further
increased at 20% acceptable error rate where all approaches have efficiencies well above
80% for both class 1 and 0. The performance is generally somewhat better for the catmos_vt
dataset compared to the catmos_nt dataset.

The class distribution (class “0”/class “1”) is ~1.6:1 for catmos_nt and ~11:1 for
catmos_vt which means that the former data set is rather balanced while the latter is
rather unbalanced. This imbalance may, in turn, cause some issues for ML algorithms to
properly handle the minority class [41–43].

From the catmos_nt results presented in Table 2 it can be noted that all of the developed
models in this study performs similarly with respect to the SE/SP balance with an absolute
average difference of 0.039.

The catmos_vt results presented in Table 2 show the graceful handling of the class
imbalance in this dataset, by an absolute average difference between SP and SE for the
four models (cddd not valid for class 1) in this investigation of 0.019, by using Mondrian
conformal prediction. Furthermore, this balanced performance was the result of running
the Mondrian CP framework in default mode and without the use of over- and/or under-
sampling, weighting of classes or cost-sensitive measures.
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The more balanced results from this investigation with respect to SE and SP are due to
the independent handling of the two classes as part of the Mondrian conformal prediction
calibration procedure; see Section 2.5 for more details.

The well-balanced SE/SP performance is of importance from the point of safety, i.e.,
not to err on the false negative side, when predicting a toxic compound to be non-toxic
for the catmos_vt model. It is less of a problem for the catmos_nt model if a few more
non-toxic compounds are predicted to be toxic from a safety perspective.

All methods in Table 2 are performing equally well on the balanced catmos_nt dataset
while MolBERT, based on the larger pre-trained model (method “molbert” in Table 2),
seems to be performing somewhat better than the other methods for the catmos_vt dataset
with respect to SE and SP and the balance between them based on BA results from the 10
individual models (95% confidence, Mann–Whitney U test with Bonferroni correction for
multiple testing) constituting the molbert ensemble results.

Advantages of the BERT approaches over the RDKit descriptor-based approach is
that they are descriptor-free in that SMILES are used as input without the need for explicit
descriptor generation prior to modeling and that the results from the models can be
projected back onto the atoms of the molecules through their attention mechanisms. The
advantage of the RDKit and CDDD approaches is shorter computation costs and that
smaller datasets can be modeled with acceptable outcomes compared to using deep learning
in the form of BERT that usually requires larger training sets.

4. Conclusions

The results show for the binary CATMoS non-toxic, almost equally balanced dataset
that all methods perform equally well. The results also show that the MolBERT model
based on a larger pre-trained network performs somewhat better compared to the rest
for the binary CATMoS very-toxic dataset with an 11-fold difference between the two
classes. The descriptor-free, SMILES based, deep learning BERT architectures seem capable
of producing well-balanced predictive models with defined applicability domains. This
work also demonstrates that the class imbalance problem is gracefully handled through the
use of Mondrian conformal prediction without the use of over- and/or under-sampling,
weighting of classes or cost-sensitive methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010217/s1, Table S1: Conformal predictions results
at significance levels 0.1–0.3.; list of calculated RDKit descriptors Materials S2: list of calculated
RDKit descriptors.
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