Efficient Antibacterial/Antifungal Activities: Synthesis, Molecular Docking, Molecular Dynamics, Pharmacokinetic, and Binding Free Energy of Galactopyranoside Derivatives
Abstract
:1. Introduction
2. Results
2.1. Characterization
2.2. 2D-NMR Analysis
2.3. Antibacterial Potentiality
2.4. Antifungal Susceptibility
2.5. SAR Analysis
2.6. Predicted Antimicrobial Activities (PASS) Analysis
2.7. Thermodynamic Analysis
2.8. Frontier Molecular Orbitals (FMOs)
2.9. Molecular Electrostatic Potential (MESP) Analysis
2.10. Molecular Docking Studies
2.11. Molecular Dynamics Simulations
2.12. Binding Free Energy Analyses
2.13. Pharmacokinetic Profile and Drug-Likeness Analyses
2.14. Calculation of QSAR and pIC50
3. Materials and Methods
3.1. General Information
3.2. Synthesis
3.3. General Procedure for the Preparation of Lauroy Derivatives 3–7
3.4. Biological Assessment
3.4.1. Disc Diffusion Test to Check Antibacterial Susceptibility
3.4.2. Determination of MIC and MBC Using the Micro-Broth Dilution Method
3.4.3. Screening of Mycelial Growth
3.5. Structure–Activity Relationship (SAR) Analysis
3.6. PASS Enumeration
3.7. Computational Details
3.7.1. Geometry Optimization
3.7.2. Preparation of Protein and Molecular Docking
3.7.3. Molecular Dynamics Simulation
3.7.4. Calculation of Binding Free Energy
3.8. Pharmacokinetic and Drug-Likeness Prediction
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nogueira, C.M.; Parmanhan, B.R.; Farias, P.P.; Corrêa, A.G. A Importância Crescente Dos Carboidratos Em Química Medicinal. Rev. Virt. De Quím. 2009, 1, 149–159. [Google Scholar]
- Sears, P.; Wong, C.H. Intervention of Carbohydrate Recognition by Proteins and Nucleic Acids. Proc. Natl. Acad. Sci. USA 1996, 93, 12086–12093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeberger, P.H.; Werz, D.B. Synthesis and medical applications of oligosaccharides. Nature 2007, 446, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Fukuda, M. Cell type-specific roles of carbohydrates in tumor metastasis. Meth. Enzymol. 2006, 416, 371–380. [Google Scholar]
- Kawsar, S.M.A.; Islam, M.; Jesmin, S.; Manchur, M.A.; Hasan, I.; Rajia, S. Evaluation of the antimicrobial activity and cytotoxic effect of some uridine derivatives. Int. J. Biosci. 2018, 12, 211–219. [Google Scholar]
- Kawsar, S.M.A.; Hamida, A.A.; Sheikh, A.U.; Hossain, M.K.; Shagir, A.C.; Sanaullah, A.F.M.; Manchur, M.A.; Imtiaj, H.; Ogawa, Y.; Fujii, Y.; et al. Chemically modified uridine molecules incorporating acyl residues to enhance antibacterial and cytotoxic activities. Int. J. Org. Chem. 2015, 5, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Shagir, A.C.; Bhuiyan, M.M.R.; Ozeki, Y.; Kawsar, S.M.A. Simple and rapid synthesis of some nucleoside derivatives: Structural and spectral characterization. Curr. Chem. Lett. 2016, 5, 83–92. [Google Scholar]
- Rana, K.M.; Ferdous, J.; Hosen, A.; Kawsar, S.M.A. Ribose moieties acylation and characterization of some cytidine analogs. J. Sib. Fed. Univ. Chem. 2020, 13, 465–478. [Google Scholar] [CrossRef]
- Bulbul, M.Z.H.; Chowdhury, T.S.; Misbah, M.M.H.; Ferdous, J.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis of new series of pyrimidine nucleoside derivatives bearing the acyl moieties as potential antimicrobial agents. Pharmacia 2021, 68, 23–34. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Islam, M.M.; Rahman, M.M.; Mohammad, A.R.; Kawsar, S.M.A. An efficient approach to the synthesis of thymidine derivatives containing various acyl groups: Characterization and antibacterial activities. ACTA Pharm. Sci. 2018, 56, 7–22. [Google Scholar] [CrossRef]
- Maowa, J.; Alam, A.; Rana, K.M.; Hosen, A.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, characterization, synergistic antimicrobial properties and molecular docking of sugar modified uridine derivatives. Ovidius. Univ. Ann. Chem. 2021, 32, 6–21. [Google Scholar] [CrossRef]
- Alam, A.; Hosen, M.A.; Hosen, A.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, characterization, and molecular docking against a receptor protein FimH of Escherichia coli (4XO8) of thymidine derivatives. J. Mex. Chem. Soc. 2021, 65, 256–276. [Google Scholar] [CrossRef]
- Rana, K.M.; Maowa, J.; Alam, A.; Hosen, A.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. In silico DFT study, molecular docking, and ADMET predictions of cytidine analogs with antimicrobial and anticancer properties. Silico Pharmacol. 2021, 9, 42. [Google Scholar] [CrossRef]
- Farhana, Y.; Amin, M.R.; Hosen, A.; Kawsar, S.M.A. Bromobenzoylation of methyl α-D-mannopyranoside: Synthesis and spectral characterization. J. Sib. Fed. Univ. Chem. 2021, 14, 171–183. [Google Scholar]
- Devi, S.R.; Jesmin, S.; Rahman, M.; Manchur, M.A.; Fujii, Y.; Kanaly, R.A.; Ozeki, Y.; Kawsar, S.M.A. Microbial efficacy and two step synthesis of uridine derivatives with spectral characterization. ACTA Pharm. Sci. 2019, 57, 47–68. [Google Scholar] [CrossRef]
- Alam, A.; Hosen, M.A.; Islam, M.; Ferdous, J.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, Antibacterial and cytotoxicity assessment of modified uridine molecules. Curr. Adv. Chem. Biochem. 2021, 6, 114–129. [Google Scholar]
- Kawsar, S.M.A.; Kumar, A. Computational investigation of methyl α-D-glucopyranoside derivatives as inhibitor against bacteria, fungi and COVID-19 (SARS-2). J. Chil. Chem. Soci. 2021, 66, 5206–5214. [Google Scholar] [CrossRef]
- Mirajul, M.I.; Arifuzzaman, M.; Monjur, M.R.; Rahman, A.; Kawsar, S.M.A. Novel methyl 4,6-O-benzylidene-α-D-glucopyranoside derivatives: Synthesis, structural characterization and evaluation of antibacterial activities. Hacet. J. Biol. Chem. 2019, 47, 153–164. [Google Scholar]
- Kawsar, S.M.A.; Faruk, M.O.; Rahman, M.S.; Fujii, Y.; Ozeki, Y. Regioselective synthesis, characterization and antimicrobial activities of some new monosaccharide derivatives. Sci. Pharm. 2014, 82, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kawsar, S.M.A.; Hasan, T.; Chowdhury, S.A.; Islam, M.M.; Hossain, M.K.; Mansur, M.A. Synthesis, spectroscopic characterization and in vitro antibacterial screening of some D-glucose derivatives. Int. J. Pure App Chem. 2013, 8, 125–135. [Google Scholar]
- Misbah, M.M.H.; Ferdous, J.; Bulbul, M.Z.H.; Chowdhury, T.S.; Dey, S.; Hasan, I.; Kawsar, S.M.A. Evaluation of MIC, MBC, MFC and anticancer activities of acylated methyl β-D-galactopyranoside esters. Int. J. Biosci. 2020, 16, 299–309. [Google Scholar]
- Kawsar, S.M.A.; Hosen, M.A.; Fujii, Y.; Ozeki, Y. Thermochemical, DFT, molecular docking and pharmacokinetic studies of methyl β-D-galactopyranoside esters. J. Comput. Chem. Mol. Model. 2020, 4, 452–462. [Google Scholar] [CrossRef]
- Maowa, J.; Hosen, M.A.; Alam, A.; Rana, K.M.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Pharmacokinetics and molecular docking studies of uridine derivatives as SARS- COV-2 Mpro inhibitors. Phys. Chem. Res. 2021, 9, 312–385. [Google Scholar]
- Hosen, M.A.; Alam, A.; Islam, M.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Geometrical optimization, PASS prediction, molecular docking, and in silico ADMET studies of thymidine derivatives against FimH adhesin of Escherichia coli. Bulg. Chem. Commun. 2021, 53, 327–342. [Google Scholar]
- Kawsar, S.M.A.; Kumer, A.; Munia, N.S.; Hosen, M.A.; Chakma, U.; Akash, S. Chemical descriptors, PASS, molecular docking, molecular dynamics and ADMET predictions of glucopyranoside derivatives as inhibitors to bacteria and fungi growth. Org. Commun. 2022, 15, 184–203. [Google Scholar] [CrossRef]
- Farhana, Y.; Amin, M.R.; Hosen, M.A.; Bulbul, M.Z.H.; Dey, S.; Kawsarm, S.M.A. Monosaccharide derivatives: Synthesis, antimicrobial, PASS, antiviral, and molecular docking studies against SARS-Cov-2 mpro inhibitors. J. Cellul. Chem. Technol. 2021, 55, 477–499. [Google Scholar]
- Bulbul, M.Z.H.; Hosen, M.A.; Ferdous, J.; Misbah, M.M.H.; Chowdhury, T.S.; Kawsar, S.M.A. Thermochemical, DFT study, physicochemical, molecular docking and ADMET predictions of some modified uridine derivatives. Int. J. New Chem. 2021, 8, 88–110. [Google Scholar]
- Kawsar, S.M.A.; Hosen, M.A.; Chowdhury, T.S.; Rana, K.M.; Fujii, Y.; Ozeki, Y. Thermochemical, PASS, Molecular Docking, Drug-Likeness and In Silico ADMET Prediction of Cytidine Derivatives Against HIV-1 Reverse Transcriptase. Rev. de Chim. 2021, 72, 159–178. [Google Scholar] [CrossRef]
- Kawsar, S.M.A.; Hosen, M.A. An optimization and pharmacokinetic studies of some thymidine derivatives. Turk. Comp. Theo. Chem. 2020, 4, 59–66. [Google Scholar] [CrossRef]
- Kawsar, S.M.A.; Almalki, F.A.; Hadd, T.B.; Hamid, L.; Khan, M.A.R.; Hosen, M.A.; Shafi, M.; Abdelouahed, A.; Maideen, N.M.P.; Fariba, H.; et al. Potential antifungal activity of novel carbohydrate derivatives validated by POM, molecular docking and molecular dynamic simulations analyses. Mol. Simul. 2022, 48, 1–16. [Google Scholar] [CrossRef]
- Amin, M.R.; Yasmin, F.; Hosen, M.A.; Dey, S.; Mahmud, S.; Saleh, M.A.; Hasan, I.; Fujii, Y.; Yamada, M.; Ozeki, Y.; et al. Synthesis, antimicrobial, anticancer, PASS, molecular docking, molecular dynamic simulations and pharmacokinetic predictions of some methyl β-D-galactopyranoside analogs. Molecules 2021, 26, 7016. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.R.; Yasmin, F.; Dey, S.; Mahmud, S.; Saleh, M.A.; Emran, T.B.; Hasan, I.; Rajia, S.; Ogawa, Y.; Fujii, Y.; et al. Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: Synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations. Glycoconj. J. 2021, 38, 7016. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Rana, K.M.; Hosen, M.A.; Dey, S.; Bezbaruah, B.; Kawsar, S.M.A. Modified thymidine derivatives as potential inhibitors of SARS-CoV: PASS, in vitro antimicrobial, physicochemical and molecular docking studies. Phys. Chem. Res. 2022, 10, 391–409. [Google Scholar]
- Islam, S.; Hosen, M.A.; Ahmad, S.; Qamar, M.T.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, antimicrobial, anticancer activities, PASS prediction, molecular docking, molecular dynamics and pharmacokinetic studies of designed methyl α-D-glucopyranoside esters. J. Mol. Struct. 2022, 1260, 132761. [Google Scholar] [CrossRef]
- Kawsar, S.M.A.; Hosen, M.A.; El Bakri, Y.; Ahmad, S.; Sopi, T.A.; Goumri-Said, S. In silico approach for potential antimicrobial agents through antiviral, molecular docking, molecular dynamics, pharmacokinetic and bioactivity predictions of galactopyranoside derivatives. Arab J. Basic Appl. Sci. 2022, 29, 99–112. [Google Scholar] [CrossRef]
- Kawsar, S.M.A.; Ouassaf, M.; Hosen, M.A.; Chtita, S.; Qais, F.A.; Belaidi, S. Physicochemical, ADMET, molecular docking and molecular dynamics simulations against Bacillus subtilis HmoB for antibacterial potentiality of methyl α-D-glucopyranoside derivatives. Philipp. J. Sci. 2022, 151, 1393–1417. [Google Scholar] [CrossRef]
- Hosen, M.A.; Munia, N.S.; Al-Ghorbani, M.; Baashen, M.; Almalki, F.A.; Hadda, T.B.; Ali, F.; Mahmud, S.; Saleh, M.A.; Laaroussi, H.; et al. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2:POM study and identification of the pharmacophore sites. Bioorg. Chem. 2022, 125, 105850. [Google Scholar] [CrossRef]
- Cohen, N.; Benson, S.W. Estimation of heats of formation of organic compounds by additivity methods. Chem. Rev. 1993, 93, 2419–2438. [Google Scholar] [CrossRef]
- Lien, E.J.; Guo, Z.R.; Li, R.L.; Su, C.T. Use of dipole moment as a parameter in drug-receptor interaction and quantitative structure-activity relationship studies. J. Pharm. Sci. 1982, 71, 641–655. [Google Scholar] [CrossRef]
- Saravanan, S.; Balachandran, V. Quantum chemical studies, natural bond orbital analysis and thermodynamic function of 2,5-di-chlorophenylisocyanate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 120, 351–364. [Google Scholar] [CrossRef]
- Amin, M.L. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insight 2013, 7, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S. Molecular electrostatic potentials and chemical reactivity. Rev. Comput. Chem. 1991, 2, 273–312. [Google Scholar]
- Politzer, P.; Truhlar, D.G. Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Munia, N.S.; Hosen, M.A.; Khaldun, M.A.A.; Al-Ghorbani, M.; Baashen, M.; Hossain, M.K.; Ali, F.; Mahmud, S.; Shimu, M.S.S.; Almalki, F.A.; et al. Synthesis, antimicrobial, SAR, PASS, molecular docking, molecular dynamics and pharmacokinetics studies of 5’-O-uridine derivatives bearing acyl moieties: POM study and identification of the pharmacophore sites. Nucl. Nucl. Nucleic Acids. 2022, 41, 1–48. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.B.G.; Coser, A. BuildQSAR: A new computer program for QSAR analysis. Mol. Inform. 2001, 19, 599–601. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests; 23rd informational supplement M100-S23; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2013. [Google Scholar]
- Grover, R.K.; Moore, J.D. In-vitro efficacy of certain essential oils and plant extracts against three major pathogens of Jatropha curcas L. Phytopathology 1962, 52, 876–879. [Google Scholar]
- Hunt, W.A. The effects of aliphatic alcohols on the biophysical and biochemical correlates of membrane function. Adv. Exp. Med. Biol. 1975, 56, 195–210. [Google Scholar]
- Kim, Y.M.; Farrah, S.; Baney, R.H. Structure–antimicrobial activity relationship for silanols, a new class of disinfectants, compared with alcohols and phenols. Int. J. Antimicrob. Agents. 2007, 29, 217–222. [Google Scholar] [CrossRef]
- Kumaresan, S.; Senthilkumar, V.; Stephen, A.; Balakumar, B.S. GC-MS analysis and pass-assisted prediction of biological activity spectra of extract of Phomopsis sp. isolated from Andrographis paniculata. World J. Pharm. Res. 2015, 4, 1035–1053. [Google Scholar]
- Shamsuddin, T.; Hosen, M.A.; Alam, M.S.; Emran, T.B.; Kawsar, S.M.A. Uridine derivatives: Antifungal, pass outcomes, ADME/T, drug-likeliness, molecular docking and binding energy calculations. Med. Sci. Int. Med. J. 2021, 10, 1373–1386. [Google Scholar] [CrossRef]
- Gaussian, R.A.; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009.
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Forli, W.; Halliday, S.; Belew, R.; Olson, A.J. AutoDock Version 4.2. J. Med.Chem. 2012, 55, 623–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz Jr, K.M.; Onufriev, A.; Simmerling, C.; Wang, S.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general Amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theo. Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [Green Version]
- Roe, D.R.; Cheatham III, T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theo. Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Turner, P.J.J. XMGRACE, Version 5.1.19; Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology: Beaverton, OR, USA, 2005.
- Miller III, B.R.; McGee Jr, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA. py: An efficient program for end-state free energy calculations. J. Chem. Theo. Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Sun, H.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phy. 2014, 16, 16719–16729. [Google Scholar] [CrossRef]
- Abro, A.; Azam, S.S. Binding free energy based analysis of arsenic (+ 3 oxidation state) methyltransferase with S-adenosylmethionine. J. Mol. Liq. 2016, 220, 375–382. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, B.D. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
Entry | Zone of Inhibition in mm | |
---|---|---|
Bacillus subtilis | Bacillus cereus | |
1 | NI | NI |
2 | NI | NI |
3 | * 12.75 ± 0.8 | * 11.50 ± 0.5 |
4 | 7.75 ± 0.4 | NI |
5 | NI | NI |
6 | * 11 ± 0.1 | NI |
7 | NI | NI |
8 | NI | * 10.50 ± 0.6 |
9 | * 13 ± 0.9 | * 15.25 ± 0.4 |
10 | NI | NI |
Azithromycin | ** 18.50 ± 0.2 | ** 17.75 ± 0.4 |
Entry | Zone of Inhibition in mm | ||
---|---|---|---|
Escherichia coli | Salmonella typhi | Pseudomonas aeruginosa | |
1 | NI | NI | NI |
2 | NI | NI | * 18.25 ± 0.8 |
3 | * 11.25 ± 0.5 | * 13 ± 0.7 | * 11.50 ± 0.1 |
4 | 8.50 ± 0.3 | 9 ± 0.1 | 7.50 ± 0.4 |
5 | NI | NI | NI |
6 | * 18.50 ± 0.6 | 8.75 ± 0.3 | * 14.50 ± 0.5 |
7 | * 10.25 ± 0.4 | NI | 8.50 ± 0.2 |
8 | NI | * 11.25 ± 0.8 | * 15 ± 0.9 |
9 | *11 | * 12.25 ± 0.7 | * 11.25 ± 0.4 |
10 | NI | NI | NI |
Azithromycin | ** 17.25 ± 0.2 | ** 18.0 ± 0.4 | ** 18.50 ± 0.6 |
Entry | % Inhibition of Fungal Mycelial Growth in mm (20 μg/μL) | |
---|---|---|
Aspergillus niger | Aspergillus flavus | |
1 | NI | NI |
2 | 48.73 ± 1.3 | * 81.97 ± 1.3 |
3 | * 78.81 ± 1.3 | * 81.97 ± 1.3 |
4 | 46.61 ± 1.3 | NI |
5 | NI | * 79.51 ± 1.3 |
6 | 58.05 ± 1.3 | * 75.42 ± 1.3 |
7 | * 71.61 ± 1.3 | * 78.69 ± 1.3 |
8 | * 72.88 ± 1.3 | * 85.66 ± 1.3 |
9 | * 64.83 ± 1.3 | * 84.02 ± 1.3 |
10 | * 71.19 ± 1.3 | NI |
Nystatin | ** 61.7 ± 1.4 | ** 63.8 ± 1.5 |
Entry | Antiviral | Antibacterial | Antifungal | |||
---|---|---|---|---|---|---|
Pa | Pi | Pa | Pi | Pa | Pi | |
1 | 0.676 | 0.044 | 0.351 | 0.022 | 0.342 | 0.072 |
2 | 0.802 | 0.034 | 0.546 | 0.026 | 0.610 | 0.032 |
3 | 0.764 | 0.052 | 0.411 | 0.024 | 0.561 | 0.023 |
4 | 0.764 | 0.052 | 0.411 | 0.024 | 0.561 | 0.023 |
5 | 0.783 | 0.041 | 0.541 | 0.018 | 0.622 | 0.066 |
6 | 0.778 | 0.041 | 0.534 | 0.022 | 0.645 | 0.066 |
7 | 0.761 | 0.046 | 0.528 | 0.039 | 0.619 | 0.021 |
8 | 0.842 | 0.023 | 0.588 | 0.033 | 0.558 | 0.011 |
9 | 0.641 | 0.033 | 0.327 | 0.021 | 0.446 | 0.088 |
10 | 0.641 | 0.033 | 0.327 | 0.021 | 0.446 | 0.088 |
Entry | HOMO | LUMO | Gap (Δε) | η | S | µ | χ | ω |
---|---|---|---|---|---|---|---|---|
1 | −6.021 | −0.391 | 5.630 | 2.815 | 0.355 | 3.206 | −3.206 | 2.317 |
2 | −6.058 | −0.795 | 5.263 | 2.631 | 0.380 | 3.426 | −3.426 | 2.231 |
3 | −6.191 | −0.824 | 5.367 | 2.683 | 0.372 | 3.507 | −3.507 | 2.292 |
4 | −6.470 | −0.996 | 5.474 | 2.737 | 0.351 | 3.733 | −3.733 | 2.545 |
5 | −6.504 | −0.852 | 5.652 | 2.826 | 0.353 | 3.678 | −3.678 | 2.393 |
6 | −6.723 | −0.546 | 6.177 | 3.088 | 0.323 | 3.634 | −3.634 | 2.138 |
7 | −6.766 | −0.807 | 5.959 | 2.979 | 0.335 | 3.288 | −3.288 | 2.019 |
8 | −6.033 | −0.552 | 5.481 | 2.740 | 0.364 | 3.292 | −3.292 | 1.978 |
9 | −6.628 | −0.847 | 5.781 | 2.890 | 0.345 | 3.737 | −3.737 | 2.416 |
10 | −6.741 | −0.738 | 6.003 | 3.001 | 0.333 | 3.739 | −3.739 | 2.329 |
Compound No. | Antibacterial MurF Binding Energy Score (kcal/mol) | Antifungal Binding Energy Score (kcal/mol) |
---|---|---|
1 | −5.89 | −6.36 |
2 | −7.33 | −7.15 |
3 | −9.39 | −8.36 |
4 | −9.64 | −8.84 |
5 | −8.58 | −8.54 |
6 | −8.57 | −8.16 |
7 | −8.60 | −8.49 |
8 | −6.89 | −6.92 |
9 | −10.94 | −11.97 |
10 | −8.91 | −8.03 |
MM/GBSA | ||||
---|---|---|---|---|
Complex | ΔG Binding (kcal/mol) | ΔG Electrostatic (kcal/mol) | ΔG Bind Van Der Waals (kcal/mol) | ΔG Solvation (kcal/mol) |
MurF-compound 9 | −25.89 | −18.18 | −29.00 | 21.29 |
Lanosterol 14-α-demethylase -compound 9 | −33.27 | −19.27 | −32.67 | 18.67 |
MM/PBSA | ||||
MurF-compound 9 | −20.84 | −18.18 | −29.00 | 26.34 |
Lanosterol 14- α-demethylase -compound 9 | −27.94 | −19.27 | −32.67 | 24.00 |
Entry | Water Solubility (log mol/L) | Caco-2 Permeability | Intestinal Absorption | Skin Permeability |
---|---|---|---|---|
1 | −3.015 | −0.658 | 59.069 | −3.118 |
2 | −5.689 | 0.220 | 75.315 | −2.587 |
3 | −4.008 | 0.369 | 81.210 | −2.471 |
4 | −3.982 | 0.421 | 83.474 | −2.441 |
5 | −5.241 | 0.652 | 93.645 | −2.520 |
6 | −5.210 | 0.501 | 93.645 | −2.537 |
7 | −5.441 | 0.463 | 95.524 | −2.748 |
8 | −4.852 | 0.295 | 77.215 | −2.555 |
9 | −3.196 | 0.345 | 84.842 | −2.451 |
10 | −3.654 | 0.324 | 86.481 | −2.621 |
Entry | Distribution | Execration | |||
---|---|---|---|---|---|
Vdss | BBB Permeability | CNS Permeability | Total Clearance | Renal OCT2 Substrate | |
1 | −0.204 | −0.877 | −4.087 | 0.321 | No |
2 | −0.223 | −1.264 | −3.174 | 0.198 | No |
3 | −0.751 | −1.412 | −2.675 | 1.245 | No |
4 | −0.452 | −1.521 | −2.524 | 1.251 | No |
5 | 0.417 | −0.451 | −3.742 | 1.409 | No |
6 | −0.052 | −0.521 | −3.649 | 1.587 | No |
7 | −0.055 | −0.741 | −3.803 | 1.483 | No |
8 | −0.255 | −1.454 | −2.314 | 0.621 | No |
9 | −0.356 | −1.002 | −3.287 | 1.663 | No |
10 | −0.310 | −1.102 | −2.045 | 1.025 | No |
Entry | Chiv5 | (bcutm1) | (MRVSA9) | (MRVSA6) | (PEOEVSA5) | GATSv4 | PIC50 |
---|---|---|---|---|---|---|---|
1 | 0.494 | 2.343 | 0.000 | 0.00 | 0.00 | 0.92 | 4.78 |
2 | 1.005 | 3.112 | 6.505 | 44.41 | 46.87 | 0.46 | 3.67 |
3 | 1.284 | 3.841 | 26.491 | 65.43 | 85.36 | 0.81 | 4.00 |
4 | 1.251 | 4.009 | 26.970 | 71.87 | 97.19 | 0.81 | 4.91 |
5 | 5.481 | 5.734 | 54.241 | 84.73 | 178.41 | 1.06 | 5.31 |
6 | 5.765 | 5.334 | 58.658 | 95.40 | 165.74 | 1.15 | 6.24 |
7 | 6.057 | 4.764 | 57.941 | 98.31 | 185.10 | 1.29 | 8.15 |
8 | 2.541 | 2.437 | 9.229 | 24.21 | 68.41 | 0.68 | 4.81 |
9 | 3.970 | 3.102 | 31.711 | 102.55 | 144.25 | 1.39 | 5.19 |
10 | 3.045 | 3.854 | 29.009 | 81.21 | 135.27 | 1.41 | 5.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmmed, F.; Islam, A.U.; Mukhrish, Y.E.; Bakri, Y.E.; Ahmad, S.; Ozeki, Y.; Kawsar, S.M.A. Efficient Antibacterial/Antifungal Activities: Synthesis, Molecular Docking, Molecular Dynamics, Pharmacokinetic, and Binding Free Energy of Galactopyranoside Derivatives. Molecules 2023, 28, 219. https://doi.org/10.3390/molecules28010219
Ahmmed F, Islam AU, Mukhrish YE, Bakri YE, Ahmad S, Ozeki Y, Kawsar SMA. Efficient Antibacterial/Antifungal Activities: Synthesis, Molecular Docking, Molecular Dynamics, Pharmacokinetic, and Binding Free Energy of Galactopyranoside Derivatives. Molecules. 2023; 28(1):219. https://doi.org/10.3390/molecules28010219
Chicago/Turabian StyleAhmmed, Faez, Anis Ul Islam, Yousef E. Mukhrish, Youness El Bakri, Sajjad Ahmad, Yasuhiro Ozeki, and Sarkar M. A. Kawsar. 2023. "Efficient Antibacterial/Antifungal Activities: Synthesis, Molecular Docking, Molecular Dynamics, Pharmacokinetic, and Binding Free Energy of Galactopyranoside Derivatives" Molecules 28, no. 1: 219. https://doi.org/10.3390/molecules28010219
APA StyleAhmmed, F., Islam, A. U., Mukhrish, Y. E., Bakri, Y. E., Ahmad, S., Ozeki, Y., & Kawsar, S. M. A. (2023). Efficient Antibacterial/Antifungal Activities: Synthesis, Molecular Docking, Molecular Dynamics, Pharmacokinetic, and Binding Free Energy of Galactopyranoside Derivatives. Molecules, 28(1), 219. https://doi.org/10.3390/molecules28010219