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Abstract: Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Bisdemethoxycur-
cumin (BDMC) is an ingredient from the rhizome of the traditional Chinese herbal medicine turmeric.
BDMC has been reported to have important pharmacological properties, such as anti-inflammatory,
antioxidant, antitumor and antiproliferative activities. However, its effect on atopic dermatitis has
not been reported. The purpose of our study was to demonstrate the effectiveness of BDMC on
TNF-α/IFNγ-stimulated HaCaT cells and on 2,4-dinitrochlorobenzene (DNCB)-induced AD mice.
Our studies showed in vitro that BDMC was able to significantly inhibit the mRNA expression of
chemokines and cytokines in TNF-α/IFN-γ-stimulated HaCaT cells and alleviate their inflammatory
response. Our studies found in vivo that BDMC was able to significantly improve the symptoms
of DNCB-induced AD skin lesions, decrease the number of scratches, ear thickness, and spleen
index, improve inflammatory cells and mast cell infiltration and decrease skin thickness. Moreover,
it was also able to inhibit the mRNA expression levels of chemokines and inflammatory cytokines
and the activation of the MAPK and NF-κB signaling pathways. Thus, the results indicated that
BDMC can improve atopic dermatitis in mice and that further clinical studies are warranted on
its treatment of AD.

Keywords: atopic dermatitis; bisdemethoxycurcumin; HaCaT cells; inflammation; MAPK; NF-κB

1. Introduction

Atopic dermatitis (AD) is a common chronic inflammatory skin disease with complex
pathophysiological and clinical heterogeneity in the age of onset, morphology, distribution
and severity of lesions [1,2]. The prevalence of AD is about 4% in adults and approximately
10% in children, and 50% of adults with the condition develop persistent skin disease [3].
Recently, many studies have examined the relationships between AD and other conditions,
including diabetes, heart disease, hypertension and autoimmune and psychiatric disor-
ders [4–6]. These studies have demonstrated that there is a positive relationship between
the severity of AD and the prevalence of these disorders [4,5]. The economic burden caused
by the chronic recurrence of the disease and family participation in treatment has greatly
reduced the living conditions of AD patients and their families.

AD can be caused by an imbalance of regulatory T cells in patients with dermatitis,
and the increased differentiation of helper T(Th)2 cytokines such as interleukin (IL)-4
and IL-5, which all inhibit Th1 cell differentiation [7]. Keratinocytes, the main cells of
our skin, are stimulated by Th2 cytokines, which may allow immune factors to penetrate
damaged skin areas [7,8]. The activation of the MAPK/NF-κB pathway is related to the
pathogenesis of allergic reactions [9,10]. Activating the MAPK pathway mainly increases
the production of cytokines to stimulate the pro-inflammatory response, and the MAPK
pathway regulates the expression of these cytokines by activating the transcription factor
NF-κB [11]. Keratinocytes, which are the main epidermal cells, are considered to play
a critical role in the pathogenesis of AD. Epidermal keratinocytes function to sustain
the recruitment and activation of inflammatory cells, including monocytes, neutrophils,
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dendritic cells, and T cells, through the production of various inflammatory mediators,
such as cytokines and chemokines. The stimulation of keratinocytes with tumor necrosis
factor-α (TNF-α) and interferon-γ (IFN-γ) leads to the expression of pro-inflammatory
cytokines, chemokines, and adhesion molecules, such as intercellular adhesion molecule-1
(ICAM-1), and these factors contribute to the infiltration of inflammatory cells into sites of
inflammation in the skin [12].

Curcumin is the main ingredient extracted from turmeric, a plant known for its
medicinal uses. A growing amount of evidence confirms that curcumin might modulate
those phenomena involved in the inflammatory, proliferative, and infectious disorders of
the skin. In addition to curcumin, bisdemethoxycurcumin (BDMC), another ingredient
derived from turmeric, has been proven to exert anti-food allergy and anti-allergic rhinitis
effects [13–15]. Since BDMC is more stable than curcumin, and has a good water solubility
and high permeability, it enters the nucleus more easily to be absorbed by cells [16]. In our
previous studies, BDMC was found to inhibit OVA-induced allergic rhinitis (AR) and food
allergy (FA) in mice [17,18]. In this study, we examined the effect and mechanism of BDMC
on DNCB-induced AD mice and HaCaT cells.

2. Results
2.1. Effects of Different Concentrations of BDMC Treatment on the Viability of HaCaT Cells

To examine the effect of BDMC on HaCaT cell viability, an MTT assay was performed.
After respective treatments were performed with BDMC (0, 7.5, 15, 30, 60, 120, 240 µM) for
24 h, the results showed that BDMC had no cytotoxicity at the concentration of 60 µM, but
showed cytotoxicity in the presence of TNF-α/IFN-γ (Figure 1A). Therefore, we focused
on the effects of BDMC at 15 and 30 µM on TNF-α/IFN-γ-induced HaCaT cells in the
following experiments.
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ng/mL)/IFN-γ (10 ng/mL) or equal volume Phosphate Buffered Saline for 24 h; meanwhile, different 
concentrations of BDMC (15 and 30 µM) were added. Further, the mRNA expression levels of (B) 
IL-1β, (C) IL-6, (D) TARC, (E) MDC, and (F) RANTES were determined using RT-qPCR. The RNA 
gene expression levels of each sample were analyzed three times and normalized to the internal 
control gene GAPDH. The values are expressed as the means ± standard deviation (SD) of three 
independent samples. ### p < 0.001 vs. control group; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. TNF-α/IFN-
γ group. 
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related with the dose administered (Figure 1B–F). 

2.3. BDMC Alleviates the Clinical Symptoms of AD-Like Skin Lesions in Mice 
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for 24 h, and then the cell viability was examined by MTT assay. Cells were treated with TNF-α
(10 ng/mL)/IFN-γ (10 ng/mL) or equal volume Phosphate Buffered Saline for 24 h; meanwhile,
different concentrations of BDMC (15 and 30 µM) were added. Further, the mRNA expression
levels of (B) IL-1β, (C) IL-6, (D) TARC, (E) MDC, and (F) RANTES were determined using RT-qPCR.
The RNA gene expression levels of each sample were analyzed three times and normalized to the
internal control gene GAPDH. The values are expressed as the means ± standard deviation (SD) of
three independent samples. ### p < 0.001 vs. control group; * p < 0.05, ** p < 0.01, *** p < 0.001 vs.
TNF-α/IFN-γ group.

2.2. BDMC Reduces the mRNA Expression Levels of Cytokines and Chemokines in HaCaT Cells

BDMC and TNF-α/IFN-γ were added in vitro to HaCaT cells at the same time for 24 h.
RT-qPCR was used to evaluate whether BDMC affected the mRNA expression levels of
these cytokines and chemokines after 24 h of treatment with TNF-α/IFN-γ and BDMC. The
results showed that the mRNA expression levels of IL-1β, IL-6, TARC, MDC and RANTES
were significantly increased in the TNF-α/IFN-γ group compared with the control group.
After BDMC treatment, these mRNA expression levels were inhibited and correlated with
the dose administered (Figure 1B–F).

2.3. BDMC Alleviates the Clinical Symptoms of AD-like Skin Lesions in Mice

To investigate the role of BDMC in AD mouse skin lesions, we established DNCB-
induced AD models. We found that compared with the control group, the dorsal skin
and ears of the mice in the AD group exhibited severe erythema, edema, exfoliation, and
scales of skin lesions, and erythema and edema decreased in the mice treated with BDMC
(Figure 2A,B). The frequency of scratching behavior and ear thickness in the AD mice were
significantly increased compared with the control group, while the frequency of scratch-
ing behavior and ear thickness in the BDMC-treated group were significantly reduced
compared with the AD group in a dose-dependent manner (Figure 2C,D). Additionally,
persistent skin inflammation enlarges the mouse spleen. The spleen index of the AD mice
was higher than that of the control group. The daily oral administration of BDMC reduced
the spleen index in AD mice in a dose-dependent manner (Figure 2E).

2.4. BDMC Decreases the Levels of Serum IgE, IL-4 and IFN-γ

The immune response plays a crucial role in the entire pathogenesis of AD. IgE is the
main allergic index in the body. To further evaluate the role of BDMC in AD, the expression
levels of serum IgE, IL-4 and IFN-γ were measured by ELISA. After stimulation with
DNCB, the serum IgE levels of the AD mice were significantly increased compared with
those of the control mice. The serum IgE levels of the mice treated with BDMC decreased
in a dose-dependent manner (Figure 3A). The serum IL-4 levels of the AD mice were
significantly increased, but their IFN-γ levels were significantly decreased compared with
those of the control group. Meanwhile, compared with the AD mice, the mice treated
with BDMC had significantly reduced serum IL-4 levels and increased serum IFN-γ levels
(Figure 3B,C).
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Figure 2. Effects of BDMC on the clinical symptoms of AD-like skin lesions. (A) Representative image
of AD-like skin and ear lesions on the last day. (B) The dermatitis score, including dryness, edema,
erythema, and erosion, was calculated once a week. (C) The number of scratches was observed for
10 min. (D) The spleens of mice were weighed and expressed as spleen index. (E) The ear thickness
was measured with vernier caliper. The values are expressed as the means ± SD of three independent
samples. ## p < 0.01, ### p < 0.001 vs. control group; * p < 0.05, *** p < 0.001 vs. AD group.
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Figure 3. The effect of BDMC on the levels of IgE, IL-4 and IFN-γ in serum. The levels of (A) IgE,
(B) IL-4, and (C) IFN-γ in serum were assessed by ELISA. The values are expressed as the means ±
SD of three independent samples. ### p < 0.001 vs. control group; * p < 0.05, ** p < 0.01, *** p < 0.001
vs. AD group.

2.5. BDMC Reduces Skin Hyperplasia and Mast Cell Infiltration in AD-like Skin Lesions

To assess DNCB-induced histopathological changes, we used hematoxylin and eosin
staining (Figure 4A,B). Our results showed that the mice in the control group had thin
epidermises, regular dermal collagen, and no inflammatory infiltration. Compared with the
control group, the epidermises and dermises of the AD group were significantly thickened,
and their dermises exhibited hyperkeratotic and inflammatory cell infiltration. Further, the
epidermis and dermis thickness of the mice in the BDMC200 group and BDMC400 group
was significantly reduced, and mild dermal inflammatory cell infiltration was observed
in these groups (Figure 4E–H). Mast cell infiltration is one of the hallmarks of AD. MCs
release multiple cytokines and proinflammatory mediators that exacerbate AD disease
progression. Thus, we evaluated the effect of BDMC on mast cells (Figure 4C,D). We
found that the number of mast cells in the back skin and ear tissue of the AD mice was
significantly increased compared with the control group, and their infiltration was severe.
The infiltration of mast cells in the BDMC-treated mice was significantly reduced, and the
number of mast cells was also relatively decreased compared with the AD mice (Figure 4I,J).
Thus, BDMC treatment reduced epidermal and dermal thickness, as well as DNCB-induced
mast cell infiltration.
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Figure 4. Effects of BDMC on dermal and epidermal thickness and mast cell infiltration were
assessed histologically. Histopathological analysis by HE staining (A,B) and toluidine blue staining
(C,D) of AD-like skin and ear lesions (magnification, ×100; scale bar, 100 µm). (E–H) The dermal
and epidermal thickness was evaluated using HE-stained dorsal and ear tissue microphotographs.
(I,J) Mast cells were counted after toluidine blue staining. The values are expressed as the means ±
SD of three independent samples. ### p < 0.001 vs. control group; *** p < 0.001 vs. AD group.

2.6. BDMC Reduces the mRNA Expression of Inflammatory Cytokines in AD-like Skin Lesions

Furthermore, we measured the mRNA expression levels of cytokines in mouse dor-
sal skin lesions. Compared with the control group, DNCB stimulation significantly in-
creased the mRNA expression levels of IL-1β, IL-4, IL-6 and TSLP in the skin lesions of,
and decreased the expression levels of IFN-γ in the AD group. Compared with the AD
mice, the mRNA expression levels of IL-1β, IL-4, IL-6 and TSLP in the skin lesions of the
BDMC-treated mice were decreased, while the expression levels of IFN-γ were significantly
increased (Figure 5A–E).
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Figure 5. Effects of BDMC on mRNA expression of cytokines in AD-like skin lesions. The mRNA
expression of (A) IL-1β (B) IL-4, (C) IL-6, (D) TSLP, and (E) IFN-γ was determined using RT-qPCR.
The RNA gene expression levels of each sample were analyzed three times and normalized to the
internal control gene GAPDH. The values are expressed as the means ± SD of three independent
samples. ### p < 0.001 vs. control group; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. AD group.

2.7. BDMC Inhibits the Activation of MAPK and NF-κB Pathways in AD-like Skin Lesions

To better evaluate the mechanism of BDMC’s improvement of the skin lesions of the
AD mice, the levels of the MAPK-related protein p38 and NF-κB pathway-related protein
NF-κB p65 were examined. Our results showed that the phosphorylation level of p38 in
the AD group was significantly higher than that in the control group. Further, BDMC
prevented the phosphorylation of the p38 protein (Figure 6A,B). However, the effect of
BDMC on the JNK and ERK proteins’ phosphorylation remains to be further confirmed.
Similarly, the results showed that the phosphorylation level of the NF-κB p65 protein in
the AD group was significantly higher than that in the control group. In particular, BDMC
prevented the phosphorylation of the NF-κB p65 protein (Figure 6C,D).
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Figure 6. Effects of BDMC on the MAPK and NF-κB pathways. The levels of MAPK pathway-related
proteins (A,B) and NF-κB pathway-related proteins (C,D) by western blot analysis. The samples were
randomly collected from the back skin of three mice in each group, and the density of each band was
quantified by ImageJ Software. The values are expressed as the means ± SD of three independent
samples. ### p < 0.001 vs. control group; *** p < 0.001 vs. AD group.

3. Discussion

AD is a chronic inflammatory skin disease with high recurrence and persistent re-
currence rates. Its pathogenesis is mainly related to IgE-mediated hypersensitivity, cell-
mediated immune responses, and skin barrier dysfunction [19]. Numerous reports have
showed that IFN-γ/TNF-α stimulates epidermal keratinocytes to activate signal transduc-
tion pathways, which are involved in promoting inflammation [20–22]. HaCaT cellular
models stimulated by TNF-α/IFN-γ are widely used to assess potential drug candidates for
AD treatment [23]. When the epidermal barrier is damaged, keratinocytes are stimulated,
resulting in the expression of many cytokines (IL-1β, IL-33, and TSLP) and chemokines
(TARC, MDC) [24,25]. In this study, we explored the therapeutic effect of BDMC on HaCaT
cells stimulated with TNF-α/IFN-γ to establish an AD cellular model. The results showed
that BDMC was able to significantly inhibit the mRNA expression levels of IL-1β, IL-6,
TARC, MDC and RANTES in HaCaT cells stimulated with TNF-α/IFN-γ.

We found that BDMC had ameliorating effects in vivo on dermatitis symptoms in AD
mice. An AD mouse model was established that first involved sensitization, followed by
DNCB challenge. After repeated stimulation by DNCB, the back and ear skin of the AD
mice began to show severe edema, exfoliation, erythema and scaling of the skin lesions,
as well as other inflammatory manifestations. The above dermatitis symptoms were
significantly improved by BDMC treatment. Itching is one of the common symptoms of
AD [26]. We monitored the scratching behavior of the mice in each group within 10 minutes
of the last challenge, and found that the AD group had a significant itching response,
while BDMC was able to significantly reduce the number of scratches performed by the
mice. We also measured the ear thickness of the mice to confirm the effect of BDMC. The
spleen is the main immune organ of mice and the center of cellular immunity and humoral
immunity. Persistent skin inflammation enlarges the mouse spleen [27]. In this experiment,
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continuous stimulation with DNCB significantly enlarged the spleens of the mice, and
BDMC intervention significantly reduced this spleen enlargement. This result is consistent
with our observations of skin performance in mice.

AD is a severe inflammatory skin disease that is accompanied by an increase in the
infiltration of inflammatory cells [28]. Skin lesions in AD patients are characterized by the
proliferation and infiltration of inflammatory cells, such as T cells, eosinophils, basophils,
and mast cells [29]. In the present study, the results of HE staining showed that compared
with the control group, the epidermises and dermises of the AD mice were thickened and
inflammatory infiltration was increased in this group, while the pathological changes were
significantly improved by the oral administration of BDMC in a dose-dependent manner.
Mast cell infiltration is one of the hallmarks of AD. MCs release multiple cytokines and
proinflammatory mediators that exacerbate AD disease progression [30]. In the present
study, the results of toluidine blue staining showed that there was a large amount of MC
infiltration in the AD group, and BDMC was able to significantly reduce the occurrence of
MC infiltration.

The immune response plays a crucial role in the entire pathogenesis of AD. It is
generally believed that an imbalance of Th1/Th2 cells in AD patients leads to Th2 skewing
and a subsequent large amount of IgE and IL-4. IgE-mediated hypersensitivity reactions
have a large number of inflammatory mediators, such as histamine, which inhibit the
production of IFN-γ and further promote the production of IgE. IgE is the main allergic
index in the body, and an increase in a patient’s IgE level has become a typical feature of
AD. IgE binds to high-affinity receptors on the surface of mast cells [31]. IL-6 and IL-1β
are the main proinflammatory cytokines in vivo and participate in innate and adaptive
immune responses by regulating the differentiation of immune cells and the production
of inflammatory factors [32]. TSLP is an analog of IL-7, which is mainly expressed in
human epithelial cells, keratinocytes and bronchial smooth muscle cells. This protein
mainly promotes the differentiation of primitive CD4+ T cells to Th2 cells through the
binding of TSLP receptors on the surface of dendritic cells, and participates in the immune
response in vivo [33,34]. TSLP, a crucial factor in AD pathogenesis, activates dendritic cells
to promote Th2 immune responses and affects inflammatory cells such as eosinophils and
mast cells [35]. In this study, BDMC decreased the levels of IgE and IL-4 and increased IFN-
γ levels in DNCB-induced AD mice. The RT-qPCR results showed that BDMC significantly
inhibited the mRNA expression levels of IL-1β, IL-4, IL-6 and TSLP in the serum and skin
tissue of AD mice, and increased the expression level of IFN-γ in these mice.

The MAPK and NF-κB pathways are involved in various intracellular inflammatory
responses [32]. DNCB activates the MAPK signaling pathway and increases the release of
proinflammatory cytokines and the activation of some intracellular pathways [36]. NF-κB
is a crucial transcription factor that can increase the level of cytokines such as IL-6. NF-κB
normally binds to IκB in the cytoplasm and usually exists in an inactive form. IκB is
phosphorylated and degraded after activation, and NF-κB enters the nucleus to prepare for
gene transcription. The NF-κB pathway is considered a key link in the pathogenesis of AD,
which is regulated by the MAPK pathway [37]. Our results showed that BDMC prevented
the phosphorylation of p38 proteins in skin lesions; however, its effect on JNK and ERK
proteins remains to be further confirmed. Further, our results showed that the effect of
BDMC on the MAPK pathway is not simple, and its complex mechanism needs to be further
explored. Additionally, the results showed that BDMC prevented the phosphorylation of
NF-κB p65 proteins in skin lesions. This study suggests that inhibiting the activation of
the MAPK and NF-κB signaling pathways may be a potential mechanism by which BDMC
alleviates AD.

In conclusion, our study showed that BDMC has an inhibitory effect on DNCB-
induced AD-like skin lesions. The underlying mechanism of this may involve BDMC
inhibiting the activation of the MAPK and NF-κB pathways. Additionally, BDMC was
found to have a protective effect on TNF-α/IFN-γ-stimulated HaCaT cells. This discovery
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suggests that BDMC may be of long-term significance in the systematic study and effective
treatment of AD.

4. Methods
4.1. Mice

In this study, we utilized 32 female BALB/c mice (six-week-old) purchased from Liaon-
ing Changsheng Biotechnology Co., Ltd. (Shenyang, China). The mice were maintained
under specific pathogen-free conditions in an air-conditioned room, and had free access to
food and water. The procedures were approved by the Institutional Animal Care and Use
Committee of Jilin University (NO. 20200060).

4.2. Cell Culture and Treatment

Human keratinocytes (HaCaT cells), provided by the National Infrastructure of Cell
Line Resource, China, were cultured in Dulbecco’s Modified Eagle Medium (DMEM) with
10% heat-inactivated FBS and 1% penicillin-streptomycin at 37 ◦C in a 5% CO2 incubator.

4.3. Cell Viability Assay

HaCaT cells (1 × 104 cells/mL) were seeded in a 96-well plate overnight at 37 ◦C. Sub-
sequently, cells were treated with different concentrations of BDMC (which was purchased
from Sigma-Aldrich, St. Louis, MO, USA) with a purity of more than 98% (HPLC) (0, 7.5, 15,
30, 60, 120, 240 µM) and with or without TNF-α/IFN-γ (10 ng/mL) for 24 h. After treatment
with BDMC, 100 µL MTT (10 mg/mL) reagent was added to the well, and the cells were
incubated at 37 ◦C for 4 h. Then, we dissolved the crystal violet with DMSO (200 µL/well).
Finally, absorbance intensity was quantified at 570 nm using a microplate reader.

4.4. Induction of AD Mouse Model

To induce AD-like skin lesions, 32 mice were randomly divided into 4 groups (n = 8)
as follows: (1) Control (vehicle treatment), (2) AD (DNCB treatment), (3) AD + BDMC200
(BDMC 200 mg/kg), and (4) AD + BDMC400 (BDMC 200 mg/kg). As previously de-
scribed [38,39] and depicted in Figure 7, the dorsal skin and right ears of mice were
challenged by DNCB. Briefly, we shaved the back hair of the mice in advance. Except for
the control group, all mice were sensitized with 200 µL and 30 µL 1% DNCB dissolved
in acetone–olive oil solution (3:1) on their back skin and right ears, respectively, for three
consecutive days. After 4 days, the back skin and right ears of each mouse were challenged
with 0.5% DNCB every other day for 5 consecutive weeks.
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4.5. Drug Treatment

The mice in BDMC treatment group were orally treated with 200 and 400 mg/kg
of BDMC, respectively (dissolved in 1% carboxy methyl cellulose at the concentration of
20 mg/mL and 40 mg/mL, respectively), once a day from the 1st week to the 5th week.
The mice in other groups were only treated with 1% carboxy methyl cellulose. All mice
were sacrificed by cervical dislocation 24 h after the last challenge.

4.6. Atopic Dermatitis Score, Scratches, Ear Thickness and Spleen Index

As previously described, the symptoms of erythema, edema, exfoliation, and scales of
skin lesions were scored from 0 to 3 according to severity [40]. Meanwhile, the frequency
of scratching behavior in each group was observed for a duration of 10 min. The thickness
difference of each mouse’s right ear was measured by using a Vernier caliper 24 h after the
last DNCB stimulation, and serum, spleen samples, and dorsal skin were collected.

4.7. Histological Analysis

The mouse dorsal skin and right ear tissues were resected and paraffin-embedded.
Sections (4 µm thick) were then stained with hematoxylin and eosin (H&E) for histopatho-
logical observations. After staining, 5 tissues were randomly selected for epidermis and
dermis thickness analysis. Other sections were stained with toluidine blue to determine
the number of mast cells. Images were obtained using a microscope (Leica DM2500, Berlin,
Germany, magnification, ×100) to evaluate the sections.

4.8. ELISA

Serum immunoglobulin (Ig) E and the cytokines IL-4, TSLP and interferon-γ (IFN-γ)
were measured using the appropriate ELISA kits (Shanghai Enzyme-linked Biotechnology
Co., Ltd., Shanghai, China). The procedures were conducted according to the manufac-
turer’s guidelines.

4.9. Real-Time Polymerase Chain Reaction

Gene expression in dorsal skin was detected by RT-qPCR. Total RNA was extracted
from the mouse dorsal tissue using an RNAeasyTM Animal RNA Extraction Kit (Beyotime,
Beijing, China) according to the manufacturer’s instructions. According to the operating
procedure of the MonScriptTM RTIII All-in-One Mix (Monad Biotech Co., Ltd., Suzhou,
China), the operation was performed according to the specified conditions to convert RNA
into cDNA. Furthermore, the cDNA analysis was performed with MonAmpTM qPCR Mix
using the ABI Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). The
primer sequences are shown in Table 1. The RNA gene expression levels of each sample
were analyzed three times and normalized to the internal control gene GAPDH.

Table 1. Primer sequences for RT-qPCR.

Genes Forward Reverse

GAPDH CTG CTC CTC CTG TTC GAC AGT CCG TTG ACT CCG ACC TTC AC
mIL-4 TAC CAG GAG CCA TAT CCA CGG ATG TGT GGT GTT CTT CGT TGC TGT GAG

mIFN-γ GAG CCT AGA GAC TAT CAC ACC G TAC CAG AGG GTG TAG TTA GCG G
mIL-1β TGG ACC TTC CAG GAT GAG GAC A GTT CAT CTC GGA GCC TGT AGT G
mIL-6 AGT TGC CTT CTT GGG ACT GA TCC ACG ATT TCC CAG AGA AC

mTSLP AGC TTG TCT CCT GAA AAT CGA G AGG TTT GAT TCA GGC AGA TGT T
hIL-1β CTC TCA CCT CTC CTA CTC ACT ATC AGA ATG TGG GAG CGA AT
hIL-6 CGA GCC CAC CGG GAA CGA AA GGA CCG AAG GCG CTT GTG GAG

hTARC GTC TTG AAG CCT CCT CAC CC GGA TCT CCC TCA CTG TGG CT
hMDC GTT GTC CTC GTC CTC CTT GC GGA GTC TGA GGT CCA GTA GAA GTG

hRANTES CGC TGT CAT CCT CAT TGC TA GCA CTT GCC ACT GGT GTA GA
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4.10. Western Blot Assay

To detect the protein activity, we isolated the total proteins from the mouse dorsal skin
tissue with RIPA buffer (Genstar, Beijing, China) supplemented with protease inhibitor
PMSF (Genstar, Beijing, China). Protein concentrations were quantified with a BCA Protein
Assay kit (Beyotime, Beijing, China). Proteins (20–30 µg) were electrophoresed on 10% SDS-
PAGE and then transferred onto the PVDF membranes (Beyotime, Beijing, China), which
were then put into TBST containing Tris-buffered saline, 0.1% (v/v) Tween 20 solution and
5% nonfat dry milk; they were then shaken for 2 h at room temperature. The membranes
were then incubated with primary antibodies (1:1000, BIOSS, Beijing, China) overnight
at 4 ◦C. Finally, the membranes were incubated with specific HRP-conjugated secondary
antibodies (1:4000, Beyotime, Beijing, China) for 1 h at RT followed by visualization using an
enhanced chemiluminescence detection reagent. All the bands on the blots were quantified
using ImageJ (version 1.51j8, National Institutes of Health, Bethesda, MD, USA).

4.11. Statistical Analysis

The experimental analyses were performed using the SPSS 20.0 statistical software
package (IBM Corp.) and data were expressed as the means±standard deviations (SDs).
One-way analysis of variance was used to evaluate significant differences between multiple
groups. For dermatitis scores, Kruskal–Wallis test followed by Dunn’s multiple comparison
test was used. p < 0.05 was considered to indicate a statistically significant difference.
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