Screening and Identification of Anti-Inflammatory Compounds from Erdong Gao via Multiple-Target-Cell Extraction Coupled with HPLC-Q-TOF-MS/MS and Their Structure–Activity Relationship
Abstract
:1. Introduction
2. Results
2.1. The Identification of Components in EDG via HPLC-Q-TOF-MS/MS Analysis
2.2. Effects of EDG on LPS-Induced Injury in Target Cells
2.3. Screening of Potential Anti-Inflammatory Components in EDG Extracts
2.4. Effects of the Potential Active EDG Components on LPS-Induced Injury in Target Cells
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of EDG
4.3. Cell Culture and Cell Extraction
4.4. Chromatography and Mass Spectrometry Conditions
4.5. Cell Viability Assay
4.6. Enzyme-Linked Immunosorbent Assays (ELISAs)
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
References
- Hong, J. She Sheng Mi Pou; Shangyang Haizuo Publishing House: Shanghai, China, 1906; Volume 4. [Google Scholar]
- Shen, Y.; Chen, H.S.; Wang, Q. Studies on chemical constituents of Asparagus cochinchinensis (II). Acad. J. Sec. Mil. Med. Univ. 2007, 28, 1241–1244. [Google Scholar]
- Yang, Y.Y.; Wang, Z.X. Isolation and identification of chemical constituents from the rhizome of Asparagus cochinchinensis. J. Shen Yang Pharm. Univ. 2009, 26, 796–799. [Google Scholar]
- Zhu, G.L.; Hao, Q.; Li, R.T.; Li, H.Z. Steroidal saponins from the roots of Asparagus cochinchinensis. Chin. J. Nat. Med. 2014, 12, 0213–0217. [Google Scholar] [CrossRef]
- Li, Y.F.; Hu, L.H.; Lou, F.C.; Hong, J.; Li, J.; Shen, Q. Furostanoside from Asparagus filicinus. J. Asian Nat. Prod. Res. 2005, 7, 43–47. [Google Scholar] [CrossRef]
- Hayes, P.Y.; Jahidin, A.H.; Lehmann, R.; Penman, K.; Kitching, W.; de Voss, J.J. Steroidal saponins from the roots of Asparagus racemosus. Phytochemistry 2008, 69, 796–804. [Google Scholar] [CrossRef]
- Jian, R.; Zeng, K.W.; Li, J.; Li, N.; Jiang, Y.; Tu, P. Anti-neuroinflammatory constituents from Asparagus cochinchinensis. Fitoterapia 2012, 84, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, X.L.; Zhang, W.M.; Li, F.; Khan, A.-A.; Liu, X.; Yu, K.; Wang, M.-K. Homo-aro-cholestane, furostane and spirostane saponins from the tubers of Ophiopogon japonicus. Phytochemistry 2017, 136, 125–132. [Google Scholar] [CrossRef]
- Chung, N.D.; Thao, N.P.; Tuan, H.M.; van Thanh, N.; Nguyen, H.D.; Huong, N.T.M.; Dat, N.T. New Steroidal Glycoside and Flavonoid Constituents from Ophiopogon japonicus. Nat. Prod. Commun. 2017, 12, 905–906. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Meng, L.Z.; Xie, S.X.; Xu, T.H.; Sun, L.K.; Liu, T.H.; Xu, Y.J.; Xu, D.M. Studies on chemical constituents of Ophiopogon japonicus. J. Asian Nat. Prod. Res. 2014, 16, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, B.; Chen, G.; Pan, Y.; Zhou, D.; Li, N. Spirostane saponins with a rearranged A/B ring system isolated from the rhizomes of Ophiopogon japonicus. Phytochemistry 2022, 193, 112975. [Google Scholar] [CrossRef]
- Xiong, Q.Y.; Chen, Q.; Xie, B.; Zhu, J.H.; Sun, H.X.; Hua, H.L. Effect of Erdong Gao on TNF-α, IL-6 and AQP-5 in rats with Acute Lung Injury. Chin. J. Exp. Tradit. Med. Formulae 2015, 20, 167–170. [Google Scholar]
- Sun, H.X.; Zhu, J.; Guo, H.; Xiong, Q.; Ye, H.; Ma, G. Effect of Erdong Gao on lung chemical carcinogenesis and TNF-α, IL-6, IL-10, Foxp3 in Mice. Pharmacol. Clin. Chin. Mater. Med. 2013, 29, 1–3. [Google Scholar]
- Lee, H.A.; Ji, E.K.; Choi, J.Y.; Song, J.E.; Youn, W.B.; Son, H.J.; Lee, H.; Kang, H.G.; Hwang, D.Y. Inhibitory Effects of Asparagus cochinchinensis in LPS-Stimulated BV-2 Microglial Cells through Regulation of Neuroinflammatory Mediators, the MAP Kinase Pathway, and the Cell Cycle. J. Life Sci. 2020, 15, 1613–1623. [Google Scholar]
- Liu, B.; Li, B.X.; Zhou, D.; Wen, X.; Li, N. Steroidal saponins with cytotoxic effects from the rhizomes of Asparagus cochinchinensis. Bioorg. Chem. 2021, 115, 105237. [Google Scholar] [CrossRef]
- Qiao, Y.; Jiao, H.; Wang, F.; Niu, H. Ophiopogonin D of Ophiopogon japonicus ameliorates renal function by suppressing oxidative stress and inflammatory response in streptozotocin-induced diabetic nephropathy rats. Braz. J. Med. Biol. Res. 2020, 53, e9628. [Google Scholar] [CrossRef]
- Song, Z.W.; Xiang, X.J.; Li, J.H.; Deng, J.; Fang, J.L.; Zhang, L.; Xiong, J.P. Ruscogenin induces ferroptosis in pancreatic cancer cells. Oncol. Rep. 2020, 43, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Yao, Q.W.; Wang, X.Y.; Li, J.C.; Zhang, J. Ophiopogon japonicus inhibits radiation-induced pulmonary inflammation in mice. Ann. Transl. Med. 2019, 7, 622. [Google Scholar] [CrossRef]
- Zeng, W.; Sun, H.; Ma, G.; Zhu, J.; Ye, H. Effect of Erdong Gao on TNF-α, IL-6 and AQP-1, AQP-5 of lung tissue in rats with acute lung injury induced by lipopolysaccharide. Pharmacol. Clin. Med. Tradit. Chin. Med. 2016, 032, 10–13. [Google Scholar]
- Sun, H.; Yu, S.; Zhu, J.; Ma, G.; Gou, H.; Ye, H. Effect of Erdong Gao on TNF-α, IL-10, TGF-β1 and tumorigenesisin mice with lung tumor by urethane. Pharmacol. Clin. Chin. Mater. Med. 2015, 31, 7–10. [Google Scholar]
- Jiang, R.D.; Zhang, Z.X.; Lin, L.; Deng, F. Preliminary investigation of the inhibitory effect of Erdong Gao on human lung cancer A549 cells. Beijing J. Tradit. Chin. Med. 2017, 36, 330–333. [Google Scholar]
- Conti, P.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Ronconi, G. Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: A promising inhibitory strategy. J. Biol. Regul. Homeost. Agents 2020, 34, 1971–1975. [Google Scholar] [PubMed]
- Yang, R.; Yang, H.; Li, W.; Yue, F.; Chen, H.; Hao, Y.; Hu, K. Lianhuaqingwen alleviates p53-mediated apoptosis in alveolar epithelial cells to prevent LPS-induced ALI. J. Pharm. Pharmacol. 2022, 74, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kang, B.; Bae, C.S.; Cho, S.S.; Park, D.H. Herbal Medication, Macmoondong Decoction, Attenuates LPS-induced COPD in Small Airways via TGF-β, CCL-2, and CXCL1. Evid. -Based Complement. Altern. Med. 2020, 2020, 6413491. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Q.; Duan, L.; Li, X.; Yang, W.; Huang, T.; Kong, M.; Guan, F.; Ma, S. Fucoidan ameliorates LPS-induced neuronal cell damage and cognitive impairment in mice. Int. J. Biol. Macromol. 2022, 222, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, L.; Wu, Y.; Zhang, J.; Dai, Y.; Li, F.; Kou, J.; Zhang, Y. Ruscogenin attenuates sepsis-induced acute lung injury and pulmonary endothelial barrier dysfunction via TLR4/Src/p120-catenin/VE-cadherin signalling pathway. J. Pharm. Pharmacol. 2021, 73, 893–900. [Google Scholar] [CrossRef]
- Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.; Ross, R.; Frydas, I.; Kritas, S. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents 2020, 34, 327–331. [Google Scholar]
- Farzin, H.; Toroghi, R.; Haghparast, A. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549). Immunol. Investig. 2016, 45, 116–129. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, S.; Lu, J.; Zhang, W.; Cai, M.; Qiu, D.; Cai, D. USP9X promotes LPS-induced pulmonary epithelial barrier breakdown and hyperpermeability by activating an NF-κBp65 feedback loop. Am. J. Physiol. Cell Physiol. 2019, 317, C534–C543. [Google Scholar] [CrossRef]
- Di Stefano, A.; Dossena, F.; Gnemmi, I.; Anna, D.; Silvestro, E.; Brun, P.; Balbi, B.; Piraino, A.; Spanevello, A.; Nucera, F.; et al. Decreased humoral immune response in the bronchi of rapid decliners with chronic obstructive pulmonary disease. Respir. Res. 2022, 23, 200. [Google Scholar] [CrossRef]
- Wilson, B.P.; Thornburg, C.C.; Henrich, C.J.; Grkovic, T.; O’Keefe, B.R. Creating and screening natural product libraries. Nat. Prod. Rep. 2020, 37, 863–1032. [Google Scholar] [CrossRef]
- Tang, C.; Wu, X.D.; Yu, Y.M.; Duan, H.Q.; Zhou, J.; Xu, L. Cell extraction combined with off-line HPLC for screening active compounds from Coptis chinensis. Biomed. Chromatogr. 2016, 30, 658–662. [Google Scholar] [CrossRef]
- Pang, H.Q.; Zhou, P.; Meng, X.W.; Yang, H.; Li, Y.; Xing, X.D.; Wang, H.Y.; Yan, F.R.; Li, P.; Gao, W. An image-based fingerprint-efficacy screening strategy for uncovering active compounds with interactive effects in Yindan Xinnaotong soft capsule. Phytomedicine 2022, 96, 153911. [Google Scholar] [CrossRef]
- Han, Y.K.; Kim, H.; Shin, H.; Song, J.; Lee, M.K.; Park, B.; Lee, K.Y. Characterization of Anti-Inflammatory and Antioxidant Constituents from Scutellaria baicalensis Using LC-MS Coupled with a Bioassay Method. Molecules 2020, 25, 3617. [Google Scholar] [CrossRef]
- Bhowmick, S.; AlFaris, N.A.; ALTamimi, J.Z.; ALOthman, Z.A.; Patil, P.C.; Aldayel, T.S.; Wabaidur, S.M.; Saha, A. Identification of bio-active food compounds as potential SARS-CoV-2 PLproinhibitors-modulators via negative image-based screening and computational simulations. Comput. Biol. Med. 2022, 145, 105474. [Google Scholar] [CrossRef]
- Roshankhah, R.; Chen, G.; Xu, Y.; Butani, N.; Durocher, Y.; Pelton, R.; Ghosh, R. Purification of monoclonal antibody using cation exchange z 2 laterally-fed membrane chromatography-a potential alternative to protein A affinity chromatography. Biochem. Eng. J. 2021, 178, 108293. [Google Scholar] [CrossRef]
- Fu, J.; Jia, Q.Q.; Liang, P.D.; Wang, S.S.; Zhou, H.X.; Zhang, L.Y.; Wang, H.; Gao, C.L.; Lv, Y.N.; Han, S.L.; et al. Enhanced stability designs of cell membrane chromatography for screening drug leads. J. Sep. Sci. 2022, 45, 2498–2507. [Google Scholar] [CrossRef]
- Wu, C.; Wang, N.N.; Xu, P.C.; Wang, X.P.; Shou, D.; Zhu, Y. Preparation and application of polyvinyl alcohol-decorated cell membrane chromatography for screening anti-osteoporosis component. J. Sep. Sci. 2020, 43, 2105–2114. [Google Scholar] [CrossRef]
- Huan, G.X.; He, W.J.; Gu, W.T.; Wang, X.; Chen, Z.Q.; Bi, F.J.; Zhang, L.Y.; Wang, S.M.; Tan, D. Rapid screening of neuroprotective components from Huang-Lian-Jie-Du Decoction by living cell biospecific extraction coupled with HPLC-Q-Orbitrap-HRMS/MS analysis. J. Chromatogr. B 2021, 1176, 122764. [Google Scholar]
- Adams, P.J.; Johny, M.B.; Dick, I.E.; Inoue, T.; Yue, D.T. Apocalmodulin itself promotes ion channel opening and Ca2+ regulation. Cell 2014, 159, 608–622. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Q.; Tan, Z.B.; Li, P.T.; Gao, X.L.; Zeng, Y.E.; Wang, S.L. HepG2 cells biospecific extraction and HPLC-ESI-MS analysis for screening potential antiatherosclerotic active components in Bupeuri radix. J. Pharm. Biomed. Anal. 2016, 121, 56–62. [Google Scholar] [CrossRef]
- Tian, Y.S.; Gong, P.Y.; Wu, Y.; Chang, S.Q.; Xu, J.T.; Yu, B.Y.; Qi, J. Screening and identification of potential active components in Ophiopogonis Radix against atherosclerosis by biospecific cell extraction. J. Chromatogr. B 2019, 1133, 121817. [Google Scholar] [CrossRef]
- Wang, H.R. Study on the Chemical Constituents and Antioxidant Activity of Erdong Gao. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2008. [Google Scholar]
- Kim, J.Y.; Choi, H.Y.; Kim, H.M.; Choi, J.H.; Jang, D.S. A Novel Cytotoxic Steroidal Saponin from the Roots of Asparagus cochinchinensis. Plants 2021, 10, 2067. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, L.; Li, Y.; Cui, Y.; Dong, C. A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human intestinal microbiota. Carbohydr. Polym. 2021, 259, 117748. [Google Scholar] [CrossRef]
- Luo, S.Y.; Zhou, L.X.; Jiang, X.J.; Xia, Y.Y.; Huang, L.S.; Ling, R.; Tang, S.X.; Zou, Z.; Chen, C.Z.; Qiu, J.F. Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice. Front. Pharmacol. 2022, 13, 1015005. [Google Scholar] [CrossRef]
- Zhu, G.L.; Hao, Q.; Xing, L.; Yang, X.Q.; Li, H.Z. C21, C22 pregnane glycosides and cytotoxic C27 spriostanol steroids from Asparagus cochinchinesis. Steroids 2021, 172, 108874. [Google Scholar] [CrossRef]
- Wang, J.Z.; Ye, L.M.; Chen, X.B. A new C27-steroidal glycoside from Ophiopogon japonicus. Chin. Chem. Lett. 2008, 19, 82–84. [Google Scholar] [CrossRef]
- Yu, B.Y.; Yan, X.; Xu, G.J. Studies on the Quality of Tuberous Root of Liriops spicata (Thunb.) Lour. var. prolifera Y. T. Ma and Ophiopogon japonicus (L. f.) Ker-Gawl.—Comparison of Immune Function. China J. Chin. Mater. Med. 1991, 16, 584–585. [Google Scholar]
- Dai, Z.; Liu, H.; Wang, B.; Yang, D.; Luo, X.D. Structures/cytotoxicity/selectivity relationship of natural steroidal saponins against GSCs and primary mechanism of tribulosaponin A. Eur. J. Med. Chem. 2021, 210, 113068. [Google Scholar] [CrossRef]
- Duan, S.Y.; Li, X.Q.; Yao, Z.H.; Zhang, X.J.; Yao, X.S.; Yang, J.; Qin, Z.F. Visual authentication of steroidal saponins in Allium macrostemon Bge. and Allium chinense G. Don using MALDI-TOF imaging mass spectrometry and their structure activity relationship. Arab. J. Chem. 2022, 15, 104138. [Google Scholar] [CrossRef]
- Wu, Y.; Bi, S.X.; Huang, Z.; Qi, J.; Yu, B.Y. Novel steroidal saponins with cytotoxic activities from the roots of Ophiopogon japonicus (L. f.) Ker-Gawl. RSC Adv. 2018, 8, 2498–2505. [Google Scholar] [CrossRef] [Green Version]
- State Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; p. 455. [Google Scholar]
- Li, F.; Tan, Y.S.; Chen, H.L.; Yan, Y.; Zhai, K.F.; Li, D.P.; Kou, J.P.; Yu, B.Y. Identification of schisandrin as a vascular endothelium protective component in YiQiFuMai Powder Injection using HUVECs binding and HPLC-DAD-Q-TOF-MS/MS analysis. J. Pharmacol. Sci. 2015, 129, 1–8. [Google Scholar] [CrossRef]
NO. | Compounds | 16HBE | HPAEpiCs | HUVECs |
---|---|---|---|---|
1 | 26-O-β-D-glucopyranosyl-(25R)-5β-furostane-3β,22α,26-triol-3-O-β-D-xylopyranosyl-(1→4)-β-D-glucopyranosyl(1→2)-β-D-glucopyranoside | + | + | + |
2 | Ruscogenin 3-O-α-L-rhamnopyranosyl (1→2)-[β-D-glucopyr-anosyl(1→3)]-O-β-D-glucopyranoside | - | - | + |
3 | Ophiopogenin-3-O-α-L-rhamnpyranosyl-(1→2)-β-D-xylopyranosyl-(1→3)-β-D-glucopyranoside | - | - | + |
4 | Cixi-ophiopogon C | + | + | + |
5 | (25R)-3β-[(O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranosyl)oxy]-5β-spirostan-12-one | + | + | + |
6 | Pennogenin 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyra-nosyl-(1→4)-β-D-glucopyranoside | + | + | + |
7 | Prazerigenin A 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside | + | + | + |
8 | Ophiopogonanone E | + | + | + |
9 | Prazerigenin A-3-O-α-L-rhamnopyranosyl-(1→3)-β-D-xylopyranosyl-(1→4)-β-D-glucopyranoside | + | + | + |
10 | 5,7,2’-Trihydroxy-3’,4’-methylenedioxy-6,8-dimethyl homoisoflavone | - | + | + |
11 | (25S)-3β-[(O-α-L-rhamnopyranosyl-(1→2)-β-D-galactopyranosyl)oxy]-5β-spirostan-12-one | + | + | + |
12 | 3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl(1→4)]-β-D-glucopyranosyl-(25S)-5β-spirostan-3β-ol | + | + | + |
13 | (25S)-5β-spirostan-3β-ol-3-O-β-d-glucopyranosyl-(1→2)-β-D-glucopy ranoside | + | + | + |
14 | Ophiopogonin D | + | + | + |
15 | Methylophiopogonone A | + | + | + |
16 | Ophiopogonin D’ | + | + | + |
17 | Methylophiopogonone B | + | + | + |
18 | Methylophiopogonanone A | + | + | + |
19 | Methylophiopogonanone B | + | + | + |
20 | Ophiopogonin B | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Luo, H.; Huang, Z.; Qi, J.; Yu, B. Screening and Identification of Anti-Inflammatory Compounds from Erdong Gao via Multiple-Target-Cell Extraction Coupled with HPLC-Q-TOF-MS/MS and Their Structure–Activity Relationship. Molecules 2023, 28, 295. https://doi.org/10.3390/molecules28010295
Li M, Luo H, Huang Z, Qi J, Yu B. Screening and Identification of Anti-Inflammatory Compounds from Erdong Gao via Multiple-Target-Cell Extraction Coupled with HPLC-Q-TOF-MS/MS and Their Structure–Activity Relationship. Molecules. 2023; 28(1):295. https://doi.org/10.3390/molecules28010295
Chicago/Turabian StyleLi, Mengyu, Hui Luo, Zhen Huang, Jin Qi, and Boyang Yu. 2023. "Screening and Identification of Anti-Inflammatory Compounds from Erdong Gao via Multiple-Target-Cell Extraction Coupled with HPLC-Q-TOF-MS/MS and Their Structure–Activity Relationship" Molecules 28, no. 1: 295. https://doi.org/10.3390/molecules28010295
APA StyleLi, M., Luo, H., Huang, Z., Qi, J., & Yu, B. (2023). Screening and Identification of Anti-Inflammatory Compounds from Erdong Gao via Multiple-Target-Cell Extraction Coupled with HPLC-Q-TOF-MS/MS and Their Structure–Activity Relationship. Molecules, 28(1), 295. https://doi.org/10.3390/molecules28010295