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Abstract: The negative environmental and industrial impacts of the presence of sulfur compounds
such as benzothiophene in fuels have led to a greater interest in desulfurization research. In this work,
carbon from palm waste sources was modified with trihexYl(tetradecyl)phosphonium dicyanamide-
ionic liquid and characterized by SEM, EDS, XRD and FTIR to assess surface properties. Then, the
prepared carbon and carbon modified with ionic liquid were evaluated for the adsorption of ben-
zothiophene by investigating the effects of time. The equilibrium occurred after 120 min, recording
adsorption capacities of 192 and 238 mg/g for carbon and carbon modified with ionic liquid, respec-
tively. The effect of the adsorbent dose on the adsorption of benzothiophene was evaluated, indicating
that the maximum adsorption capacities were obtained using a dose of 1 g/L for both carbon and
carbon modified with ionic liquid. The kinetic investigation for the adsorption of benzothiophene
onto carbon and carbon modified with ionic liquid indicated that the second-order kinetic model
is well fitted with the adsorption data rather than the first-order kinetic model. The equilibrium
investigations for the adsorption of benzothiophene onto carbon and carbon modified with ionic
liquid with Langmuir and Freundlich isotherm models reveals that the Freundlich model is the most
suitable for describing the adsorption process, suggesting a multilayer adsorption mechanism. The
desulfurization process showed a high impact on environmental safety due to the possibility of
regenerating and reusing the prepared adsorbents with promising results up to five cycles.

Keywords: desulfurization; adsorption; renewable carbon; ionic liquids; recycling; UV spectroscopy

1. Introduction

At present, the desulfurization of crude oil and fuels has received great interest from
scientists and researchers. The problem with petroleum oil and fuels that have a high
sulfur content is that sulfur poisons the catalysts during refining processes and corrodes
the pipeline, pumping and refining equipment [1,2]. Additionally, it produces undesired
gases, such as SOx, the main air pollutant that causes greenhouse problems and acid rain.
Therefore, great attention has been paid to sulfur problems; environmental regulations
have placed stringent limits on the sulfur content in transportation fuels, at <10 ppm, to
prevent or reduce sulfur dioxide emissions [3]. The catalytic hydrodesulfurization (HDS)
method, which is usually used in refineries, is an expensive and energy-intensive process
because of the high temperature and pressure needs. In addition, the need to convert
most by-products into acceptable products comes at an extra cost [4,5]. Additionally, the
HDS process produces high amounts of saturated olefins, which lower the octane rating
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of the fuel. Thus, researchers usually seek an alternative process in order to avoid the use
of hydrogen gas [6,7]. Recently, desulfurization by adsorption showed a safer and high
sulfur removal efficiency. In the reactive adsorption process, the main attractive force for
sulfur-containing compounds depends on the bond formation between the sulfur atom in
the compounds and the metal atom in the adsorbent; therefore, this force is not affected
by fuel composition [8,9]. Adsorption-based desulfurization processes have advantages,
such as fast separation, easy operation and cheap when applying low-cost adsorbents and
highly effective desulfurization techniques [10–15].

Many previous investigations have been developed for desulfurization. For example,
Choi et al. studied the removal of benzothiophene sulfone by adsorption onto clay ma-
terials, which showed an adsorption behavior fitted with the Langmuir and Freundlich
models confirming monolayer adsorption and heterogeneous surfaces. In addition, the
adsorption process was found to follow a second-order kinetic model [16]. Amiri et al.
prepared flower-shape-like (Bi(Bi2S3)9I3)2/3 nanomaterials for the photocatalytic desul-
furization of benzothiophene [17]. Shamsaee et al. applied a dynamic electroreduction
method for the removal of benzothiophene using model diesel [9]. Zhang et al. prepared
silver-modified UiO-66 to enhance the adsorptive desulfurization of benzothiophene with
the possibility of regeneration four times [18]. Ferrela et al. applied a heterogeneous
cis-dioxomolybdenum(VI)-based catalyst for the oxidation of benzothiophene and tested
imidazolium-based ionic liquids to enhance extractive oxidative desulfurization. Their
results showed that the presence of imidazolium ionic liquids has a dual role as an ex-
tractant and reaction medium, in addition to acting as a stabilizing agent for the oxidant
and the cis-dioxomolybdenum(VI) catalyst [19]. Fujiiki et al. developed an adsorptive
desulfurization process by applying a heat-treated silica gel to enhance the desulfuriza-
tion of benzothiophene and reported that the heat treatment of silica enables the selective
removal of benzothiophene [20]. Wang et al. fabricated Pr/Ce-N-TiO2 for the desulfuriza-
tion of sulfur compounds through visible light and assessed destroying of carbon–sulfur
bonds in benzothiophene [21]. Zu et al. constructed cerium species with zeolites and
yttrium modification and recorded a noticeable adsorption performance for the removal
of sulfur compounds, including benzothiophene, even after regeneration two times [22].
Lee et al. developed a desulfurization technique based on the adsorption onto bimetallic
Cu- and Ce-doped Y zeolites for the removal of benzothiophene and dibenzothiophene in
octane, benzene, and naphthalene with great enhancement compared to the unmodified Y
zeolite [2].

Renewable activated carbon can be fabricated from biomass or waste sources, which
enhances recycling materials and produce low-cost adsorbent [23–25]. Activated carbon
is known as an efficient, stable and porous adsorbent that possesses a wide range of ap-
plications, including adsorption [26–30]. It is reported that activated carbons can be used
for adsorptive desulfurization [28]. However, the adsorption efficiency of activated carbon
towards sulfur is low. Therefore, the improvement of activated carbon efficiency towards
sulfur adsorption is necessary. Khan et al. fabricated CuCl2-decorated carbon materials
as adsorbent for benzothiophene and reported an enhancement of about 30% adsorption
efficiency than the unmodified carbon [31]. On the other hand, ionic liquid is considered a
green solvent with high stability and extraction efficiency [32,33]. Zhao et al. applied iron
porphyrins together with 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6)
for desulfurization purposes, reporting the recycling possibility of six times [5]. Zhao et al.
reported the effectiveness of ionic liquids for extractive desulfurization with a promis-
ing efficiency related to the partitioning of aromatic sulfur from the solution to the ionic
liquid phase [34]. Ibrahim et al. prepared ionic liquid of 1-butyl-3-methylimidazolium
dicyano(nitroso)methanide ([C4mim][dcnm]), for extractive desulfurization to remove
aromatic sulfur species from gasoline [35]. Kulkarni et al. reviewed ionic liquid for the
desulfurization process as a green and environmentally friendly method [6]. Therefore,
this work aims to modify renewable carbon from waste sources with ionic liquid and
investigates its efficiency for desulfurization application by the adsorption of benzothio-
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phene, in addition to characterizing the kinetics and isotherms of adsorption process for
benzothiophene removal. Furthermore, the regeneration and the reuse of the prepared
carbon-modified ionic liquid were investigated.

2. Results and Discussion
2.1. Structure and Morphological Feature of the Fabricated trihexYl(tetradecyl)phosphonium
Dicyanamide-Modified Renewable Carbon

The crystalline structures of carbon and the trihexYl(tetradecyl)phosphonium dicyanamide-
modified renewable carbon were characterized by XRD diffraction, as presented in Figure 1A,B.
Peaks at 2θ of 23 were detected for carbon and trihexYl(tetradecyl)phosphonium dicyanamide-
modified renewable carbon due to the amorphous structure (Figure 1A,B), confirming that
the modification of carbon with ionic liquid keeps the original carbon structure. The
unmodified carbon showed peaks at 2θ of 32, 35, 37 and 68 (Figure 1A), which may
be attributed to impurities species due to the carbon originating from waste sources as
well as being activated with zinc chloride. The impurity-related peaks disappeared in
the trihexYl(tetradecyl)phosphonium dicyanamide-modified renewable carbon due to
shielding. The detection of XRD peaks related to impurities associated with activated
carbon was previously reported by Osman et al. [36]. In addition, the surface functional
groups for carbon and trihexYl(tetradecyl)phosphonium dicyanamide-modified renew-
able carbon were detected by FTIR (Figure 2A,B). Both the original renewable carbon
and trihexYl(tetradecyl)phosphonium dicyanamide-modified renewable carbon showed
the presence of C=C, which appears in the range of 1500–1580 cm−1. In addition, the
trihexYl(tetradecyl)phosphonium dicyanamide-modified renewable carbon exhibited rich
C-H stretching of aliphatic structure with clear peaks at 2800 cm−1. The peak at 1459 cm−1

is related to P-CH2-CH3, while the peak at 717 cm−1 is due to the P-C bond. The peaks at
800 cm−1 and 1361 cm−1 are due to the C-H bending of ionic liquid. The peak at 1027 cm−1

may be attributed to the C-N of trihexYl(tetradecyl)phosphonium dicyanamide-modified
renewable carbon. These detected surface groups confirm the formation of an ionic liq-
uid layer on the carbon surfaces. The post-carbon modification enables the design of
task-specific materials for targeted adsorbate. This modification allows the combination
of various materials with different physicochemical characteristics, which results in the
improvement of stability and surface functionality to enhance the oriented application.
It has been reported that ionic liquids exhibit highly stable and surface-rich functional
groups due to the presence of multi-cation–anion structure combinations that enhance the
materials’ stability. These promised characteristics are expected to enhance the targeted
adsorptive desulfurization presented in this work to remove benzothiophene.

The prepared adsorbents were examined for morphology characterization by SEM,
as presented in Figure 3. The renewable activated carbon from waste sources showed a
rough surface that included cavities and a perforated structure with internal tubular pores
(Figure 3A,B). The surface elemental analysis from the EDS examination showed that the
main elements are carbon and oxygen (Figure 3C). The trihexYl(tetradecyl)phosphonium
dicyanamide-modified renewable carbon showed a similar morphology to the original
carbon but without the appearance of pores due to their occupation with ionic liquid
molecules (Figure 3D,E). The surface elemental analysis confirmed that the main elements
were carbon and oxygen in the case of the original carbon (Figure 3C), while for tri-
hexYl(tetradecyl) phosphonium dicyanamide-modified renewable carbon, the main surface
elements were carbon, oxygen and phosphorous. The BET surface area of the original
carbon was 163.8 m2/g, while for trihexYl(tetradecyl)phosphonium dicyanamide-modified
renewable carbon, it was 5.1 m2/g, indicating the noticeable decrease in the porous char-
acter during modification. These results agree with those reported by Fatima et al. for
rubber-seed-shell-derived activated carbon and rubber-seed-shell-derived activated carbon
modified with [bmpy][Tf2N] ionic liquid (IL), which had a surface area of 683 m2/g and
14 m2/g, respectively [37]. In addition, Yusuf et al. prepared ionic-liquid-impregnated
carbon materials and reported a surface area of 863 and 117 for the activated carbon and
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impregnated carbon, respectively [38]. The impregnation-based modification of adsor-
bent depends on filling the pores and staking the modifier on the original materials by
electrostatic interaction, including interactions of Van der Waal forces. As a result, the
surface area is reduced in the final modified materials. The incorporation of ionic liquid of
trihexYl(tetradecyl) phosphonium dicyanamide onto the carbon surface introduced the P
element to the adsorbent surface, which enhances the interaction with benzothiophene and
improves the adsorption capacity.
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modified renewable carbon (D,E) and the EDS of carbon (C) and trihexYl(tetradecyl)phosphonium
dicyanamide-modified renewable carbon (F).

2.2. Adsorption of Benzothiophene Using Carbon and trihexYl(tetradecyl)phosphonium
Dicyanamide-Modified Renewable Carbon

Carbon and the carbon modified with ionic liquid were evaluated for the adsorption
of benzothiophene. By investigating the effects of time ranging from 1 to 280 min, the equi-
librium state occurred after 120 min, recording adsorption capacities of 192 and 238 mg/g
for carbon and carbon modified with ionic liquid, respectively (Figure 4A). After 120 min,
there was no further increase in the adsorption capacity of benzothiophene due to the
steady state and surface saturation. In this case, the adoptive desulfurization exhibited
a high capacity to remove benzothiophene. In addition, a noticeable improvement was
achieved by ionic liquid modification, as even the surface area was lower than that of
the original carbon. This may be attributed to the presence of surface functional groups,
such as P-CH2-CH3, P-C, C-H, C=C and C-N, in the trihexYl(tetradecyl)phosphonium
dicyanamide-modified renewable carbon, which act as driving forces for attracting adsor-
bate benzothiophene compounds during adsorptive desulfurization process. However,
the adsorptive desulfurization for the removal of benzothiophene in the case of original
carbon can be attributed to the surface area enhancement together with the electro-optic
interaction between the carbon structure and their C=C bonds and benzothiophene, which
may include interactions of Van der Waals forces and π–π interaction.

The effect of the adsorbent dose on the adsorption of benzothiophene was evaluated as
presented in Figure 4B, indicating that the maximum adsorption capacities were obtained
using a dose of 1 g/L for both carbon and carbon modified with ionic liquid. It has been
reported that the lower adsorbent dose leads to a higher adsorption capacity due to the
complete usage of all the adsorbent surfaces.

The kinetic investigation for the adsorption of benzothiophene onto carbon and carbon
modified with ionic liquid was evaluated by applying pseudo-first-order (Equation (1))
and pseudo-second-order kinetic (Equation (2)) models.

log(qe − qt) = log qe − K1t/2.303 (1)
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values of k1 and qe were calculated (Table 1).

t/qt = 1/Kqe
2 + 1/qe t (2)
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Figure 5B shows the plot of t/qt and t, from which qe and k can be determined for
the adsorption of carbon and trihexYl(tetradecyl)phosphonium dicyanamide-modified
renewable carbon.
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Table 1. Kinetic investigation for the adsorption of benzothiophene onto carbon and tri-
hexYl(tetradecyl)phosphonium dicyanamide-modified renewable carbon.

Pseudo-First Order Pseudo-Second Order

qe,exp
(mg/g)

K1
(min−1)

qe,cal
(mg/g) R2 K2

(g/mg·min)
qe,cal
(mg/g) R2

Carbon 192 0.024 215 96 1.2 × 10−4 222.2 98

Carbon@ionic liquid 238 0.058 622 91 1.7 × 10−4 263.1 99

The obtained results for the kinetic constant presented in Table 1 indicate a poor
agreement between the values of experimental q and calculated qe in the case of the
pseudo-first-order kinetic model. However, the values of experimental q and calculated q
showed a good correlation in the case of applying the pseudo-second-order kinetic model,
revealing that the pseudo-second-order assumption is the most consistent for describing
the adsorption of carbon and trihexYl(tetradecyl)phosphonium dicyanamide-modified
renewable carbon.

2.3. Isotherm Studies
2.3.1. Langmuir Isotherm

The Langmuir Equation (3) was applied for the adsorption data of benzothiophene
onto carbon and trihexYl(tetradecyl)phosphonium dicyanamide-modified renewable car-
bon to assess the adsorption layers during the desulfurization process:

Ce

qe
= (

1
Qo

max
) Ce +

1
Qo

max KL
(3)

where Qo
max (mg/g) is the maximum adsorption capacity for the adsorption of benzothio-

phene onto carbon and trihexYl(tetradecyl)phosphonium dicyanamide-modified renewable
carbon, Ce (mg/L) is the benzothiophene concentration at equilibrium, qe (mg/g) is the
amount of benzothiophene uptake at equilibrium, and KL (L/mg) is a constant related
to the affinity between benzothiophene and carbon or trihexYl(tetradecyl)phosphonium
dicyanamide-modified renewable carbon.

Figure 6A shows the application of Langmuir’s assumption to the adsorption data of
benzothiophene onto carbon and carbon@ionic liquid. The correlation coefficient, R2, is
weak, confirming that the Langmuir model is not compatible with describing the obtained
adsorption data.
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2.3.2. Freundlich Isotherm

The Freundlich isotherm, in Equation (4), was utilized to correlate the adsorption data
of benzothiophene onto carbon and carbon@ionic liquid to assess the adsorption layers
during the desulfurization process:

Logqe = logK + 1/n logCe (4)

where qe is the amount of benzothiophene uptake in mg/g at equilibrium onto car-
bon@ionic liquid, Ce (mg/L) is the benzothiophene concentration at equilibrium, KF
(mg/g)/(mg/L)n is the Freundlich constant, and n is the Freundlich intensity parameter,
related to the magnitude of the adsorption driving force or the surface heterogeneity.

The Freundlich constants (K and n) was calculated by plotting logqe versus logCe
(Figure 6B). In addition, the obtained results from applying the Freundlich model showed
the linear form (Table 2 shows the calculated constants). The obtained qmax, in the case of
the Langmuir and Freundlich isotherms, and the correlation coefficients indicated that the
Freundlich isotherms are the most suitable for describing the adsorption of benzothiophene
onto carbon and carbon@ionic liquid during the desulfurization process. The results
suggest a multi-adsorption layer.

Table 2. Langmuir and Freundlich constants for the adsorption of benzothiophene onto carbon and
carbon@ionic liquid.

Langmuir Constants Freundlich Constants

KL Qmax R2 KF n R2

Carbon 1.55 526 73 1.29 1.39 89

Carbon@ionic liquid 2.95 294 69 6.08 1.65 95

2.4. Sustainability and Regeneration Approach

The regeneration and reuse of adsorbent materials are the most important issues in
the context of environmental safety [39,40]. The effectiveness of the regeneration process
depends on the ability to control the desorption process and clean the adsorbent surface in
order to be ready for subsequent use. The results show a high regeneration efficiency up to
the fifth use, which reveals the effectiveness of the prepared adsorbents for the multi-use
for desulfurization process by benzothiophene adsorption (Figure 7). Recycling adsorbents
for desulfurization purposes have been reported to enhance the entire treatment process
and reduce environmental pollution. For example, Wang et al. used Schiff base–metal
complexes for the desulfurization of dibenzothiophene with an adsorption capacity of
21.66 mg/g and the possibility of reusing without an adsorption capacity reduction of five
times [41]. Qiu et al. modified coal tar to fabricate carbon as an adsorbent for benzothio-
phene and reported an adsorption capacity of 32.8 mg g−1. The prepared carbon can be
easily recycled and regenerated, achieving an efficiency of 98%, 95%, and 91% of the initial
adsorption capacity after the first, second, and third uses, respectively [42].

The achieved adsorptive desulfurization obtained in this work for the removal of
benzothiophene onto activated carbon and trihexYl(tetradecyl)phosphonium dicyanamide-
modified renewable carbon was compared with other adsorbents from the literature
(Table 3). The adsorptive-based desulfurization process using HKUST-1 for the removal
of benzothiophene, reported by Qiu et al., exhibits an adsorption capacity of 14.4 mg/g,
which is lower than both the activated carbon as well as trihexYl(tetradecyl)phosphonium
dicyanamide-modified renewable carbon [43]. Saleh et al. reported a maximum adsorp-
tion capacity of 5.7 mg g−1 for the modification of activated carbon with manganese
oxide to enhance the adsorptive capacity [15]. In addition, the application of coal-tar-
derived carbon as an adsorbent for benzothiophene showed an adsorption capacity of
32.8 mg/g [42]. The comparison confirms the superior capacity of the activated carbon
and trihexYl(tetradecyl)phosphonium dicyanamide-modified renewable carbon for the
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removal of benzothiophene and suggests the effectiveness of the ionic liquid modification,
which significantly activates the surface towards benzothiophene uptake.
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Table 3. Comparison of the adsorption capacities for the removal of benzothiophene onto activated
carbon and trihexYl(tetradecyl)phosphonium dicyanamide-modified renewable carbon with those of
other adsorbents.

Adsorbent Adsorption Capacity (mg/g) References

HKUST-1 14.4 [43]
Activated carbon modified with

manganese oxide 5.7 [15]

Coal-tar-derived carbon 32.8 [42]
Activated carbon 192 This work

trihexYl(tetradecyl)phosphonium
dicyanamide-modified renewable carbon 238 This work

3. Materials and Methods
3.1. Preparation of trihexYl(tetradecyl)phosphonium Bis2,4,4-(trimethylpentyl)phosphinate
(Cyphos® IL 104)-Modified Activated Carbon

The chemicals, solvents and reagents applied in this research were of high purity.
trihexYl(tetradecyl)phosphonium dicyanamide (CYPHOS® IL 105) was obtained from
Cytec Industries Inc., Woodland Park, NJ 07424, USA. Renewable carbon was prepared
from palm waste, as described in our previous work [44]. Heptane, octanol, acetic acid
and benzothiophene were purchased from Sigma, St. Louis, MO, USA. The reagents were
diluted day by day to obtain working solutions. The modification of the activated carbon
from mixed recyclable waste was conducted by impregnation as described in the literature
with some modifications [45]. In detail, 3 grams of the renewable carbon from waste
sources were mixed with 100 mL of 0.25% (m/v) trihexYl(tetradecyl) phosphonium Bis2,4,4-
(trimethylpentyl)phosphinate (Cyphos® IL 104) in acetone medium, and the mixture was
continuously stirred for 24 h. Then, the formed carbon@ionic liquid was separated by filtra-
tion, washed with deionized water and dried at 105 ◦C for 24 h. The original carbon, as well
as the fabricated trihexYl(tetradecyl)phosphonium Bis2,4,4-(trimethylpentyl)phosphinate
(Cyphos® IL 104)-modified activated carbon were characterized by XRD (X’Pert PRO MPD,
PANalytical, Almelo, The Netherlands), FTIR (Vertex-80 spectrometer Bruker, Billerica,
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MA, USA), SEM and EDS (JSM-7600F, JEOL, Tokyo, Japan) and surface area analysis
(Micromeritics, Gemini VII, 2390 Surface Area and Porosity USA).

3.2. Application of the Carbon and Carbon@ionic Liquid for the Adsorptive Desulfurization
of Boenzothiophene

The adsorptive-based desulfurization of benzothiophene was applied using batch ex-
periments. The adsorbent materials, including carbon and carbon@ionic liquid, were mixed
separately with the benzothiophene solution in heptane and shacked for a certain time at
150 rpm. Then, the phases were separated by centrifugation. The adsorbed benzothiophene
concentration was evaluated by UV-visible spectroscopy (Thermo Scientific, Cleveland,
OH, USA) for the detection of the benzothiophene concentration at a wavelength of 291 nm
before and after the adsorption process. The same procedures were repeated to investi-
gate the effect of contact time, adsorbent dose and benzothiophene concentration. Blank
experiments were conducted in parallel to the experiments. The adsorptive desulfurization
capacity for the carbon and carbon@ionic liquid was calculated using Equation (5):

qe =
(C0 − Ce ) ∗ V

M
(5)

where C0 represents the initial benzothiophene concentration, Ce is the final benzothiophene
concentration after the adsorption process, V is the volume, and M is the adsorbent mass
for carbon or carbon@ionic liquid in grams.

For the regeneration of the carbon and carbon@ionic liquid adsorbents, the process
described by Liu et al. [46] was followed with some modifications. In detail, the regener-
ation solution was prepared by mixing octanol and acetic acid with a ratio of 9:1. After
each adsorption cycle, the carbon and the carbon@ionic liquid were subjected to washing
with octanol/acetic acid (9:1) mixture and dried at 105 ◦C before the subsequent use. The
adsorption/desorption regeneration study for the removal of benzothiophene was repeated
for five investigations.

4. Conclusions

The modification of carbon with ionic liquid led to an improvement in the adsorption
capacity for the removal of benzothiophene. The most suitable contact time to achieve the
maximum adsorption capacities of 192 and 238 mg/g for carbon and carbon@ionic liquid,
respectively, is 120 min. The adsorptive desulfurization process follows the second-order
kinetic model and freindlish isotherm for both carbon and ionic liquid-modified carbon,
suggesting heterogeneous surfaces and the occurrence of the multilayer adsorption process.
The modification of the carbon surface investigated in the present study presenting positive
results for the enhancement of adsorptive desulfurization will lead to future research
addressing the treatment of carbon surfaces with various ligands and/or metal oxides
to assess their effects on adsorption efficiency. In addition, the research in the future can
be extended to carbon modified with ionic liquid-based materials for the adsorption of
various environmental pollutants, such as heavy metals, dyes and other sulfur compounds,
including thiophene and dibenzothiophene.
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