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Abstract: Although the incidence and mortality of SARS-CoV-2 infection has been declining during
the pandemic, the problem related to designing novel antiviral drugs that could effectively resist
viruses in the future remains relevant. As part of our continued search for chemical compounds that
are capable of exerting an antiviral effect against the SARS-CoV-2 virus, we studied the ability of
triterpenic acid amides to inhibit the SARS-CoV-2 main protease. Molecular modeling suggested that
the compounds are able to bind to the active site of the main protease via non-covalent interactions.
The FRET-based enzyme assay was used to reveal that compounds 1e and 1b can inhibit the SARS-
CoV-2 main protease at micromolar concentrations.
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1. Introduction

Searching for chemical compounds that are capable of exerting an antiviral effect
against the SARS-CoV-2 virus by inhibiting its main protease (Mpro), a key enzyme of
the virus life cycle, continues to be a relevant trend in drug design [1]. The main protease
cleaves the translated viral polyprotein 1AB at 11 specific sites. The site recognition
sequence in most cases consists of the chain segment (Leu-Gln)-(Ser-Ala-Gly); the bond
between glutamine and serine is cleaved. Inhibition of the main protease stops viral
replication. No proteases possessing the same cleavage specificity are known among
human enzymes, which may indicate the absence of toxicity of potential inhibitors of the
SARS-CoV-2 Mpro [2,3].

Many natural triterpenoids have an antiviral effect [4]. Thus, glycyrrhizic acid may
exert an antiviral activity against coronaviruses [5,6]. Betulinic acid derivatives exhibit
activity against HIV, the coronavirus, and the respiratory syncytial virus [7]. Triterpenoids
of the ursane series also exhibit antiviral activity against HIV, the rotavirus, and the in-
fluenza virus [8]. Oleanolic [9] and ursolic acids [10], as well as their derivatives, can inhibit
HIV proteases. In addition, oleanolic acid and its derivatives inhibit HCV protease [11].
Betulonic acid amides have shown antiviral activity against a wide range of viruses [12].
The presence of an amide bond has also been shown to increase activity against HIV [13].
A literature review revealed that positions 3 and 28 of the triterpene backbone play an
important role in triterpenoid activity. Their chemical modification may allow one to
produce new drugs that have better activity and fewer side effects.

We are considering the possibility of an inhibitory effect on the SARS-CoV-2 Mpro
of triterpenoid derivatives that have previously been synthesized in our laboratory as
potential dual agonists of PPAR-α,γ [14]. The triterpene amides tested in this study for pro-
tease affinity contain a large pharmacophore fragment, (S)-2-ethoxy-3-(4-hydroxyphenyl)
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propanoic acid in the amide portion, which is characteristic of glitazars, compounds which
are used for treating metabolic syndrome. In order to reveal the effect of this fragment on
protease affinity, we synthesized a new compound containing a p-menthane (monoterpene)
fragment instead of the triterpene fragment as a pharmacophore of glitazars.

The active site of the SARS-CoV-2 Mpro contains catalytic amino acids Cys145 and
His41, and resides between the N-terminal domains I and II of the monomer of this
enzyme [15]. Most studies focusing on potential inhibitors were devoted to molecules that
could covalently bind to the SH group of the catalytic amino acid residue Cys145 of the
protease. The mechanisms of such covalent binding were in most cases represented by
either Michael addition or nucleophilic addition to a double or triple bond. Less attention
has been paid to potential non-covalent inhibitors. In the case of non-covalent inhibition,
reversible competitive substitution of the enzyme’s active site takes place, preventing
its interaction with the substrate. Molecular docking was used to study the theoretical
possibility that triterpene amides can block the Mpro active site due to non-covalent
interactions. The compounds were tested for their ability to inhibit the major protease via
the FRET-based enzyme assay.

2. Results
2.1. Molecular Modeling

Among the triterpene amides, compounds 1a–e shown in Figure 1 exhibited the
highest theoretical affinity in molecular modeling. Neomenthylamine derivative 1f did
not exhibit high theoretical affinity in molecular modeling, and was chosen as a negative
control.

The estimated energy of interaction (the docking score) between most conjugates and
the active site of the SARS-CoV-2 Mpro was significantly lower or comparable to that
of the ML188 model inhibitor (Figure 2). The IFD score parameter lay within a narrow
range for all of the compounds, and was comparable to that of ML188. Apparently, the
compounds caused changes in the positions of amino acid side chains and their rotations,
similarly to those caused by the model inhibitor ML188. Considering the Emodel energy
parameter, one can see that compounds 1a and 1c had the lowest energies, which indicates
a greater number of non-covalent interactions between these molecules and the active
site of the main protease, although their docking parameter score was higher than that of
compound 1e (Table 1).

Apparently, the key factor of the inhibitory effect on the SARS-CoV-2 Mpro was the
ability of the ligand to bind the amino acid residues of the flexible loop region 141–145,
which formed the oxyanion hole of the enzyme [4]. The oxyanion hole is a pocket in the en-
zyme’s active site that stabilized the negative charge of the transition state on deprotonated
oxygen or alkoxide. Transition state stabilization lowered the activation energy required
for the reaction, and thus promoted catalysis [16]. The catalytic center of the SARS-CoV-2
Mpro (Figure 3A) consists of two pockets: S1’, where interaction with His41 occurs, and
S2’, where the catalytic amino acid residue Cys145 is located. In addition, studies have
shown that the active site of the main protease is complemented by pockets that contribute
to stabilization of the inhibitor near the enzyme’s catalytic site. In the S1 pocket, inhibitors
can interact with amino acids Glu166 and Phe140; in the S2 pocket, with His41, Hie163, and
His164; in the S3 pocket, with Gln189 and Met49; and in the S4 pocket, with Pro168 [3,5,17]
(Figure 3B). Due to its branched structure, the model inhibitor ML188 effectively interacted
with the amino acids of the catalytic center of the Mpro (here and below, the non-covalent
interactions are illustrated in Figures 4 and S7), and penetrated into the stabilizing pockets
of the active site (Figure 3D). The aromatic rings in its structure allowed it to interact with
the pi system of the His41 catalytic amino acid.
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Figure 1. Triterpene amides (1a–e) and neomenthylamine derivative (1f). 

 
Figure 2. Non-covalent SARS-CoV-2 Mpro inhibitor ML188. 

Table 1. Docking parameters of derivatives (1a-f), according to the IFD protocol, compared to the 
data obtained for the ML188 non-covalent SARS-CoV-2 Mpro inhibitor (ML188). 

Ligand 
Docking Parameters, kcal/mol 

Docking Score LE Emodel IFD Score 
1e −11.784 −0.196 −101.329 −670.17 
1c −10.532 −0.167 −118.702 −667.78 
1a −10.479 −0.178 −104.657 −665.62 

Figure 1. Triterpene amides (1a–e) and neomenthylamine derivative (1f).
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Figure 2. Non-covalent SARS-CoV-2 Mpro inhibitor ML188.

Table 1. Docking parameters of derivatives (1a-f), according to the IFD protocol, compared to the
data obtained for the ML188 non-covalent SARS-CoV-2 Mpro inhibitor (ML188).

Ligand
Docking Parameters, kcal/mol

Docking Score LE Emodel IFD Score

1e −11.784 −0.196 −101.329 −670.17

1c −10.532 −0.167 −118.702 −667.78

1a −10.479 −0.178 −104.657 −665.62

1d −9.843 −0.167 −93.581 −666.84
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Table 1. Cont.

Ligand
Docking Parameters, kcal/mol

Docking Score LE Emodel IFD Score

1b −8.672 −0.147 −102.7 −666.49

ML188 −8.379 −0.262 −83.299 −666.082

1f −7.39 −0.2 −86.486 −663.78
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site subpockets. The superpositions of compounds in the active site of the SARS-CoV-2 main Figure 3. (A) The SARS-CoV-2 main protease subunit with an inhibitor at the active site. (B) Active

site subpockets. The superpositions of compounds in the active site of the SARS-CoV-2 main protease
show differences in their location with respect to the active site: (C) 1e (yellow), 1d (orange), and 1b
(green); (D) 1c (yellow), 1a (orange), and ML188 (green).
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Figure 4. Non-covalent interactions of compounds (1a–f) in the active site of the SARS-CoV-2
Mpro compared to the inhibitor ML188 (ML188). Non-covalent interactions are shown by dotted
lines: green—hydrogen bonds, orange—ionic interactions, magenta—stacking interactions, dark
green—pi-cation interactions.

Triterpenic amides can be oriented in the active site of the SARS-CoV-2 Mpro in var-
ious ways. (S)-2-Ethoxy-3-(4-hydroxyphenyl) propanoic acid residue and the triterpene
backbone were located both near the catalytic center of the enzyme and outside it. Despite
the lowest docking score, compound 1e interacted exclusively with Gln189. Apparently, the
low interaction energy in this case was achieved due to the placement of the (S)-2-ethoxy-3-
(4-hydroxyphenyl) propanoic acid moiety in the groove between domains I and II of the
Mpro subunits. Compound 1d occupied a position similar to that of compound 1e: its
triterpene backbone was located near the active site of the Mpro. Compound 1c also had
a triterpene backbone near the catalytic center, and the (S)-2-ethoxy-3-(4-hydroxyphenyl)
propanoic acid fragment occupied various positions outside the active site of the Mpro
(Figure 3C). Compounds 1a and 1c demonstrated a more favorable position near the active
site of the Mpro, confirming the lowest Emodel energies (Figure 3D). They could interact
with amino acids in the chain region 141–145 (hydrogen bonds) and with the catalytic amino
acid His41 (stacking interaction), due to the (S)-2-ethoxy-3-(4-hydroxyphenyl) propanoic
acid residue located near the active site of the main protease, as well as with the stabiliz-
ing amino acids Glu166 and Gln189 using the polar groups of the triterpene backbone.
Compound 1f, due to the absence of triterpenoid structures, could theoretically interact
with the amino acids of the active site of the main protease due to the polar groups and
aromatic cycles of the (S)-2-ethoxy-3-(4-hydroxyphenyl) propanoic acid fragment. Features
and distances of non-covalent interactions of the new triterpene amides with amino acids
of the SARS-CoV-2 Mpro active site are shown in Table 2.
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Table 2. Non-covalent interactions of the new triterpene amides and the ML188 inhibitor with amino
acids of the SARS-CoV-2 Mpro active site as a result of molecular docking. The atomic numbering of
the new compounds and the ML188 inhibitor are given according to Figures 1 and 2.

Ligand Interactions Distance (Å) Bonding Bonding Type

1e

Lys137:NZ — 1e:O6” 4.97 Ionic Bond Salt Bridge

Lys137:HZ2 — 1e:O5” 1.84 Hydrogen Bond Conventional

Gln189:HE22 — 1e:O28’ 2.15 Hydrogen Bond Conventional

1e:H2’ — Thr24:O 1.86 Hydrogen Bond Conventional

1c

His41:HD1 — 1c:O3” 1.89 Hydrogen Bond Conventional

Asn142:HD22 — 1c:O5” 1.81 Hydrogen Bond Conventional

Gly143:HN — 1c:O6” 1.91 Hydrogen Bond Conventional

Gln189:HE21 — 1c:O11’ 2.03 Hydrogen Bond Conventional

Gln192:HE22 — 1c:O28’ 2.14 Hydrogen Bond Conventional

1c:H1” — Gln189:OE1 2.16 Hydrogen Bond Conventional

His41:Imidazol ring —
1c:Ring A 4.29 Hydrophobic Pi-Pi Stacked

1a

Asn142:HD22 — 1a:O5” 1.67 Hydrogen Bond Conventional

Gly143:HN — 1a:O6” 1.67 Hydrogen Bond Conventional

Gln189:HE22 — 1a:O28’ 1.73 Hydrogen Bond Conventional

1a:H1” — Glu166:O 1.99 Hydrogen Bond Conventional

His41:Imidazol ring —
1c:Ring A 5.49 Hydrophobic Pi-Pi T-shaped

1d

Lys137:NZ — 1d:O6” 2.82 Ionic Bond Salt Bridge

Lys137:NZ — 1d:Ring B 5.26 Ionic Bond Pi-Cation

Thr26:HN — 1d:O3’ 2.12 Hydrogen Bond Conventional

Glu166:HN — 1d:O28’ 2.07 Hydrogen Bond Conventional

1d:H3’ — Thr24:O 2.69 Hydrogen Bond Conventional

1b
1b:H1” — Asn142:OD1 2.00 Hydrogen Bond Conventional

Lys61:NZ — 1b:O6” 4.44 Ionic Bond Salt Bridge

ML188

Asn142:HD22 —
ML188:O2 1.71 Hydrogen Bond Conventional

His163:HE2 — ML188:N5 2.08 Hydrogen Bond Conventional

Glu166:HN — ML188:O3 2.03 Hydrogen Bond Conventional

His41:Imidazol ring —
ML188:Ring C 5.18 Hydrophobic Pi-Pi T-shaped

His41:Imidazol ring —
ML188:Ring A 5.27 Hydrophobic Pi-Pi T-shaped

1f

His41:HD1 — 1f:O3” 2.04 Hydrogen Bond Conventional

Asn142:HD22 — 1f:O6” 1.67 Hydrogen Bond Conventional

Gly143:HN — 1f:O5” 1.84 Hydrogen Bond Conventional

1f:H1” — Gln189:OE1 2.42 Hydrogen Bond Conventional

1f:H1”* — Glu166:O 2.35 Hydrogen Bond Conventional
* Another hydrogen atom of the two at the N1”+ atom of compound 1f.
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2.2. Chemistry

Neomenthylamine derivative 1f was synthesized in five steps (Scheme 1). At the
first step, compound 2 was obtained with a 95% yield, using an adapted procedure of
phenol benzylation. The Mitsunobu reaction between alcohol 2 and (S)-ethyl 2-ethoxy-3-(4-
hydroxyphenyl) propanoate in the presence of diisopropylazodicarboxylate (DIAD) and
triphenylphosphine in THF gave rise to ester 3. Debenzylation of 3 in the presence of H2
and 10% Pd/C in ethyl acetate was carried out with a 91% yield. Phenol 4 further reacted
with dibromoethane in excess K2CO3 in acetonitrile to give rise to bromide 5 with a 73%
yield. The interaction between bromide 5 and neomenthylamine followed by hydrolysis of
the ether group gave rise to amine 1f as a hydrochloride salt with a 93% yield.
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Mesylate 8 was obtained via the reaction between (1R)-(–)-menthol and mesyl chloride,
in the presence of NEt3 in methylene chloride for 24 hrs, with a 95% yield. Next, mesylate 8
was reactivated with sodium azide in DMF, resulting in formation of azide 9 isolated with
an 82% yield. The conformation was reversed from the R to the S configuration. Amine 7
was prepared by the reduction of azide 9 with an excess of LiAlH4 in anhydrous THF. The
purification of neomethiamine 7 was performed with acid-base extraction.

2.3. SARS-CoV-2 Mpro Inhibiting Activity

Previously, our research team developed a FRET-based enzyme assay to search for
SARS-CoV-2 Mpro inhibitors. Effective protease inhibitors were detected using this sur-
rogate test system [18]. In addition, this surrogate model enabled us to elucidate the
mechanism of antiviral action of effective SARS-CoV-2 inhibitors, based on natural usnic
acid [19]. The inhibitory activity of the synthesized conjugates against the SARS-CoV-2
Mpro was studied in vitro using the previously developed FRET-based enzyme assay
(Table 3). Compounds 1e and 1c showed significant inhibitory activity. Conjugates 1a, 1d,
and 1b were less active, but also exhibited a significant effect. Compound 1f confirmed its
role as a negative control, and did not exert antiprotease activity in the in vitro experiment.

Table 3. SARS-CoV-2 Mpro-inhibiting activity of the new triterpene amides in comparison with
non-covalent inhibitor ML188.

Ligand IC50, µM

1e 25 ± 3

1c 125 ± 13

1a 100 ± 5

1d 100 ± 5

1b 100 ± 5

ML188 1.6 ± 0.6

1f <400

3. Discussion

The triterpenic acids selected in this study are known for their antiviral properties.
Thus, certain lupane-type triterpenoids, such as betulonic and dihydrobetulonic acids, were
shown to be potential inhibitors of the SARS-CoV Mpro. In contrast, ursolic triterpenoids
such as ursolic and corosolic acids exhibited a more pronounced activity compared to that of
lupane-type triterpenoids [20] because the presence of the hydroxyl group improves activity,
while the keto group reduces the activity. In addition, glycyrrhetic acid and its derivatives
(its glycosides in particular) are recognized as potential SARS-CoV-2 inhibitors [21].

Considering the relationship between the structure and activity of compounds, all
triterpenoid amides at position 28 of the triterpene backbone with an (S)-2-ethoxy-3-(4-
hydroxyphenyl) propanoic acid substituent (1e, 1a, 1d, 1b) and an amide at position 20 of
the triterpene backbone with the same substituent and an acetyl group at position 3 (1c)
exhibited in vitro antiprotease activity. The interaction between triterpene amides and the
SARS-CoV-2 Mpro was found to be more efficient if the (S)-2-ethoxy-3-(4-hydroxyphenyl)
propanoic acid fragment was located near the enzyme’s active site, which could form
hydrogen bonds and stacking interactions with the amino acids of the catalytic center due
to the presence of aromatic cycles and polar groups. The formation of the amide moiety 1c
at position 20 of the triterpene backbone that is characteristic of glycyrrhetic acid provided
additional advantages in binding to the active site of the Mpro, which manifested itself in
the lowest IC50 value for this compound (Figure 5). According to the molecular modeling
data, the presence of an acetyl group at position 3 of the triterpene backbone of 3c did not
have a significant effect on binding. The presence of a hydroxyl group at position 2 of
the triterpene backbone of corosolic acid amide 1e increased its Mpro inhibitory activity
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four-fold, compared to ursolic acid amide 1d. This trend correlated well with the molecular
modeling data, where compound 1e showed a significantly lower docking score compared
to compound 1d. Hydrogenation of the double bond in the 2-allyl substituent at position 19
of the triterpene backbone of betulonic acid amide 1a did not alter the antiprotease activity
of dihydrobetulonic acid amide 1b.
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Compound 1f did not show antiprotease activity in vitro, although it could theoreti-
cally interact with key amino acids of the active site of the main protease. Apparently, the
absence of a triterpene backbone in this compound led to instability of interaction with the
enzyme surface, due to a reduced number of hydrophobic interactions.

4. Materials and Methods
4.1. Molecular Modeling

All theoretical calculations were carried out using the Schrodinger Small Molecule
Drug Discovery Suite 2020-2 software package [22]. The geometric parameters of the
proteins were downloaded from the Protein Data Bank [23]. The XRD model of the
SARS-CoV-2 main protease with a non-covalent inhibitor ML188 [24] (PDB ID 7L0D) was
chosen for molecular modeling. The structure of the model protein was prepared by
adding and minimizing hydrogen atoms, adding missing amino acid side chains, restoring
bond multiplicities, removing solvent molecules, and optimizing the structures in the
OPLS4 force field [25]. The geometric parameters of the ligands were optimized using the
OPLS4 force field, taking into account all possible conformations. Molecular docking was
performed using the IFD [26] (induced fit docking) protocol, which employs the Glide [27]
and Prime [28] programs to predict the ligand positions in the binding site, taking into
account their influence on the enzyme structure. The following conditions were applied:
flexible protein and ligands; docking area size of 20 Å; amino acids within 5 Å of the ligand
were taken into account to optimize its effect. Docking results were ranked by evaluating
the following calculated parameters: docking score (based on GlideScore with the exception
of penalties that take into account energy parameters that negatively affected binding);
ligand efficiency (LE, where the distribution of the estimated energy over the heavy atoms
of the ligand was considered); the model energy value parameter (Emodel, including the
GlideScore value, the energy of non-covalent interactions, and the energy spent on the
formation of stacking interactions of compounds in the binding site); and the IFD parameter
(IFDscore, including the GlideScore value and the change in protein free energy, indicating
the result of structural changes in the target). The docking algorithm was validated by
redocking the standard inhibitor ML188, followed by the calculation of the RMSD between
the coordinates of the co-crystallized molecule and the best docking pose. The RMSD value
was 1.411 Å.



Molecules 2023, 28, 303 10 of 14

4.2. Chemistry

The 1H and 13C NMR spectra (Figures S1–S6) of the compounds in CDCl3 solutions
were measured in a Bruker AV-400 spectrometer (400.13 and 100.61 MHz, respectively). The
residual signals of the solvent were used as references (δH 7.27, δC 77.1 ppm). Chemical
shift measurements were calculated in ppm; the coupling constants (J) were calculated in
Hertz (Hz). Column chromatography employed Merck silica gel (63–200 µm). Thin-layer
chromatography was performed using TLC Silica gel 60F254, Merck (Darmstadt, Germany).

All of the chemicals were used as received, unless otherwise noted. Reagent-grade
solvents were redistilled prior to use. Synthetic starting materials, reagents, and solvents
were purchased from Acros Organics (Geel, Belgium), Sigma-Aldrich (St. Louis, MO,
USA), and AlfaAesar (Heysham, UK). Ursolic, betulonic, and dihydrobetulonic acids were
purchased from the Departmental Pilot of the Novosibirsk Institute of Organic Chemistry,
SB RAS. Acetylglycyrrhetinic acid was donated by colleagues from the Department of
Medicine at the Novosibirsk Institute of Organic Chemistry, SB RAS. Corosolic acid was
synthesized from ursolic acid according to the procedure described in [29]. The obtained
spectral data coincided with those found in the literature.

The triterpenic acid amides containing (S)-ethyl 2-ethoxy-3-(4-hydroxyphenyl) propanoic
acid moiety were synthesized according to the method described earlier [13].

2-(4-(benzyloxy)-phenyl) ethanol (2)

Tyrosol (0.12 mol) was dissolved in 100 mL of acetone; then, 0.19 mol of calcined
potassium carbonate previously ground in a mortar was added and left to stir for 30 min.
Benzyl bromide (0.13 mol) was then added, drop by drop, and the mixture was left to boil
for 8 h. The reaction was monitored by TLC in a 4:1 hexane:ethyl acetate system. After the
reaction completed, the reaction mixture was poured into 700 mL of water and left to stir
for 30 min. The precipitate was filtered off and left to dry. Purification was performed via
precipitation from a hexane–ethyl acetate mixture.

The material obtained was pearl-colored powder, 26.00 g, with a yield of 95%. The
spectral data corresponded to data in the literature [17].

(S)-ethyl 3-(4-(4-(4-(benzyloxy)-phenethoxy)-phenyl)-2-ethoxypropanoate (3)

(S)-ethyl 2-ethoxy-3-(4-hydroxyphenyl)-propanoate (23 mmol) and 24 mmol of PPh3
were mixed in a 250 mL round-bottom flask containing 22 mmol of 2-(4-(benzyloxy)-phenyl)
ethanol, and dissolved in 70 mL of THF. The reaction mixture was cooled in an ice bath;
then, 23 mmol of DIAD in an argon current was added and left to stir for 24 h. After the
reaction completed, the solvent was evaporated; purification was performed via column
chromatography in a 4:1 hexane:ethyl acetate system.

The material obtained= was a yellow oil, 8.67 g, with a yield of 88%. The spectral data
corresponded to that in the literature [30].

(S)-ethyl-2-ethoxy-3-(4-(4-hydroxyphenethoxy)-phenyl) propanoate (4)

(S)-ethyl-3-(4-(4-(4-(benzyloxy)-phenethoxy)-phenyl)-2-ethoxypropanoate (1.03 g) was
dissolved in 25 mL of methanol; the solution was degassed; then, 103 mg of 10% palladium
on carbon was added, purged with hydrogen, and left in a hydrogen atmosphere under
stirring for 24 h. The reaction was monitored by TLC (eluent: 20:1 CHCl3:MeOH). The
catalyst was filtered off, and the solvent was evaporated. The product was used without
further purification.

The material obtained was white crystals, 0.782 g, with a yield of 95%. The spectral
data corresponded to data in the literature [17].

Ethyl 3-(4-(4-(4-(2-bromoethoxy)-phenethoxy)-phenyl)-2-ethoxy propanoate (5)

(S)-ethyl 2-ethoxy-3-(4-(4-hydroxyphenethoxy)-phenyl) propanoate (0.83 mmol), 4.2 mmol
of 1,2-dibromoethane, 2.5 mmol of potassium carbonate, and potassium iodide crystals were
placed into a 50 mL flask containing 30 mL of acetonitrile, purged with argon, and left to stir
for 3 days; the reaction was controlled by TLC in a 7:1 hexane:ethyl acetate system. Potassium
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carbonate was then filtered off, the solvent was evaporated, and the product was purified with
column chromatography in a 6:1 hexane:ethyl acetate system.

The material obtained was a yellow oil, 0.261 g, with a yield of 68%. 1H-NMR: 1.17
(3 H, t, J = 7.0), 1.23 (3 H, m), 2.95 (2 H, m), 3.04 (2 H, m), 3.30–3.40 (1 H, m), 3.54–3.67 (3 H,
m), 3.97–4.21 (5 H, m), 4.28 (2 H, t, J = 6), 6.82–6.88 (4 H, m), 7.15–7.21 (4 H, m). 13C-NMR:
14.2, 15.0, 29.3, 34.8, 38.4, 60.8, 66.1, 67.8, 68.7, 80.3, 114.2 (3C), 114.7, 130.0, 130.3 (2C), 130.4
(3C), 157.2, 157.6, 172.5. Found: m/z 464.1198 [M]+. C26H37NO5. Calculated: M 464.1198.

(S)-ethyl 2-ethoxy-3-(4-(4-(2-(mentylamino)-ethoxy)-phenethoxy)-phenyl) propanoate (6)

(S)-ethyl-3-(4-(4-(2-bromoethoxy) phenethoxy)-phenyl)-2-ethoxy propanoate (2.1 mmol)
and 6.3 mmol of the corresponding amine in 12 mL of DMF were placed into a 50 mL round-
bottom flask; the solution was cooled, and 3.2 mmol of NEt3 was then added dropwise.
The reaction mixture was purged with argon and left to stir for 3 days; the reaction was
controlled by TLC (eluent, 4:1 hexane:ethyl acetate). After the reaction completed, the
mixture was poured into 70 mL of water; the aqueous layer was extracted with ethyl acetate;
the organic layer was washed with saturated NaCl solution and dried over magnesium
sulfate. The solvent was evaporated on a rotary evaporator; the product was purified with
column chromatography in a 100:1 CHCl3:MeOH system.

The material obtained was an orange oil, 0.37 g, with a yield of 72%. 1H-NMR: 0.74–
0.97 (13 H, m), 1.16 (8 H, m), 1.35–1.78 (6 H, m), 1.89 (1 H, dd, J = 13.6, 2.3), 2.80–3.12 (5 H,
m), 3. 24–3.38 (1 H, m), 3.48–3.63 (1 H, m), 3.88–4.19 (7 H, m), 6.80 (4 H, m), 7.06–7.20 (4 H,
m). 13C NMR: 14.2, 15.0, 20.6, 21.5, 22.6, 24.9, 25.5, 28.9, 34.9, 35.5, 38.3, 38.4, 46.8, 48.4, 53.8,
60.7, 66.2, 67.6, 68.9, 80.4, 114.3 (2 C), 114.6 (2 C), 129.3, 129.9 (2 C), 130.3 (2 C), 130.4, 157.6,
157.7, 172.5. Found: m/z 539.3611 [M]+. C33H49NO5. Calculated: m/z 539.3610.

N-(2-(4-(2-(4-((S)-2-carboxy-2-ethoxyethyl)phenoxy)ethyl)phenoxy)ethyl)-2-isopropyl-5-me
thylcyclohexanaminium chloride (1f)

Hydrolysis was carried out using the previously described technique. [5] The material
obtained was colorless oil, 0.53 g, with a yield of 77%. 1H NMR: 0.82–1.18 (17 H, m),
1.55–1.76 (6 H, m), 2.82–3.08 (5 H, m), 3.36 (1 H, m), 3.51 (1 H, m), 3.93–4. 23 (5 H, m),
4.25–4.51 (2 H, br.m), 6.82–6.87 (4 H, m), 7.15–7.20 (4 H, m). 13C NMR: 15.0, 20.8, 21.4,
22.1, 23.9, 25.2, 27.9, 34.5, 34.9, 35.1, 37.9, 45.0, 47.2, 56.3, 63.6, 66.5, 68.7, 79.8, 114.3 (2 C),
114.5 (2 C), 130.1 (3 C), 130.4 (2 C), 131.5, 156.1, 157.6, 174.9. Found: m/z 547.3065 [M]+.
C31H46ClNO5. Calculated: m/z 547.3064.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl methanesulfonate (8)

The material obtained was a yellow oil, with a yield of 95%. The compound was
synthesized according to the procedure described earlier in [31].

(1S,2S,4R)-2-azido-1-isopropyl-4-methylcyclohexane (9)

The material obtained was a yellow oil, with a yield of 82%. The compound was
synthesized according to the procedure described earlier in [32].

(1S,2S,4R)-neomenthylamine (7)

The material obtained was colorless crystals, with a yield of 78%. The compound was
synthesized according to the procedure described earlier in [33].

4.3. Evaluation of Inhibitory Activity against the Main Viral Protease

For assessing the ability to inhibit the main protease (3CLpro), the IC50 was the half-
maximal inhibitory concentration of the substance at which the fluorescence level reduced
by 50% compared to the value obtained without adding the inhibitor [9,10,34]. Fluorescence
occurred due to cleavage of the peptide substrate DabcylKTSAVLQ↓SGFRKME(Edans)NH2
by 3CLpro protease. ML188 inhibitor ((R)-N-(4-(tert-Butyl)phenyl)-N-(2-(tert-butylamino)-
2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Ambeed Inc, USA) was used as a positive
control. In the study, the signal was recorded using the CLARIOstar Plus instrument (BMG
Labtech) at 355 and 460 nm for excitation and radiation, respectively, in the kinetic scan
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mode. Reaction mixtures containing TrisHCl buffer, fluorogenic substrate, 3CLpro, and
the compound being tested were prepared and incubated for 30 min in a 384-well plate at
30 ◦C. The measurement for each compound was carried out in triplicate. The instrument
was calibrated using a solution of the peptide that had undergone complete hydrolysis.
The accompanying MARS Data Analysis software was used to calculate IC50 values.

5. Conclusions

Compounds exhibiting an antiprotease activity against the SARS-CoV-2 Mpro were
identified among the derivatives of triterpene amides containing (S)-ethyl 2-ethoxy-3-(4-
hydroxyphenyl) propanoic acid as the pharmacophore fragment. The most active deriva-
tives were the acetylglycyrrhetic and corosolic acid amides. Molecular modeling revealed
that binding of the active site of the Mpro to amino acids occurred due to the polar groups
and pi-systems of the pharmacophore moiety. The triterpene backbones of these derivatives
were able to perform a stabilizing function, holding the compounds on the main protease
surface due to hydrophobic interactions. Further chemical modification of glycyrrhetic
acid amides seems to be quite relevant for increasing the potential antiprotease activity of
compounds belonging to this class against the SARS-CoV-2 Mpro.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28010303/s1, Figures S1–S6: NMR spectra for compounds
1f, 5, 6. Figure S7. Non-covalent interactions of new compounds in the active site of SARS-CoV-2
Mpro compared to the inhibitor ML188.
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