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Abstract: Developing molecular generative models for directly generating 3D conformation has
recently become a hot research area. Here, an autoencoder based generative model was proposed for
molecular conformation generation. A unique feature of our method is that the graph information
embedded relative coordinate (GIE-RC), satisfying translation and rotation invariance, was proposed
as a novel way for encoding molecular three-dimensional structure. Compared with commonly used
Cartesian coordinate and internal coordinate, GIE-RC is less sensitive on errors when decoding latent
variables to 3D coordinates. By using this method, a complex 3D generation task can be turned into a
graph node feature generation problem. Examples were shown that the GIE-RC based autoencoder
model can be used for both ligand and peptide conformation generation. Additionally, this model
was used as an efficient conformation sampling method to augment conformation data needed in the
construction of neural network-based force field.

Keywords: conformation sampling; generative model

1. Introduction

The three-dimensional conformation of a molecule largely influences its biological and
physical properties, such as charge distribution, interaction with protein, etc. Furthermore,
conformation sampling of complex molecular systems is crucial for calculation of free
energy, transition state, and reaction rates.

Traditional conformation sampling methods, including molecular dynamic (MD) sim-
ulations [1] and Monte Carlo (MC) [2], are computationally expensive. The sampling
efficiency during MD simulation usually suffers from a high free energy barrier, caus-
ing repeated sampling near the local minimum and difficulties in converging in high-
dimensional space. Many enhanced sampling methods, such as replica exchange molecular
dynamics (REMD) [3], accelerated molecular dynamics (AMD) [4], and meta-dynamics
simulations [5], can increase the probability of overcoming the free energy barrier and
improving sampling efficiency by heating up and modifying the potential energy surface
manually. However, complex collective variable settings and high computational costs
limit their applications.

Machine learning methods have shed light on sampling problems in high-dimensional
space. Various ideas have been proposed to automatically identify the slowest collective
variables (CVs) that characterize the structural transformation and to add bias potentials
on these CVs for enhanced sampling, including the tICA-RE protocol [6], the combination
scheme of genetic algorithms and neural networks [7], the RVAE method [8], etc. On the
other hand, deep reinforcement learning was proposed to combine with sampling methods
to force the sampling bias towards known space, e.g., reinforced dynamics scheme [9],
targeted adversarial learning optimized sampling (TALOS) [10], and reinforced variational
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adversarial density estimation (RE-VADE) [11]. In addition to the methods mentioned
above, deep conformational generative modeling, another active research field in machine
learning, has been utilized to compress the high dimensional conformation distribution
into low dimensional latent space, thus achieving fast and parallel conformation sampling
from learned latent space [12]. Different from a conformation prediction model like Alpha-
fold2 [13], the main goal of a conformational generative model is to sample the low-energy
structure around different thermostats or interested transition structures [14,15].

Although many important machine learning attempts, including grid-based gener-
ation methods [16], distance geometry-based methods [17], and atomic density-based
methods [18], were proposed for conformation generation, they could only generate in-
direct three dimensional information such as a distance matrix, and the final structures
were computed by fitting this information or constraining optimization. Recently, Xu et al.
proposed the GeoDiff method for conformation generation, in which the core idea is learn-
ing to reverse the diffusion process, which recovers the molecule’s geometric distribution
from the noisy distribution [15]. Conformation generation based directly on 3D coordinates
remains challenging. The difficulty mainly comes from two aspects. First, a molecule
can have multiple thermodynamically stable conformations, which makes it difficult to fit
a complex multi-modal distribution. Second, there lacks a translational, rotational, and
exchange invariant representation for molecular conformation, which is essential for the
generalization ability of the model. Recently, the Boltzmann generator [12], a normalized
flow-based generative model, was proposed to model a complex BPTI protein’s conforma-
tion distribution in the compressed latent space using internal coordinates, where a set of
Boltzmann conformations was efficiently sampled in parallel and the free energy difference
between two states of BPTI protein could be accurately estimated. Although the Boltzmann
generator, as a system-focused conformation generative model, has dramatically overcome
the difficulties mentioned above, its versatility is still in question.

Recently, graph-based deep learning models have gained tremendous success in 3D
molecular generation due to the fact that they can efficiently generalize the node environ-
ment and extract a vector representation of the entire molecule graph. For example, Clevert
et al. proposed a graph controlled auto-encoding scheme for molecular 3D representa-
tion [19], where internal coordinates were encoded in hidden space independently under
the control of the concatenated atomic embedding vectors and succeeded in conformation
generation of small ligand datasets by interpolation in the latent space. Unfortunately, the
model did not satisfy exchange invariance due to the concatenated operation.

Graph-based autoregressive models have also been proposed for 3D molecular gener-
ation, such as L-Net [20], GEN3D [21], cG-SchNet [22], and G-SphereNet [23]. Using these
models, the atomic coordinates of a molecule are gradually generated to ensure the rational-
ity of the overall structure, but conformational sampling of the generated compound was
not considered. The GEOMOL [24] model, recently proposed by Pattanaik et al., is an end-
to-end trainable, non-autoregressive, conformational generative model with a combination
of MPNN [25] and self-attention layers [26]. The local structures for each graph node can
be predicted and then assembled to yield the molecular conformation, and conformation
sampling is performed through multiple predictions on the same molecule graph with
random noise, which limits its capability for fitting conformational multi-modal distribu-
tion. Generative models for protein design have also been proposed recently, for example,
VAE [27] (variational autoencoder)- and GAN [28] (generative adversarial network)-based
models were utilized to generate protein 3D structures. Zhang et al. proposed a method of
using a relative coordinate system to define the atomic local environment and applied it to
predict atomic interactions [29]. Inspired by their work, we proposed a new representation
method based on a relative coordinate system to describe the 3D structure of molecules
and its application in generative modeling for molecules.

In the current study, a novel translationally and rotationally invariant three-dimensional
conformation encoding method, namely graph information-embedded relative coordinate
(GIE-RC), was proposed. There are three important attributes of GIE-RC: (1) reversible loss-
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less conversion with 3D coordinates; (2) less sensitive to errors of latent variables compared
with other 3D representation methods; (3) convenience in turning a complex 3D generation
task into a graph node feature generation problem. A 3D conformational generative model
was then constructed by combining the GIE-RC representation with an autoencoder (AE)
neural network. Our results show that this model can be used for conformation generation
of small molecules as well as large peptide structures. Additionally, this method can be
applied as a useful data augmentation tool for improving the construction of a neural
network-based force field.

2. Results and Discussion
2.1. The Advantage of Using GIE-RC for Structure Reconstruction

Under the encoder-decoder generative framework, the decoded structures could
deviate from the input conformation due to the reconstruction error of the model. Thus,
error resistance in conformation representations could improve the generative model’s
reconstruction accuracy. Under the given percentage of noise (error), the conformation
reconstruction accuracy with GIE-RC, Cartesian coordinates, and internal coordinates is
shown in Table 1. The structure deviation was measured by averaged root mean square
deviation (RMSD) on ten pairs of structures. It is worthwhile to mention that the results
were based on representation variables directly, no AE model was involved.

Table 1. Average structure deviation between input structures and reconstructed structures based on
the representation variables given different percentages of noise.

System Structures No of
Atoms

% of
Noise

RMSD (Å) Torsion RMSD (◦)

GIE-RC Rd,θ,φ Rx,y,z GIE-RC Rd,θ,φ Rx,y,z

PLP
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5.0 2.73 13.56 3.42 2.34 10.79 102.92
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Here, lossless conversion to 3D coordinates could be achieved via GIE-RC without
any noise. When a given percentage of noise was imposed on the encoded vector, for both
coordinates and torsions, the RMSDs between input structures and decoded conformations
with the GIE-RC method were smallest among the three structural representation methods
(i.e., GIE-RC, internal coordinates (Rd,θ,φ), and Cartesian coordinates (Rx,y,z)). Furthermore,
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the RMSDs of GIE-RC increased modestly as the molecule size increased dramatically,
which is especially attractive for generating conformations of large molecules such as
peptides and proteins.

2.2. Accuracy of Graph-AE for Conformation Reconstruction on Different Datasets

The accuracy of our Graph-AE method was evaluated on the multi-conformation sets
of four molecules in Table 1, including two small molecules (PLP and ATP) and two peptides
(PDB ID: 2I9M and 1LE1). The structure deviations between Graph-AE reconstructions and
the original conformation are shown in Table 2. As a comparison, we also evaluated the
accuracy of naive AE reconstruction.

Table 2. The average RMSD between original structures and reconstructions among different models
on PLP, ATP, 2I9M,1LE1 and Ligand Depot datasets.

System Dataset
Graph-AE Naive AE

RMSD (Å) Torsion RMSD (◦) RMSD (Å) Torsion RMSD (◦)

PLP
Training set 0.22 6.68 0.22 5.73

Test set 0.39 15.80 0.59 18.46

ATP
Training set 0.59 10.46 0.30 10.74

Test set 0.9 17.69 0.68 15.23

2I9M
Training set 0.85 2.35 4.25 38.59

Test set 0.91 2.40 6.42 46.74

1LE1
Training set 0.74 2.30 3.80 38.83

Test set 0.76 2.31 5.05 40.07

Ligand Depot Training set 0.69 9.46 / /
Test set 0.78 10.18 / /

For small molecules, the accuracy of Graph-AE and naive AE was similar, as the
corresponding RMSDs between reconstructions and original conformations were 0.39 Å
and 0.59 Å for the test set of PLP and 0.9 Å and 0.68 Å for ATP, respectively. However, it was
difficult to directly model the conformational distribution of complex protein structures
due to high-dimension explosion. Thus, the accuracy of naive AE deteriorated significantly.
The coordinate RMSDs for the test sets of 2I9M and 1LE1 were 6.42 Å and 5.05 Å, respec-
tively, and the torsional RMSDs were 46.7◦ and 40.1◦ for the test sets of 2I9M and 1LE1,
respectively. In these cases, the reconstructed peptide structures collapsed. In contrast,
Graph-AE transformed the high-dimensional conformation generation task into a local
structure generation task with the constraint of graph embedding, making it easy to model
conformation distributions for complex biopolymers. Our results showed that the accuracy
of the Graph-AE model was much better than that of the naive AE model.

To further demonstrate the accuracy of the Graph-AE model, the distributions of
12 randomly selected bond lengths and torsional angles of 2I9M are shown in Figure 1 and
Figure S1–S3 in the Supporting Materials. It can be seen that the 3D coordinates generated
by Graph-AE were in good agreement with the ground truth in the test set.
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Figure 1. The distribution of 12 randomly selected pair distances, bond angles, and torsional angles
of 2I9M (a–l) in Graph-AE reconstructed conformations (red) and their ground truths in the test set
(blue).

We also evaluated the generalization capability of Graph-AE on the Ligand Depot
dataset, as shown in Table 2. The coordinate and torsional RMSDs of reconstructions
of unseen ligands in the test set were only 0.78 Å and 10.8◦, respectively, which was a
decent prediction. Several randomly selected reconstructions that aligned with the original
structures are shown in Figure 2. These results demonstrated that the encoded latent space
of GIE-RC was generalized enough to decode unseen molecule conformations under the
given graph information, enabling conformational reconstructions of unseen molecules. On
the other hand, the naive AE model cannot be used to generate conformations for unseen
molecules since graph information cannot be used to decode unseen molecules.
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Figure 2. Aligned structures of reconstructions and original conformation of unknown molecules in
Ligand Bank dataset.

2.3. Conformation Generation through Latent Space Interpolation

One use of the conformation generative model is to generate diverse conformations
for a given compound by sampling directly from the latent space instead of conducting
a conformation search. Therefore, we performed latent space interpolation for structure
generation and evaluated the structure quality of interpolations. In the case of the PLP
dataset, the conformations sampled from a MD trajectory mainly formed two clusters
around torsion of ∠DC4−C6−O3−P1 as shown in Figure 3a,c, which mainly reflected the
direction of the phosphoric acid group. The orange cluster represents the main pattern
of PLP in MD trajectories, located at ∠DC4−C6−O3−P1 o f 180◦. The gray cluster, located
at ∠DC4−C6−O3−P1 o f 60◦, represents a local energy minimum of PLP. We performed DB-
SCAN clustering to remove the noisy structures scattered between the two clusters of PLP.
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Then, we retrained both the Graph-AE and naive AE models with the conformations of
these two clusters, where the transition area between the clusters was not included in the
training set. Twenty pairs of start and endpoints were randomly selected to perform linear
interpolation in the latent space. The blue dots in Figure 3a,c represent the interpolated
conformations. The representative interpolations and distribution of randomly selected
internal coordinates of PLP are shown in Figures 4 and S4. It can be seen that the torsion
of ∠DC4−C6−O3−P1 was continuously changing among the interpolations of the Graph-AE-
and CNN-based AE models, indicating the continuity of the GIE-RC latent space. Inter-
estingly, the pyridine group remained unchanged among the interpolated conformations,
meaning there was clear correspondence between the latent space and physical meaningful
internal coordinates.
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The ATP case was more complicated, in which the initial conformations were clustered
around two torsions of ∠DPA−O5′−C5′−C4′

and ∠DO5′−C5′−C4′−O4′
as shown in Figure 3b,d.

The left-top cluster represents a metastable state of ATP, and the bottom-right cluster
represents the main cluster of conformations in the MD simulations. Similarly, DBSCAN-
based clustering and model retraining were also performed to ensure that the transition
area between two clusters was not included in the training set. As shown in Figure 4b, the
representative interpolations represented the transitional conformations of ATP, where the
ribose ring and triphosphoric acid group transformed from a ‘S’ shape to a ‘C’ shape.

Similar procedures were carried out for the 1LE1 and 2I9M datasets. Here, clusters
having more than 1000 conformations were kept to represent the primary clusters of the
MD simulation and the other minor conformations were removed from the datasets. After
retraining the Graph-AE models for 1LE1 and 2I9M, pairwise interpolations between all
cluster pairs were performed to evaluate the latent spaces which were not included in the



Molecules 2023, 28, 321 9 of 20

training set. Similarly, interpolation was carried out among 20 random pairs of start and
endpoints. As shown in Figure 5, the kernel density estimation (KDE) distribution of the
remained 1LE1 and 2I9M conformations and the interpolated conformations were mapped
on the 2D plane using the multi-dimension scaling (MDS) method [30]. It can be seen that
interpolations filled the empty area between the clusters. For 1LE1, interpolation was car-
ried out among all six major clusters. This demonstrated that the GIE-RC latent spaces were
continuous for given peptides. Some representative interpolated conformations between
the first and second clusters are shown in Figure 6, which represented a gradual folding
process from a twisted linear peptide into a deformed β-sheet for 1LE1 and an α-helix
conformation for 2I9M, respectively. The distribution of randomly selected interpolations
was in good agreement with that of the conformations of MD simulations (as shown in
Figures S6 and S7). These results demonstrated that the GIE-RC-based Graph-AE model
could be a useful tool for sampling meaningful conformations in transitional states.
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Figure 5. Distribution of primary patterns of datasets and conformations sampled via latent space
interpolations. (a) Cross interpolations between six clusters of 1LE1 with Graph-NAE, (b) cross
interpolations between three clusters of 2I9M with Graph-NAE.
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Figure 6. Eight representative interpolation structures between cluster 1 to cluster 2 ( 1©– 8©) of
(a) 1LE1 and (b) 2I9M.

2.4. Structure Augmentation for Neural Network-Based Force Field Constructions

In recent years, machine learning-based force field, marrying the accuracy of QM
methods with the efficiency of MM force field, has been a hot research area in MD simula-
tion and material design, and numerous models have been proposed [29,31,32]. Among
these efforts, the construction of reference dataset is crucial for accuracy of the model,
as the dataset should cover the targeted chemical space as much as possible and its size
should be as small as possible. Normally, an MD sampling operation is necessary for data
augmentation and an active learning scheme is also used for removing redundancy in the
dataset [33–35].

The function of the GIE-RC-based Graph-AE model in fast conformation sampling
makes it a useful data augmentation tool for constructing a neural network-based force
field. As an example, we applied the Graph-AE model to quickly build an ANI-1 type
neural network potential energy surface (NNPES) for the Ace-ALA-Nme peptide using
the default setting of the Torch-ANI package [36]. First, 6000 conformations were extracted
from a 60 ns MD simulation trajectory in an explicit water model and then used for training
an ANI-1 neural network potential at the PM6 level. The standard PM6 potential energy
surface (PES) and initial ANI-1 neural network potential energy surface (NNPES) among
the dihedral of ∠DC0−N1−Cα,1−C1 (φ) and ∠DN1−Cα,1−C1−O1 (ψ) are shown in Figure 7a,b. The
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RMSE (root mean square error) between initial ANI-1 NNPES and PM6 PES was 0.065 eV
and the location of the initial ANI-1 NNPES global minima was incorrect. These deviations
were mainly due to insufficient sampling in the transition region. The ANI-1 NNPES
could be gradually improved with the extension of MD sampling and finally converged
by running a 200 ns MD simulation and sampling with 20,000 structures, as shown in
Figure 7c. The details for building NNPES are discussed in Section 3.3, here we mainly
focus on how to augment our dataset of NNPES training.
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Figure 7. Potential energy surface (PES) of the Ace-Ala-Nme peptide among the dihedral of
∠DC0−N1−Cα,1−C1 (φ) and ∠DN1−Cα,1−C1−O1 (ψ) (a) Standard PES of PM6, (b) initial ANI-1 NNPES
trained at PM6 level with 60 ns MD sampling, (c) converged ANI-1 NNPES with 200 ns MD sampling,
(d) ANI-1 NNPES updated with interpolation structures of Graph-NAE, (e) PES of Amber FF14SB
force field, (f) PES of MMFF94 force field.
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Instead of enhancing the sampling by running a computationally expensive MD
simulation to improve the quality of the ANI-1 NNPES, we chose to train the Graph-AE
model with the initial 6000 MD sampled conformations of the Ace-ALA-Nme peptide, and
then performed pairwise interpolations between 4 major clusters of the 6000-conformation
set to augment our dataset for building NNPES. The interpolation was performed among
300 randomly selected pairs of start and endpoints with 20 equal interval interpolation
steps. Interpolated structures with energy values within 27 eV (1 Hartree) to the lowest
value of the initial dataset were added to the NNPES dataset and the ANI-1 potential
energy surface was then updated.

In total, the final dataset was augmented to 17,898 structures and the RMSE between
updated ANI-1 NNPES and PM6 PES was 0.044 eV, which was close to the accuracy of
ANI-1 NNPES built on conformations sampled from a 200 ns MD (RMSE 0.035 eV). Our
result clearly showed that the accuracy of the updated ANI-1 NNPES enhanced by the
conformations sampled from the Graph-AE model was significantly improved without
running another extended MD sampling. The 2D PES landscape is shown in Figure 7d.
The global minima of the Graph-AE model updated ANI-1 NNPES was around (−100◦,
50◦) and (75◦, −60◦), which was in a good agreement with those of standard PM6 PES. It
can also be seen that the local landscape of the high energy region was quite similar to the
standard PM6 PES. The local minima around (75◦, 50◦) were also well predicted in the AE
updated ANI-1 NNPES. As a comparison, we also computed the PES of our toy system
under Amber FF14SB and MMFF94 force fields, as shown in Figure 7e,f. In Amber FF14SB
PES, the global minima were around (0◦, 0◦), which is the global maximum in PM6 PES.
However, it is surrounded by high barriers, which makes the system hardly enter this region
in MD simulations. Local minima around (−100◦, 50◦), (75◦, −60◦), and (75◦, 50◦) also exist.
However, the potential energy in the ∠DC0−N1−Cα,1−C1 > 100◦ region was significantly
larger than its in ∠DC0−N1−Cα,1−C1 < −100◦, which disagreed with PM6 PES. The shape
of the MMFF94 force field is similar to that of PM6 PES. However, it also predicted the
global minima around (0◦, 0◦), similar to Amber FF14SB. ANI-1 NNPES provided a better
approximation to PM6 PES. In summary, these results suggested a potential application of
Graph-AE as a data augmentation tool of NNPES construction.

3. Methods and Materials
3.1. Generating Graph Information-Embedded Relative Coordinate (GIE-RC) for
Molecular Conformation

A given molecule’s 3D structure is usually expressed as a matrix composed of atom
types and coordinates. Its chemical properties should keep constant when its matrix repre-
sentation is changed due to atom order exchange or coordinate translation or rotation. The
derived machine learning model should be independent from these operations, which is
also called exchange invariance and SE (3) invariance. Various 3D representations were
previously proposed. For example, Xu [17] used a distance matrix to represent 3D infor-
mation, an array of fragment coordinates together with their torsional information was
used in GeoMol [24] for conformation representation, and explicit 3D coordinate repre-
sentation was used in GeoDiff [15] model. For most of these reported generative models,
reconstruction of coordinates was based on a global coordinate system, some of which did
not necessarily satisfy exchange invariance and SE (3) invariance. In contrast, we propose a
graph information-embedded relative coordinate model (GIE-RC) for representing molecu-
lar conformation, in which molecular 3D coordinates are encoded into atomic environment
features by constructing a local coordinate system and derived information from a 2D
topology graph. In this way, exchange invariance and SE (3) invariance is guaranteed. On
the other hand, this feature can be lossless converted to molecular 3D coordinates.

In the GIE-RC framework, assuming a local coordinate system is set up on a specific
atom, its atomic environment feature can then be defined by a 2D matrix composed by
the relative coordinates (RC) of neighboring atoms in the local coordinate system (i.e., the
local structure feature). For each molecule, such an atomic environment feature satisfies
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exchange, translational, and rotational invariance. The GIE-RC encoding workflow of a
molecule with N atoms contain five steps, as shown in Figure 8.

(1) The binary 2D adjacent matrix of a molecule is converted to a weighted graph distance
matrix R2D by first calculating the shortest bond distance between the atom pair using
the Dijkstra algorithm [37], then summing the standard bond length in the MMFF94
force field [38] as the distance of the atom pair in the graph. In this way, the element
in the R2D matrix is the weighted bond distance between the atom pair.

(2) A Coulomb matrix [39] M is constructed based on the weighted graph distance matrix
R2D, the element of the matrix Mij, as defined in Equation (1):

Mij =

0.5Z2.4
i ∀i = j

ZiZj

r2D
ij

∀i 6= j (1)

where Zi is the atomic number of atoms i and r2D
ij is the 2D weighted graph distance

between atom i and j. Then, a unique order S of atoms is determined by sorting the
eigen values [λ1, λ2 . . . λn] of Coulomb matrix M.

(3) Calculation of the relative coordinates of neighbor atoms within three bond distances
of center atom i. Here, atoms a and b (as shown in Figure 9) are the closest atoms to
atom i in the weighted 2D graph. If there are atoms which have the same distance
to atom i, their order is decided based on the order S. Ci

j is the relative coordinate of
atom j in the local coordinate system determined by i, a, b and defined in Equation (2):

Ci
j =

S2D

(
r2D

ij

)
Xi

j

r2D
ij

,
S2D

(
r2D

ij

)
Yi
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r2D
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,
S2D

(
r2D

ij

)
Zi

j

r2D
ij

 (2)

where {Xi
j, Yi

j , Zi
j} are the local 3D coordinates of atom j in the atom i centered coordi-

nate system. r2D
ij is the weighted 2D graph distance between atom i and j. S2D

(
r2D

ij

)
is

an attenuation factor defined in Equation (3), ensuring that the contribution of distant
atoms to the relative coordinates is gradually reduced to 0. rcs and rc are user defined
cut-off value set to 5.0 and 6.0, respectively, in the current study.

S2D

(
r2D

ij

)
=



1
r2D

ij
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ij < rcs

1
r2D

ij
∗
(

0.5 ∗ cos

(
π
(

r2D
ij −rcs

)
rc−rcs

)
+ 0.5

)
rcs < r2D

ij < rc

0 r2D
ij > rc

(3)

(4) Aggregate the RCs of neighboring atoms around central atom i to obtain the local
structure feature Fi (ie. GIE-RC) as the environment feature for atom i, which repre-
sents the local environment of atom i. The RCs of local structure feature Fi are sorted
by the weighted graph distance to atom i in increasing order.

Fi =
[
Ci

1, Ci
2, . . . .Ci

mi

]
(4)
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Here, mi is the number of neighbor atoms around atom i within three bond distances.
When the calculation of Fi for all atoms is done, the Fi tensor will be padded to the same
dimension of m with zeros, where m is the maximal neighbor atoms in the local structure
among all molecules of the dataset. Additionally, the order of two atoms with the same
graph distance to center i is determined by the standard order S of the Coulomb matrix M
in GIE-RC. Since the r2D

ij and S2D

(
r2D

ij

)
terms in Equation (3) are determined from the 2D

graph, the internal coordinates within the local structure around each central atom i can be
reversibly restored from the atomic environment feature Fi. In this way, we get a reversible
SE (3) invariant description of the local structure around any atom in the graph.

(5) All atomic environment features (Fi) are sorted by the standard order S and com-
pose a unique feature tensor F to represent the conformation, named as the graph
information-embedded relative coordinate matrix (GIE-RCM). After the encoding pro-
cess, every molecular conformation can be represented by a set of atomic environment
features {Fi}, i.e., Fi refers to the local structure feature of atom i.

As shown in Figure 1b, assuming that a molecular conformation is composed of a set
of internal coordinates [ic1, ic2, ic3 . . . ic3N ] (N is the number of atoms), the final internal
coordinates of the molecular conformation are then obtained by calculating the average
internal coordinates {ici} over all the local structures:

ici = 1/k ∑k
j=1 icj

i (5)

assuming ici existed in k local structures and icj
i refers to the obtained ici in the atom j

centered local structure.

3.2. Graph Constrained Autoencoder Model for Structure Generation

As mentioned above, the GIE-RC framework can turn the 3D conformation generation
task into a graph node feature generation. A graph-constrained autoencoder (Graph-AE)
model was utilized for conformation generation, as shown in Figure 10.
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The Graph-AE model contains two encoder modules, one is the graph convolution
network (GCN) to generate 2D graph information around each atom, and the other one is
the encoder for the GIE-RC-based local structure feature Fv, which contains 3D information
of the neighboring atoms around each atom, as described in the previous section. In general,
a given molecule can be expressed as a graph G = (V, E) including the features for all
nodes xv, ∀v ∈ V and features for all edges xev,w , ∀ev,w ∈ E. For a given node v, its initial
node feature xv is concatenated from the one-hot encoding of its atomic number, atom
degree, formal charge, chirality, and hybridization state. The edge feature xev,w is defined
by the one-hot encoding of the bond type between node v and w. The initial embedding
of xv and xev,w in a graph are annotated as h0

v and h0
ev,w . After passing through a modified

message passing neural network, CMPNN [40], which can improve the molecular graph
embedding by strengthening the message interactions between edges and nodes, the node
embeddings hv are extracted as the representation of graph information around node v. To
be consistent with the definition of local structure feature Fv, three layers of CMPNN were
set to generate graph information in three bonds distances of each atom.

3D coordinates of the input molecule were encoded to RC-based local structure features
{Fv} (as illustrated in Figure 8a). A simple multi-layer MLP module was then used to
transform Fv to latent vector zv. To improve the generalization of the AE model, gaussian
noise Ng was added to zv. The graph embedded hv and the GIE-RC-related embedded zv
were concatenated and fed into the decoder module. The decoder tried to reconstruct Fv for
each node. The whole encoding-decoding process can be expressed as Equations (6)–(8).

hv = CMPNN(v, G) (6)

zv = Encoder(Fv) (7)

Fo
v = Decoder

(
CONCAT

(
hv, zv + Ng

))
(8)

In Graph-AE, the loss function was calculated based on mean standard error (MSE) as
following equation:

LGraph−AE = MSE(Fo
v , Fv) (9)

As a comparison, a naive AE model (without graph constraint) was also trained to
directly reconstruct the matrix F of GIE-RC. The encoder contained a CNN module for
GIE-RC feature extraction and an MLP for encoding latent vectors. Here, the decoder
network was symmetrical to the encoder, and the model was also optimized with the MSE
loss between Fo

v and Fv.

3.3. Datasets and Computational Settings

As shown in Figure 3b, the Graph-AE model contained a GCN module including
three message-passing layers. Its encoder and decoder modules had the same architecture,
and each contained three dense layers with 256 neurons. In the CNN-based naive AE
model, the encoder comprised three 2D convolutional layers and two dense layers with 128
neurons. The decoder contained two dense layers with 128 neurons and five 2D transposed
convolutional layers for better reconstruction.

Both models used the Tanh activation function and were optimized with the Adam
algorithm and decayed learning rate. The dimension of latent space was 128. The training
process stopped when learning rates dropped to 10−8. We adopted an early stop strategy
to save computational costs. The percentage noise of the Graph-AE and CNN-based
AE models was set to 5% to improve the generalization of the model. All training was
performed on single iGame GeForce RTX-2080ti GPU (Shenzhen, China).

For calculating GIE-RCs, the user-defined cutoffs Rcs and Rc in Equation (4) were set to
5.0 Å and 6.0 Å, respectively. In the decoding stage, the DBSCAN clustering algorithm [41]
in Scikit-learn [42] was used to remove noise or unreasonable values. In each dimension,
only the biggest cluster was used to obtain average internal coordinates among different
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local structures around each atom. The eps parameter of DBSCAN for bond distance, angle,
and dihedral were 0.1 Å, 20◦, 20◦, respectively.

We evaluated the conformation reconstruction performance of the Graph-AE and
naive AE models on four conformation datasets, including drug-like molecules and pep-
tides (as shown in Table 1). The PLP and ATP datasets were compounds with 2500 and 5000
conformations, respectively. They were separately extracted from 50 ns and 100 ns MD tra-
jectories in TIP3P explicit water models at equal intervals. The 2I9M and 1LE1 datasets were
two peptides with α-helix and β-sheet conformations, respectively. The x-ray structures
were obtained from the Protein Data Bank (PDB) database (http://www.rcsb.org/pdb/,
accessed on 20 December 2021). Each dataset contained 20,000 conformations, extracted
from 500 ns folding MD trajectories in explicit water. Additionally, the Ligand Depot
dataset [43], including 36,244 ligands from the PDB Bank [44], was used to evaluate the
generalization capability of Graph-AE. For all datasets, the training set and test set were
obtained by randomly spliting at a ratio of 9:1.

All MD simulations carried out in the current study (including PLP, ATP, 2I9M, 1LE1,
and the Ace-ALA-Nme peptide) were performed with the Amber 18 package [45]. The
solute was solvated in a TIP3P water box with a radius of 20 Å. The peptide and ligand force
field parameters were from the FF14SB and GAFF force fields, respectively, and Langevin
dynamics drove simulations in the NPT ensemble with a collision frequency of 2 ps−1.
Additionally, the QM calculations of the Ace-ALA-Nme peptide were carried out with the
Gaussian 16 [46] package at the PM6 level.

The ANI neural network potential energy surface (NNPES) model was trained using
the default setting of the Torch-ANI package [36]. Each ANI NNPES model contained
4 subnets for elements of H, C, N, and O, respectively. The subnet consisted of 3 hidden
layers with 500 neurons. Both the energy and force information were used in the training
of NNPES with RMSE loss between predictions and references. AdamW [47] and SGD [48]
algorithms were used to optimize the weight and bias of subnets, respectively. The learning
rate decay in the training process was determined with the ReduceRLOnPlateau algorithm
and the training process stopped when the learning rate was less than 10−6. As a compari-
son, MMFF94 [38] and Amber FF14SB [49] force field PES were also provided, which were
computed with RDKit [50] and OpenMM [51], respectively.

4. Conclusions

Here, we propose a novel structure representation method for a 3D generative model,
named GIE-RC, which is insensitive to errors and satisfies translational and rotational
invariance. It was used to encode molecular 3D coordinates in a reversible and lossless
manner. By combining the GIE-RC concept with the graph-constrained autoencoder model,
a complex 3D generation task can be turned into a node feature generation problem.
Several examples were shown, demonstrating that the GIE-RC-based Graph-AE model
can be used to efficiently sample molecular conformations of small molecules, as well as
peptides, through interpolation in the latent space. We also applied the Graph-AE model for
sampling peptide conformations to build an ANI-1 neural network potential energy surface,
and our results showed that the derived NNPES using the conformations sampled from
the Graph-AE model were the same quality as the model with expensive MD simulations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010321/s1, The distribution of internal coordinates
in reconstruction of PLP, ATP and 1LE1 is as shown in Figures S1–S3; The distribution of internal
coordinates in interpolations of PLP, ATP, 1LE1 and 2I9M is as shown in Figures S4–S7.
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