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Abstract: Energetic materials (EMs) are the core materials of weapons and equipment. Achieving
precise molecular design and efficient green synthesis of EMs has long been one of the primary
concerns of researchers around the world. Traditionally, advanced materials were discovered through
a trial-and-error processes, which required long research and development (R&D) cycles and high
costs. In recent years, the machine learning (ML) method has matured into a tool that compliments
and aids experimental studies for predicting and designing advanced EMs. This paper reviews the
critical process of ML methods to discover and predict EMs, including data preparation, feature
extraction, model construction, and model performance evaluation. The main ideas and basic steps of
applying ML methods are analyzed and outlined. The state-of-the-art research about ML applications
in property prediction and inverse material design of EMs is further summarized. Finally, the existing
challenges and the strategies for coping with challenges in the further applications of the ML methods
are proposed.

Keywords: energetic material; machine learning; materials discovery and prediction; data augmenta-
tion; computer-learned representation

1. Introduction

Developing and exploring advanced EMs with high energy, low sensitivity, and good
thermostability today remains a challenge [1–10]. In general, the high energy of EMs
is always accompanied by increased mechanical sensitivity and decreased thermostabil-
ity [1,3,8]. EMs research has historically relied heavily on either trial-and-error processes
or serendipity, which require a great deal of tedious experimentation [2,5,11,12]. Many of
these intuition-based approaches are inefficient and time-consuming, and they can be costly
and risky [2,4,12,13]. Currently, the classical paradigm of material R&D is still based on
the method of “putting forward hypothesis—experimental verification”, to continuously
approach the target material [14–16].

In addition to the experiments, computational chemistry has also become a mature
approach to complement and aid experimental studies for predicting and designing novel
EMs [2,12,16–24], such as the density functional theory (DFT) method [25,26]. Several
empirical models have been developed to guide the EMs design, including the Kamlet-
Jacobs equation and the nitro charge method [27,28]. However, to accurately calculate the
microstructure parameters and properties of materials, computational chemistry methods
require a large number of calculations by high-performance computers [1,2,29,30]. Even
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though the computing power of modern computers has been huge, in the face of multi-scale
calculation of complex properties of materials, computational chemistry methods require
substantial computing resources, and the time and economic costs are very high [1,2,30,31].

The ML method is extracting patterns and insight from data and finding the statistical
law behind the data to produce reliable, repeatable decisions and results [13,16,21,26,32–39].
Physical insight and mechanisms were used extensively to construct classical models,
such as conservation laws and thermodynamics for regressing linear or slightly nonlinear
parameters [16,40]. The ML method takes a different route: instead of relying on principles
or physical insights, it relies on data and algorithms [26,41]. As big data are becoming
more readily available, data-driven or ML methods have opened new paradigms for the
discovery and rational design of materials [41]. By applying ML methods, R&D costs
for advanced materials can be reduced, and the R&D speed of advanced materials can
be increased [24,42–51]. The application of ML methods in the research field of EMs has
gradually received more and more attention [2,24,52,53]. For example, Nguyen et al. [24]
aimed to predict the crystalline density of a class of EMs known as high explosives (HE) by
the ML method.

A large number of systematic reviews have been written on the application of the ML
method in material research, such as in lithium-ion batteries [54], mechanical metamate-
rials [55], catalysts [56–58], nanoparticles [59], and in field of pyrolysis, thermal analysis,
and thermokinetic studies [60]. On the contrary, a relatively small number of reviews have
been published on applying the ML method in the research field of EMs [61]. Herein, this
review mainly focuses on the scientific progress of ML applications in EMs over the last
decade. First, a brief workflow on various ML methods is put forward, and we describe
the main ideas and basic procedures for employing ML approaches. We then highlight
the state-of-the-art research about the applications of ML for property prediction and the
novel EMs discovery. In the last section, we discuss various challenges regarding the
development of ML methods for EMs, and ideas for addressing them. Lastly, conclusions
are presented along with an outlook.

2. ML Workflow

Generally speaking, the workflow of ML is to build models based on reliable data and
suitable features, to optimize the models continuously, and to predict and design the target
eventually, as illustrated in Figure 1.
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As shown in Figure 1, the basic steps for applying ML methods include data prepara-
tion, feature engineering, model construction, and model performance evaluation [16,62].
However, the application steps of ML methods will vary according to the different re-
search objects. Thus, in this review, we describe the main ideas and basic procedures for
employing ML approaches for EMs property prediction and inverse material design.
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2.1. Data Preparation

It is common for ML-based applications in EMs to begin with the construction of new
datasets and/or the utilization of existing datasets. It is recommended that the datasets are
divided into three parts, namely, the training datasets for training the model, the verification
datasets for parameter adjustments, and the test datasets for testing the model.

Data is the key to effective ML application. The data in the dataset mainly consists
of experimental results, computational results, and data from the literature. Song et al. [1]
gathered more than 1000 pieces of EMs data from the literatures to train the property
of regression models. A wide variety of molecules were included in the dataset, includ-
ing aliphatics, aromatics, monocyclics, and polycyclics [1]. To accelerate the discovery
of energetic melt-castable materials, Song et al. [63] collected more than 1000 pieces of
data from the literature to construct a structure-property dataset for ML model training.
Chandrasekaran et al. [64] compiled a dataset, which consists of 104 data points for a wide
range of carbon, hydrogen, nitrogen, and oxygen (CHNO) explosives at different loading
densities, using experimental data available in the literature [64].

Nguyen et al. [24] curated a dataset of energetic-like molecules from the Cambridge
Structural Database (CSD) and sub-selected from the database molecules that either are
known HE or are similar to this family of compounds by imposing several restrictions [24].
To train the classification model, Song et al. [1] prepared 365 entries indicating not graphite-
like and 22 entries indicating graphite-like from the Cambridge Crystallographic Data
Centre (CCDC). Casey et al. [65] procured molecules from the GDB database [66,67] to
consider only those with “energetic potential” according to oxygen balance (OB). Walters
et al. [68] used the void size distribution to quantify key features of the microstructure and
the hydrodynamic reaction rate across a range of shock pressures to measure the initiation
performance of EMs. Then they used the reactive flow model working in the hydrodynamic
solver system to generate the training dataset [68]. The common databases in the pieces of
literature are shown in Table 1.

Table 1. The common databases in the pieces of literature.

No. Database Name Sources

1 CCDC [1,53,69,70]
2 GDB [65,71]
3 CSD [4,24,72–74]
4 PubChem [72,73,75,76]

A sufficient quantity, quality, and diversity of data were necessary for ML methods,
and results could be impressive when sufficiently large datasets are available [2]. However,
for data preparation in the research field of EMs, setting up an extensive database is
impractical as the available datasets are limited and difficult to collect. In particular, the
amount of data was too small and unsuitable for the deep learning method. However,
generative ML models must be able to handle small datasets to solve project-tailored design
tasks in EMs research. In such cases, data augmentation has been proposed as an effective
strategy to work in small-data regimes and obtain reliable results for the research of EMs
and other materials [34,77,78].

Moret et al. [34] augmented the data using the simplified molecular input line entry
specification (SMILES) enumeration trick, which generated multiple different SMILES
strings that represented the same molecule. To reliably screen the potential EMs with a
high detonation velocity, Li et al. [79] also utilized the SMILE enumeration augmentation
to build a recurrent neural network (RNN)-based prediction model. SMILES enumeration,
as proposed by Arús-Pous et al. [80], is an important data-augmentation technology for
molecular deep learning. In addition, given the problem of data scarcity, Elton et al. [2]
would like to challenge the assumption that large datasets are necessary for the ML method
to be useful by doing the comparison of ML methods to energetic data. Elton et al. [2]
focused on a small but diverse dataset consisting of 109 molecular structures spread across



Molecules 2023, 28, 322 4 of 27

10 compound classes. The scholars did this using a dataset of 109 energetic compounds
computed by Huang and Massa [2,29]. While they later introduce additional data from
Mathieu [81] for most of their work, they restrict their study to the Huang and Massa data
to demonstrate how well different ML models and featurization work with small data.

Due to the diversity of data sources for ML models, data fidelity is important in
constructing reliable and accurate ML models [82,83]. For example, ML models devel-
oped using low-fidelity data will be limited in accuracy [82,83]. Thus, in addition to the
frequently-used data augmentation approach mentioned above, there is also a noticeable
method developed to overcome data scarcity in materials science. Patra et al. [84] intro-
duced the multi-fidelity (MF) information fusion approach to build powerful prediction
models of polymer bandgaps. The MF information scheme that utilizes information avail-
able at different levels of fidelity could be a more optimal way to build predictive surrogate
models [84]. In principle, the MF information fusion approach could also be used in the
data preparation of ML for the prediction and construction of novel EMs.

In the applications of ML methods for EMs, the low data regime is typical data
development environments. Data augmentation, reasonable feature selection, and model
construction are the critical strategies for successfully applying ML methods in a small
data environment.

2.2. Feature Engineering

An effective ML model requires developing suitable machine-readable representa-
tions [36,65]. The machine-readable representations were commonly called “descriptors”,
“features”, “fingerprints”, or “profiles” [36,65]. It was possible to improve the predictive
power of ML models without having an extensive database by selecting features based on
the physicochemical nature of the target properties [73].

In the research field of materials science, how to quantitatively represent molecules
is the key to implementing the ML method [36,85–87]. Since the 1970s, molecular repre-
sentations have evolved from chemical informatics models [88]. Chemical databases were
scanned for structural similarity using fast bitwise logic using fingerprints, which encode
molecular 2D substructures as overlapping lists of patterns [88]. For example, a common
approach to representing molecules with fixed-length bit vectors corresponds to the pres-
ence or absence of features using E3FP [88] and ECFP [89]. Song et al. [1] constructed
the halogen elements from the electron-topological state fingerprint [90–92], which has
been widely used to construct different models for predicting molecular properties. The
SMILES representation was also developed to encode the structure of a chemical species
into short ASCII strings, making it suitable for text-based models [13,26,30,93,94], as shown
in Figure 2.

Decades of research have gone into developing effective descriptors to index a large
number of molecular structures [95]. For example, Xie et al. [13] considered four types
of descriptors to characterize the molecular structure, such as sum over bonds, extended
connectivity fingerprint, E-state fingerprint, and custom descriptor set. This is especially
relevant as numerous investigations have shown that the molecular descriptor selection
can influence model accuracy more than the choice of the ML algorithm [1,2,24,56,65].
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2.2.1. Traditional Class of Molecular Representation

In general, a descriptor is a set of features that are manually derived and incorporate
domain knowledge about chemical properties to provide necessary information about
molecular structures [95]. For example, RDKit is an open-source toolkit for chemical
informatics [13,92]. This approach was suitable for traditional ML approaches that require a
predetermined set of engineered features [24]. The traditional feature extraction undertaken
by researchers is illustrated in Figure 3.
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Custom descriptors were defined to enhance descriptions of molecular shapes, en-
ergetic characteristics, and interactions between molecules [63]. Song et al. [1] defined a
custom descriptor set containing 29 molecular descriptors, which are related to the elements
of carbon, hydrogen, oxygen, and nitrogen [1]. With this custom descriptor set, researchers
will be able to describe molecular shape and composition, such as the plane of best fit and
OB, so that they can learn more about EMs’ properties [1]. Wang et al. [4] constructed
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the descriptors of a molecule including elementary percentage, OB, substituent kind and
number, and type of two adjacent substituents [4].

A comprehensive comparison of several molecular featurization methods, including
the sum over bonds, custom descriptors, coulomb matrices, bag of bonds, and fingerprints
was presented by Elton et al. [2]. The first descriptor they chose was OB [2]. Next, the
nitrogen/carbon ratio was chosen [2], which is a well-known predictor of energetic perfor-
mance [97]. Substituting nitrogens for carbon generally increases performance since N=N
bonds yield a larger heat of formation/enthalpy change during detonation compared to
C-N and C=N bonds [97]. Moreover, Elton et al. [2] stated that with small data, significant
gains in accuracy can sometimes be achieved by hand-selecting features using chemical
intuition and domain expertise. For example, the number of azide groups in a molecule was
known to increase energetic performance while also making the compound more sensitive
to shock [2].

To efficiently extract the desired physicochemical properties from a relatively small
database, Chen et al. [73] proposed the concept of spatial matrix descriptors. Under this
concept, volume occupation spatial matrix and heat contribution spatial matrix were
constructed as descriptors for ML models to feature spatial distribution of mass and energy
of the energetic molecules in atomic view to predict the crystalline density and solid
phase heat of formation [73]. The idea behind spatial matrices was to reduce redundant
information concerning target properties in the coulomb matrix by adding proper physical-
chemical causality relationships.

The bulk modulus (mechanical property) and the impact sensitivity are crucial for
energetic compounds. However, relationships have not been elucidated between the
molecular structure, the bulk modulus, and the two important properties. Deng et al. [74]
obtained 17 molecular descriptors for impact sensitivity as the target property, including
eight classes composed of 2D autocorrelations, geometrical descriptors, descriptors, atom-
centered fragments, etc. It was found that the main contributions of the descriptors
to the impact sensitivity come from the geometric distance between oxygen atoms, the
number of oxygen-containing double bonds, hydrophilicity and the distribution of atomic
properties [74].

2.2.2. Computer-Learned Representation

Generative deep learning methods represent a class of ML algorithms that learn
directly from the input data and do not necessarily depend on explicit rules coded by
humans [34]. For example, deep learning networks are capable of learning rich data repre-
sentations [34,65], which provided a compelling motivation to use deep learning networks
to learn molecular structure-property relations from “raw” data [65]. The computer-learned
representation is illustrated in Figure 4.
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Song et al. [1] developed a more reliable method for screening potential energetic
compounds with low sensitivity. Since there is a widely recognized close correlation be-
tween graphite-like layered crystal structure and low-impact sensitivity in EMs [9,69,98],
Song et al. [1] tried to translate the direct prediction of impact sensitivity into a special
structural identification of graphite-like layered crystal packing. Accordingly, the convolu-
tional neural network (CNN) and long short-term memory (LSTM) [99,100] were chosen to
capture the chemical intuition necessary to distinguish among molecules regarding possible
graphite-like crystal structures. The framework is shown in Figure 5.
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As seen in Figure 5, the CNN was trained using the one-hot encoding of the SMILES
strings [93,94] as input [1]. A comparison of the training process indicates that the
SMILES_Onehot + CNN model was better than the other models. Beyond selecting
molecules of interest, CNN requires that each molecule has an associated “input” and
“output”. To bypass feature selection, a CNN was proposed to learn a mapping directly
from the molecule electronic structure and is described as a 3D spatial point data for charge
density and electrostatic potential stacked into a 4D tensor [65]. This method effectively
bypasses the need to construct complex representations, or descriptors, of a molecule. To
capture the main driving force to crystallization, Jiang et al. [72] developed a graph neural
network (GNN) model-based deep learning framework to predict the formation of the
co-crystal. This model outperformed seven competitive models and three challenging
independent test sets involving pharmaceutical co-crystals, π–π co-crystals, and energetic
co-crystals with greater than 96% accuracy [72].

In the application process of the ML method, molecular representations are the bridge
and link between data and the model algorithm. With the development of deep learn-
ing methods in recent years, computer-learned representation has more advantages than
traditional class feature extraction [1,24,70–72,74,79,101]. The main disadvantage of deep
learning is that the amount of computational power required depends heavily on the number
of samples, and on the number of hidden layers and sophistication of the network [96]. For
the specific physical quantities, the prediction errors of the computer-learned representation
and traditional class feature extraction were summarized [1,24,70–72,74,79,101]. The predic-
tion performance of the computer-learned representation and the traditional class feature
extraction for certain physical quantities is summarized in Table 2 for better comparisons.
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Table 2. A comparison of the prediction performance by the computer-learned representation and the traditional class feature extraction.

Model Category Target EMs Target
Property Main Method Accuracy F1 Score Mean Absolute

Error (MAE)
Root Mean Square

Error (RMSE)
Determination
Coefficient (R2) Source

The classification
model

Graphite-like
layered crystal

Impact
sensitivity

CNN 0.98 0.94 / / /
[1]LSTM 0.93 0.78 / / /

K-nearest neighbor (KNN) 0.95 0.33 / / /

The regression
model

HE Density

Support vector regression
(SVR) / / / 0.085 0.683

[24]
Random forests (RF) / / / 0.053 0.878

Partial least-squares regression / / / 0.048 0.9
Message passing neural

network (MPNN) / / / 0.044 0.914

The regression
model

Nitramines Density

Group addition method / / 0.092 0.12 0.686

[70]

Support vector machine (SVM) / / 0.097 0.122 0.796
RF / / 0.088 0.105 0.624

Quantitative
structure−property

relationship based on the DFT
(DFT−QSPR)

/ / 0.041 0.057 0.941

GNN / / 0.04 0.047 0.944

The regression
model

CHNO-containi-ng
energetic molecules

Detonation
velocity

RNN / / 0.0968 0.1391 0.9445

[79]
RNN model with inclusion of

the pretrained knowledge
(SRNN)

/ / 0.0801 0.1273 0.9572

RF / / 0.1812 0.2524 0.819
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As shown in Table 2, to more reliably screen the molecules with a high detonation
velocity, the SMILE enumeration augmentation coupled with the pretrained knowledge
was utilized to build an SRNN prediction model, through which R2 was boosted from
0.9445 to 0.9572 [79].

2.3. ML Models in EMs Prediction and Construction

ML model and algorithm are inseparable. ML algorithms can be broadly classified
into supervised and unsupervised learning algorithms. The supervised learning algorithm
may be further classified into regression and classification. In material design, by using a
set of known materials and their properties, a supervised learning algorithm attempts to
identify a function that can predict the properties of novel materials. The process is known
as regression if the target property is continuous. Classification is identifying the prediction
function when the outputs are discrete targets. By using unsupervised learning methods,
such as clustering, input data are identified as having a relationship among themselves. A
list of important ML methods in the literature is shown in Table 3.

Table 3. A list of important ML methods in the literature.

Method Category Target Property Source

KRR Regression
Density, detonation velocity, detonation pressure,

decomposition temperature, heat of formation, heat of
explosion, enthalpy of formation, burn rate

[1,13,73,101]

Least absolute shrinkage and
selection operator Regression Density, molecular flatness, bond dissociation energy, heat

of formation, heat of explosion, enthalpy of formation [4,13,73]

Linear regression model Regression Heat of formation, heat of explosion, burn rate [13,76,101]
Logistic regression Regression Heat of explosion [76]

Multiple linear regression Regression Density, molecular flatness, bond dissociation energy, heat
of formation [4,8]

Gaussian process regression
model (GPR) Regression Heat of formation, heat of explosion, burn rate [13,101]

Artificial neural network
(ANN) Regression, classification Detonation velocity, density, heat of explosion, bulk

modulus, impact sensitivity [64,74,102–105]

SVM Regression, classification Density, molecular flatness, bond dissociation energy, heat
of formation, impact sensi-tivity, heat of explosion [4,13,70,72]

SVR Regression Density, enthalpy of formation, heat of explosion, burn rate [73,76,101]

CNN Regression, classification Graphite-like layered crystal structure, enthalpy of
formation [1,75]

RNN Regression, classification Detonation velocity [79]

LSTM Regression, classification Density, detonation velocity, detonation pressure,
decomposition temperature, enthalpy of formation [1,75]

GNN Regression, classification Density, impact sensi-tivity, heat of explosion [70,72]
Deep neural network (DNN) Regression, classification Impact sensi-tivity, heat of explosion [72]

RF Regression, classification
Density, molecular flatness, bond dissociation energy, heat

of formation, enthalpy of formation, impact sensi-tivity,
heat of explosion, burn rate

[4,70,72,73,76,101]

KNN Regression, classification
Density, detonation velocity, detonation pressure,

decomposition temperature, enthalpy of formation, burn
rate

[1,73,101]

Multilayer perceptron (MLP) Regression, classification Burn rate [101]
Decision tree Regression, classification Burn rate [101]

High-dimensional neural
network Regression, classification Binding energy, atomic force [37]

Generative adversarial
networks Regression, classification Porosity distribution [52]

MPNN Regression, classification Density, impact sensi-tivity [24,71]

As seen in Table 3, ML methods adopted in the literature can be classified as the
supervised learning algorithm. Moreover, some methods are in the category of traditional
ML models, others are deep learning methods, and all the methods are in the category of
regression and classification.
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2.3.1. The Regression Models

The density and enthalpy of formation are measures of how much energy is stored in
the EMs [5,70]. Density is an important indicator because it is directly related to the deto-
nation velocity [24]. Detonation velocity is one of the basic indicators of the performance
of explosives and is related to the fundamental elemental and structural properties of the
explosives [64]. To directly characterize energetic performance, the heat of the explosion
was also used as the target property [76]. The prediction of such properties was of great
interest to those dealing with the EMs synthesis [64]. For example, the reported heterocyclic
EMs possess increased densities, high enthalpies of formation, and high stability to various
forms of external stimuli [5]. The framework of the density prediction model [70] is shown
in Figure 6.
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As shown in Figure 6, the model training process was implemented by using a mul-
tilayer ANN model [70]. The conventional SVM and RF models were also employed to
build QSPRs between the molecular topology and crystal density [70]. The GNN-based
model has higher accuracy and lower computational resource cost than the widely ac-
cepted DFT−QSPR model [70]. Using a database containing 451 energetic molecules, Chen
et al. [73] showed that volume occupation spatial matrix and heat contribution spatial
matrix can improve the accuracy in predicting EMs’ crystal density and solid phase en-
thalpy. Their mean absolute errors were reduced from 0.048 g·cm−3 and 24.67 kcal·mol−1

to 0.035 g·cm−3 and 9.66 kcal·mol−1, respectively.
Nguyen et al. [24] focused on several regression-based methods, which are compatible

with the molecular-level featurization methods of RDKit and the E3FP fingerprints [24].
Nguyen et al. [24] developed and evaluated: (1) an MPNN-based model, which utilizes



Molecules 2023, 28, 322 11 of 27

RDKit atom- and bond-level features to describe network nodes (atoms) and edges (bonds)
but yields a learned overall molecular representation; (2) RF- and partial least-squares
regression (PLSR)-based models with RDKit molecular-level features and (3) a SVR model
using E3FP fingerprints. The results showed that the MPNN-based models with computer-
learned molecular representations generally perform best, outperforming the RF and SVR
models at predicting crystalline density and performing well even when testing on a dataset
not representative of the training data. It was demonstrated that, despite the absence of
crystal structure information or quantum mechanical calculations, the ML method can
learn relationships between crystalline properties of molecules and chemical structures [24].
The overview of density regression models [24] is shown in Figure 7.

Molecules 2023, 28, x FOR PEER REVIEW 11 of 27 
 

 

squares regression (PLSR)-based models with RDKit molecular-level features and (3) a 
SVR model using E3FP fingerprints. The results showed that the MPNN-based models 
with computer-learned molecular representations generally perform best, outperforming 
the RF and SVR models at predicting crystalline density and performing well even when 
testing on a dataset not representative of the training data. It was demonstrated that, de-
spite the absence of crystal structure information or quantum mechanical calculations, the 
ML method can learn relationships between crystalline properties of molecules and chem-
ical structures [24]. The overview of density regression models [24] is shown in Figure 7. 

 
Figure 7. Overview of density regression models [24]. Copyright 2021 American Chemical Society. 

An approach to using the ANN technique to predict the detonation velocity had been 
attempted by Chen et al. [102]. However, Chen et al. [102] considered only the chemical 
composition of CHNO for predicting detonation velocity [102]. The CNN model has 
jointly trained on over 20,000 molecules that are potentially EMs to predict dipole mo-
ment, total electronic energy, Chapman−Jouguet (C−J) detonation velocity, C−J pressure, 
C−J temperature, crystal density, and solid phase heat of formation [65]. The selected 
model architecture [65] is shown in Figure 8. 

  

Figure 7. Overview of density regression models [24]. Copyright 2021 American Chemical Society.

An approach to using the ANN technique to predict the detonation velocity had been
attempted by Chen et al. [102]. However, Chen et al. [102] considered only the chemical
composition of CHNO for predicting detonation velocity [102]. The CNN model has
jointly trained on over 20,000 molecules that are potentially EMs to predict dipole moment,
total electronic energy, Chapman−Jouguet (C−J) detonation velocity, C−J pressure, C−J
temperature, crystal density, and solid phase heat of formation [65]. The selected model
architecture [65] is shown in Figure 8.

As shown in Figure 8, this architecture shares a convolutional base that greatly reduce
the number of inputs seen by the final eight fully connected layer blocks [65]. Additionally,
joint learning provided a means for the network to learn a richer set of representations [65].
The 3D CNN model, without any parameter tuning, outperformed tuned RF models using
extended-connectivity fingerprints. This model attained an excellent generalization error
even when making predictions on structurally dissimilar molecules, as observed with
scaffold-based splitting [65]. Chandrasekaran et al. [64] developed two ANN models.
Model 1 showed that it can predict the detonation velocity of a wide range of CHNO
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explosives at various loading densities, the effect of density on detonation velocity, as well
as possible predictions of detonation velocity in unexplored environments. In Model 2, the
N and O composition of C, H, N, and O-based explosive molecules could be predicted for a
targeted detonation velocity. Chandrasekaran et al. [64] presented the possible usage of the
ANN method for predicting detonation velocity that can be of use in EMs research.

Molecules 2023, 28, x FOR PEER REVIEW 12 of 27 
 

 

 
Figure 8. Selected model architecture. An example molecule, 2-nitrofuran, is represented by a stand-
ardized input [65]. Copyright 2020 American Chemical Society. 

As shown in Figure 8, this architecture shares a convolutional base that greatly re-
duce the number of inputs seen by the final eight fully connected layer blocks [65]. Addi-
tionally, joint learning provided a means for the network to learn a richer set of represen-
tations [65]. The 3D CNN model, without any parameter tuning, outperformed tuned RF 
models using extended-connectivity fingerprints. This model attained an excellent gener-
alization error even when making predictions on structurally dissimilar molecules, as ob-
served with scaffold-based splitting [65]. Chandrasekaran et al. [64] developed two ANN 
models. Model 1 showed that it can predict the detonation velocity of a wide range of 
CHNO explosives at various loading densities, the effect of density on detonation veloc-
ity, as well as possible predictions of detonation velocity in unexplored environments. In 
Model 2, the N and O composition of C, H, N, and O-based explosive molecules could be 
predicted for a targeted detonation velocity. Chandrasekaran et al. [64] presented the pos-
sible usage of the ANN method for predicting detonation velocity that can be of use in 
EMs research. 

2.3.2. The Classification Models 
Compared with the regression model, the application of the classification model in 

ML methods for developing advanced EMs was relatively less but mainly focused on the 
prediction of the sensitivity of EMs. For decades, it has been known that high-performance 
explosives are characterized by high impact sensitivity, i.e., low values of the drop weight 
impact height H50 [81]. Zhang et al. [28] developed and established a method of calculating 
the Mulliken net charges of the nitro group, QNO2, to assess impact sensitivities for nitro 
compounds. The result [28] showed that the charges on the nitro group could be regarded 
as a structural parameter to estimate the impact sensitivity on the bond strength, OB, and 
molecular electrostatic potential. The nitro compound with more -QNO2 will be insensitive 
and have a large impact sensitivity H50 value. This method considering the molecular 
structure was applicable for almost all nitro compounds when the C-NO2, N-NO2, or O-
NO2 bond is the weakest in the molecule. According to the results, the nitro compounds 
with -QNO2 > 0.23e show H50 ≤ 0.4 m [28]. 

In recent years, the ANN technique has been used for the prediction of impact sensi-
tivity of EMs [74,103–106]. Materials with high energies and low-impact sensitivity usu-
ally have π−π stacking in conjunction with hydrogen bonding. A rather large π-bond is a 
requisite for the π−π stacking, and the π−π stacking can be classified into four patterns, 
including face-to-face stacking, wavelike stacking, crossing stacking, and mixing stacking 
[3]. The results [9] also indicated that the layer-by-layer geometries of high-performance 
insensitive EMs can readily absorb mechanical stimuli by converting kinetic energy into 
layer sliding, resulting in lower sensitivities. Deng et al. [74] found a significant correlation 
between the impact sensitivity and the bulk modulus, which is mainly dependent on the 
number of C, H, O, and N atoms, the molecular weight, and the OB by using the ANN 
and other models. Nowadays training a general model for sensitivity is still difficult, since 

Figure 8. Selected model architecture. An example molecule, 2-nitrofuran, is represented by a
standardized input [65]. Copyright 2020 American Chemical Society.

2.3.2. The Classification Models

Compared with the regression model, the application of the classification model in
ML methods for developing advanced EMs was relatively less but mainly focused on the
prediction of the sensitivity of EMs. For decades, it has been known that high-performance
explosives are characterized by high impact sensitivity, i.e., low values of the drop weight
impact height H50 [81]. Zhang et al. [28] developed and established a method of calculating
the Mulliken net charges of the nitro group, QNO2 , to assess impact sensitivities for nitro
compounds. The result [28] showed that the charges on the nitro group could be regarded
as a structural parameter to estimate the impact sensitivity on the bond strength, OB, and
molecular electrostatic potential. The nitro compound with more -QNO2 will be insensitive
and have a large impact sensitivity H50 value. This method considering the molecular
structure was applicable for almost all nitro compounds when the C-NO2, N-NO2, or
O-NO2 bond is the weakest in the molecule. According to the results, the nitro compounds
with -QNO2 > 0.23e show H50 ≤ 0.4 m [28].

In recent years, the ANN technique has been used for the prediction of impact sensi-
tivity of EMs [74,103–106]. Materials with high energies and low-impact sensitivity usually
have π−π stacking in conjunction with hydrogen bonding. A rather large π-bond is a
requisite for the π−π stacking, and the π−π stacking can be classified into four patterns,
including face-to-face stacking, wavelike stacking, crossing stacking, and mixing stack-
ing [3]. The results [9] also indicated that the layer-by-layer geometries of high-performance
insensitive EMs can readily absorb mechanical stimuli by converting kinetic energy into
layer sliding, resulting in lower sensitivities. Deng et al. [74] found a significant correlation
between the impact sensitivity and the bulk modulus, which is mainly dependent on the
number of C, H, O, and N atoms, the molecular weight, and the OB by using the ANN
and other models. Nowadays training a general model for sensitivity is still difficult, since
sensitivity is correlated with multiscale factors, including the electronic structure, crystal
structure, and even measurement conditions [1,69]. Therefore, an alternative method for
tackling sensitivity prediction remains highly desired [1,69].

2.4. Model Performance Evaluation

An ML model can memorize data points in the training set, and thus result in extremely
high accuracy regarding these data during the model testing. For this reason, ML models
must be evaluated based on the new dataset that has not been used for training.
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2.4.1. Model Evaluation in the Regression Model

It is common to use the test dataset prepared in data preprocessing to test the model.
Because the test dataset is completely new to the model, it can objectively measure the
model’s performance in the real world. Specifically, a key point of the ML regression
model is how to evaluate the accuracy of the model, which is described by “fitting
degree”. Common evaluation indicators in regression learning include the mean abso-
lute error (MAE), the root mean square error (RMSE), and the determination coefficient
(R2) [1,2,4,13,24,53,63,65,68,70,75,76,79]. The scholars [1,16,24] applied stratified k-fold
cross-validation to fairly assess the ML models. For example, for handling the density
imbalance and ensuring that each fold represents the distribution of densities, Nguyen
et al. [24] defined five stratified folds with bins between 1.0 and 2.0 at increments of 0.05.
For each ML method adopted, the researchers summarized its overall performance by
computing the averages of the R2 score and RMSE across the stratified folds [24]. As an
alternative to stratified splitting, scaffold splitting may also be used to evaluate a method’s
ability to generalize to structurally different molecules [24]. The MAE losses and R2 scores
of the different regression methods is shown in Figure 9.
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As seen in Figure 9, to achieve this benchmark, both MAE loss and R2 score were
plotted by comparing the test losses for the nine selected supervised methods. The MLP and
SVR methods gave the highest accuracy (MAE < 0.2 m·s−1) and the highest R2 scores (0.985
for the SVR method and 0.994 for the MLP method). The linear regression and AdaBoost
algorithms offered the lowest accuracy (MAE ~1.4 m·s−1 and 0.87 m·s−1, respectively) and
worst R2 score (0.636 and 0.875, respectively), which meant that compared to burn rate
variance, the mean square error is too high [101].

2.4.2. Model Evaluation in the Classification Model

To evaluate the classification performance of a model, it is necessary to introduce some
evaluation indicators. The commonly used indicators include accuracy, precision, recall, F
value, etc. [1,107]. In the classification model evaluation, the precision value measures the
reliability of a model’s positive predictions, and the recall value measures its ability to find
all the true positive sample points. The F value is the harmonic mean of the precision and
recall values [107,108]. When there are more than two classes, there is a precision, recall,
and F1 score for each class, characterizing a model’s ability to distinguish a specific class
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from all others. Taking the binary classification problem as an example, the scholars [1,107]
largely used the F1 score as it provides a single score, largely independent of the choice of
threshold, making the comparison between two models straightforward.

3. Applications of ML in R&D of EMs
3.1. Single-Compound EMs

Besides the property prediction discussed in this review, the vital purpose of ML
methods in R&D of EMs is rational reverse material design. The goal of the inverse material
design is to find promising advanced materials which were not known before and prior
to lab experiments [109]. Kang et al. [76] identified 262 CHNO-based compounds with an
2,4,6-trinitrotoluene (TNT) equivalent power index Pe(TNT) greater than 1.5 as potential
candidates for EMs, by combining the ML methodologies, materials informatics, and
thermochemistry. To raise Pe(TNT) further to larger than 1.8, 29 potential candidates were
found, and all are new to the current reservoir of well-known EMs. To directly characterize
energetic performance, the heat of explosion was used as the target property [76]. A forward
stepwise selection from a large number of possible descriptors led to critical descriptors for
cohesive energy averaged over all constituent elements, plus OB [76]. Using the critical
descriptors, even though the ML dataset is small, a satisfactory surrogate ML model was
trained, with estimates R2 = 0.93 and MAE = 142.12 kJ·.kg−1 for the test dataset [76].

For a long time, nitrobenzene compounds were the focus of novel EMs research [4].
Two distinctive nitrobenzene compounds are hexanitrobenzene (HNB) and 1,3,5-triamino-
2,4,6-trinitrobenzene (TATB). In terms of energy content, HNB and TATB are highly ener-
getic. For example, the density of HNB is 1.988 g·cm−3, and the detonation velocity of TATB
is 7825 m·s−1 [4]. In terms of insensitivity, TATB possesses a lower sensitivity to heat, and
impact compared to HNB, and the bond dissociation energy of TATB is 304 kJ·mol−1 [4].
Wang et al. [4] decoded HNB and TATB by the ML method, in combination with theoretical
calculations to predict the target properties, such as the density, the heat of formation,
bond dissociation energy, and molecular flatness. The results showed that HNB was the
most energetic compound among 370,000,000 single-benzene ring-containing compounds,
while TATB displayed a moderate energy level and very high safety level and was also
determined experimentally [4].

Fused heterocycle ring-based materials have also gained increasing attention in recent
years [1], and researchers have reported the discovery of a series of promising fused-ring
energetic molecules [1,6,7,10,12,110]. Herein, using a fused [5,6]biheterocyclic backbone
and substituted nitro/amino groups, Song et al. [1] first constructed energetic molecules.
Next, using a ML-assisted high-throughput virtual screening (HTVS) system, the discovery
of novel EMs with well-balanced energy-safety properties was accelerated. In the HTVS
system, Song et al. [1] used homemade scripts, and generated molecules through a heuristic
enumeration method [26,111]. With the HTVS system, the promising target molecules from
25,112 generated molecular structures were rapidly filtered out. The promising targets also
possess a relatively high likelihood of having graphite-like crystal structures. The process
of generating and screening the molecules is shown in Figure 10.

As shown in Figure 10, the promising fused [5,6]bi-heterocyclic backbone-based
compound-namely 7,8- dinitropyrazolo[1,5-a][1,3,5]triazine-2,4-diamine (ICM-104)-was
successfully synthesized in the lab [1]. The crystal structure and properties of ICM-104 is
shown in Figure 11.
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The novel compound has high energy properties, a low sensitivity, and good ther-
mostability according to a study of its properties [1]. Using fused-ring energetic molecules
as their research object, Wang et al. [53] obtained skeletons with high density through
skeleton pre-screening, and then through fragment docking created a virtual screening
space with molecules with high density. Quantum chemical calculations and equations of
the state of detonation products were used to predict enthalpy of formation, detonation
performance, and chemical stability. Finally, based on performance ranking, six novel
energetic molecules with energy levels superior to 1,3,5-trinitro-1,3,5-triazinane (RDX) and
stability superior to TNT were selected [53]. Hou et al. [23] established the neural network
model to achieve the prediction and screening tasks. The screening criteria for potential
advanced EMs was set to be density ≥ 1.9 g·cm−3, detonation velocity ≥ 9000 m·s−1, and
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detonation pressure ≥ 40.0 GPa. After screening, 31 novel N-containing molecules with
outstanding detonation properties were found, as shown in Figure 12.
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Figure 11. Crystal structure and properties of ICM-104. (a) Three-dimensional graphite-like layered
crystal stacking, 2D supramolecular plane, and molecular geometry of ICM-104. (b) Comparison
between the predicted and measured/calculated properties of ICM-104, TATB, and 2,6-diamino-3,5-
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change for the layer sliding of ICM-104, LLM-105, and TATB [1]. Copyright 2022 Elsevier.
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As seen in Figure 12, 31 N-containing molecules, with high density, high detonation
velocity and high detonation pressure, were screened. Among the 31 molecules, molecule
of number 164 is new, which has not been reported before. The molecular structure of
number 164 is shown in Figure 13.
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As reflected in Figure 13, the molecule of number 164 has a cage-like structure sim-
ilar to hexanitrohexaazaisowurtzitane (CL-20), of which the three detonation properties
(density, detonation velocity, and detonation pressure) calculated by theoretical methods
are all superior to those of CL-20 [23]. As a result of the establishment of suitable neural
networks, the prediction errors have been effectively suppressed [23]. For example, the
MAEs of crystal density, detonation velocity, and detonation pressure are 0.0259 g·cm−3,
0.3456 km·s−1, and 1.4933 GPa, respectively. The results [23] also showed that a training
dataset volume of 300 is enough to achieve high-precision extended prediction based on
the reasonable selection of sample structures.

Li et al. [79] developed RNNs to efficiently generate and screen novel EMs with a high
detonation velocity and a low synthetic accessibility (SA) score. High-precision quantum
mechanics calculations further confirmed that 35 new molecules present a higher detonation
velocity and lower SA than RDX, along with good thermal stability. To further validate
the advantage and the structural effectiveness of these promising candidates designed, Li
et al. [79] selected the top 10 molecules in the detonation velocity order to correlate with
related energetic works, as shown in Figure 14.
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Figure 14. Structures of the top 10 molecules and similar compounds reported. The pale green and
light blue backgrounds denote the molecules generated by Li et al. [79] and the similar molecules
reported [112–118], respectively. D and BDE represent the detonation velocity and bond dissociation
energy, respectively [79]. Copyright 2022 American Chemical Society.
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As shown in Figure 14, the 10 molecules generated exhibit some extent similar-
ity to 10 energetic molecules previously reported, and the detonation velocities of the
top 10 molecules fall in the range of 9334−9554 m·s−1, significantly superior to RDX
(8927 m·s−1). In particular, the top three molecules present comparable or higher detona-
tion velocities than complicatedly caged CL-20 (9455 m·s−1), along with a lower SA (SA
of CL-20: 5.44). As is known, CL-20 has been the most powerful non-nuclear energetic
compound in practice so far [79]. The results could provide helpful guidelines for applying
the deep learning-based molecular design in R&D of EMs.

3.2. Composite EMs

In contrast to single-compound EMs, heterogeneous EMs have microstructures filled
with voids, crack networks and other defects [68]. To some extent, the reverse design of com-
posite EMs using ML methods may encounter more difficulties and challenges, compared
to the R&D of single-compound EMs. Heterogeneities determine explosive performance
behavior by triggering chemical reactions at hot spots or regions of localized heating [68].
In the discovery process of excellent heterogeneous EMs with tailored performance, it is
necessary to create a linkage between micro-structural details and performance to guide
the researchers. The heterogeneous compound made up of an inert polymer matrix and a
high-loading fraction of an energetic organic crystalline powder was considered by Walters
et al. [68]. By choosing the particle size distribution to optimize density, the researchers
presented one part of an overall approach using the ML method to correlate particle size
distribution with all of the key performance metrics [68].

In EMs formulations and designs, plasticizers and binders can be categorized into inert
(non-energetic) and energetic [119]. Plasticizers are low molecular weight additives used
to adjust the final polymer properties, and energetic plasticizers contribute to the overall
formulation of energy by an increase in the enthalpy of the EMs system [119]. Sheibani
et al. [119] used the molecular dynamics simulations and ML methods to determine the
physicochemical and energetic properties of some novel azido-ester structures. Comparing
experimental and theoretical results showed acceptable agreement between molecular
dynamics simulations and ML methods. Finally, using the rheometry and differential
scanning calorimetry analyses, the compatibility and efficiency of two novel azido-ester
plasticizers on the rheological and thermal properties of glycidyl azide polymer (GAP) were
investigated, and the two novel azido-ester plasticizers were also compared with some
common energetic plasticizers. The results confirmed that these two novel azido-esters
are appropriate plasticizers for GAP since they exhibited higher safety over comparable
plasticizers [119].

A co-crystal is a single-phase crystalline material composed of two or more neutral
molecules assembled by noncovalent forces in a specific proportion, which is neither a
solvate nor a simple salt [8,120]. Zohari et al. [8] applied the QSPR method to examine
the relationship between energetic co-crystal densities and their molecular structures. The
research methodology provides a model that can relate the density of an energetic co-crystal
to several molecular structural descriptors [8]. To integrate important prior knowledge into
end-to-end learning on the molecular graph, a feasible GNN framework was also explored,
and one novel energetic co-crystal predicted was successfully synthesized, showcasing the
high potential of the GNN model in practice [72].

The energetic melt-castable material with promising properties was found through
ML-assisted HTVS and experimental approaches [63]. In addition to high-throughput
molecular generation, the ML-assisted HTVS system used five ML-based prediction models
for predicting properties. Using this system, Song et al. [63] rapidly targeted 136 promis-
ing candidates of melt-castable material from a generated molecular space containing
3892 molecules. With extensive efforts on experimental synthesis, eight novel energetic
melt-castable materials were obtained, and their measured properties were in good agree-
ment with the predicted results [63].
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Nanothermites have attracted considerable interest in civil-military integration due to
their unique properties. However, it is still challenging to predict quantitative structure-
energetic performance relationships for nanothermites. To design novel nanothermites
with optimal burning rates for a controllable energetic performance, Sami et al. [101] used
ML methods to surrogate complex physical models. Nine supervised regression algorithms
are compared and investigated for Al/CuO nanolaminates. The dataset contained a set
of 2700 Al/CuO nanolaminate systems, which was used to construct an ML model for
each regression algorithm [101]. Figure 15 shows the geometrical features of an Al/CuO
nanolaminate deposited on a substrate.
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Sami et al. [101] demonstrated that the multilayer perceptron algorithm could surro-
gate conventional physical-based models and reliably predict the Al/CuO nanolaminate
microstructure-burn rate relationship. For example, by applying the multilayer perceptron
algorithm, the burn rate of Al/CuO nanolaminate was estimated with less than 1% error
(0.07 m·s−1), which is excellent considering that it typically varies from 8–20 m·s−1 for
nanoengineered materials. In addition, the optimization of the Al/CuO nanolaminate
structure for burn rate maximization occurred within a few milliseconds by using the ML
method, versus several days by using the physical model, and months by experimentally
optimizing it [101].

4. Challenges of Applying ML Methods

People have witnessed the emergence of the fourth paradigm of science represented
by ML or artificial intelligence methods, probably partly owing to the big data generated
by experiments and simulations in recent years [16,121,122]. It is now believable to predict
material properties and optimize design materials with the help of ML methods. Although
EMs can be predicted and screened using the ML method, some challenges still exist
to overcome.

(1) In real-world scenarios, ML algorithms have been severely hindered by data
acquisition challenges. Due to high costs, long cycle time, and safety concerns, collecting
and/or accessing large amounts of data in the EMs area remains challenging. To some
extent, applying data augmentation or the MF information-fusion approach using any
arbitrary, randomly selected, molecular orientation during model training is an essential
strategy. In addition, to improve the data quality, data cleaning is a standard procedure
in the process of dataset preparation. However, problems such as inaccurate data in the
literature or data pollution in the well-known database [123–125] should also be paid
attention to.

(2) Chemists are still grappling with how to best feature molecules as inputs for ML
models, whether by hand-crafted features or computer-learned representations. Regarding
the traditional class of molecular representation, it is generally better to use models based on
simpler molecular descriptors rather than those based on much more complex descriptors.
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It is reasonable that different molecular representations should be compared based on data
and models to select the best one for specific problems. However, with the development
of deep learning algorithms, the computer-learned representation may be the mainstream
development trend in the future. To achieve accuracy, such deep learning methods require
a large amount of training data, especially those with many tunable parameters. Thus, to
realize a globally universal descriptor, it is essential to improve the existing descriptors and
discover a universal descriptor for EMs.

(3) At present, most the research was focused on simple or traditional explosives,
such as RDX, HNB, TATB, etc. Researchers have accumulated rich data and experience
in feature extraction and other aspects for these simple or traditional compounds. It is
urgent to develop and design high-energy and low-sensitivity compounds, including
high-energy density materials, all nitrogen materials, and polymeric ammonia materials.
Although the traditional ML or deep learning methods have shown promise for simple
and traditional explosives, it is unclear to what extent they can be helpful in real-world
advanced EMs development.

5. Summary and Outlook

Prediction and construction of advanced EMs based on the ML method have received
more and more attention. In the properties’ prediction of EMs, the chemical composition
of EMs is given as inputs, and the properties are predicted, which can be called the direct
problem. In the inverse EMs design, the properties of EMs are the input, and the structure
and composition are the output, which can be called the indirect problem. Among the
direct and indirect problems, the most exciting problem is identifying promising chemical
components and structures of EMs, which can be synthesized in the lab step-by-step.
Theoretically, according to the ML model trained by a given dataset, the inverse design can
be conducted to discover advanced EMs with regulated properties.

ML has a powerful ability indeed, but its establishment depends on sufficient training
data, data augmentation strategy, etc. While existing databases contain a large amount
of useful material data, more data are available in published papers that have yet to be
entered into databases. Therefore, a more comprehensive and general material informa-
tion standard should be established to make data sharing between databases and reduce
obstacles to data acquisition. In terms of models or algorithms, the deep learning method
is the mainstream development trend. In the most accepted format of the ML model, ML
algorithms of different natures in a unified framework are needed, pivoting around the
digital twin, to promote high-quality applications in the research field of Ems. Despite
a substantial number of successful applications, the ML method is still largely in its in-
fancy, and it is believed that it will play an increasingly important role in accelerating the
development of advanced and novel EMs in the foreseeable future.
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Abbreviations

EMs energetic materials
R&D research and development
ML machine learning
DFT density functional theory
HE high explosives
CHNO carbon, hydrogen, nitrogen, and oxygen
CSD Cambridge Structural Database
CCDC Cambridge Crystallographic Data Centre
OB oxygen balance
SMILES simplified molecular input line entry specification
RNN recurrent neural network
MF multi-fidelity
CNN convolutional neural network
LSTM long short-term memory
KRR kernel ridge regression
GNN graph neural network
KNN K-nearest neighbor
SVR Support vector regression
RF Random forests
MPNN Message passing neural network
SVM Support vector machine
QSPR Quantitative structure−property relationship
SRNN RNN model with inclusion of the pretrained knowledge
ANN Artificial Neural Network
MLP Multilayer perceptron
PLSR Partial least-squares regression
C−J Chapman−Jouguet
H50 Values of the drop weight impact height
QNO2 Mulliken net charges of the nitro group
MAE Mean Absolute Error
RMSE Root Mean Square Error
R2 determination coefficient
TNT 2,4,6-trinitrotoluene
Pe(TNT) TNT equivalent power index
HNB Hexanitrobenzene
TATB 1,3,5-triamino-2,4,6-trinitrobenzene
HTVS high-throughput virtual screening
ICM-104 7,8- dinitropyrazolo[1,5-a][1,3,5]triazine-2,4-diamine
LLM-105 2,6-diamino-3,5-dinitropyrazine-1-oxide
RDX 1,3,5-trinitro-1,3,5-triazinane
CL-20 Hexanitrohexaazaisowurtzitane
SA synthetic accessibility
GAP glycidyl azide polymer
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