Rhenium(I) Block Copolymers Based on Polyvinylpyrrolidone: A Successful Strategy to Water-Solubility and Biocompatibility
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.1.1. Complexes Re1–Re4
2.1.2. Copolymers p(VP-l-Re), p(VP-h-Re)
2.2. Photophysical Properties
2.2.1. Complexes Re1–Re4
2.2.2. Copolymers p(VP-l-Re), p(VP-h-Re)
2.3. Biological Experiments
2.3.1. Cell Experiments
2.3.2. PLIM Experiments
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lo, K.K.W.; Choi, A.W.T.; Law, W.H.T. Applications of Luminescent Inorganic and Organometallic Transition Metal Complexes as Biomolecular and Cellular Probes. Dalton Trans. 2012, 41, 6021–6047. [Google Scholar] [CrossRef] [PubMed]
- Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents; Lo, K.K.W. (Ed.) Springer: Berlin/Heidelberg, Germany, 2015; Volume 165. [Google Scholar]
- Chelushkin, P.S.; Shakirova, J.R.; Kritchenkov, I.S.; Baigildin, V.A.; Tunik, S.P. Phosphorescent NIR Emitters for Biomedicine: Applications, Advances and Challenges. Dalton Trans. 2022, 51, 1257–1280. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Nabeshima, T. A Highly Selective and Sensitive Turn-on Chemodosimeter for Hypochlorous Acid Based on an Iridium(III) Complex and Its Application to Bioimaging. Dalton Trans. 2014, 43, 9529–9536. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.C.; Leung, K.K.; Lo, K.K.W. Recent Development of Luminescent Rhenium (I) Tricarbonyl Polypyridine Complexes as Cellular Imaging Reagents, Anticancer Drugs, and Antibacterial Agents. Dalton Trans. 2017, 46, 16357–16380. [Google Scholar] [CrossRef]
- Baggaley, E.; Weinstein, J.A.; Williams, J.A.G. Lighting the Way to See inside the Live Cell with Luminescent Transition Metal Complexes. Coord. Chem. Rev. 2012, 256, 1762–1785. [Google Scholar] [CrossRef]
- Knopf, K.M.; Murphy, B.L.; Macmillan, S.N.; Baskin, J.M.; Barr, M.P.; Boros, E.; Wilson, J.J. In Vitro Anticancer Activity and in Vivo Biodistribution of Rhenium(I) Tricarbonyl Aqua Complexes. J. Am. Chem. Soc. 2017, 139, 14302–14314. [Google Scholar] [CrossRef]
- Yin Zhang, K.; Ka-Shun Tso, K.; Louie, M.W.; Liu, H.W.; Kam-Wing Lo, K. A Phosphorescent Rhenium(I) Tricarbonyl Polypyridine Complex Appended with a Fructose Pendant That Exhibits Photocytotoxicity and Enhanced Uptake by Breast Cancer Cells. Organometallics 2013, 32, 5098–5102. [Google Scholar] [CrossRef]
- Kirgan, R.A.; Sullivan, B.P.; Rillema, D.P. Photochemistry and Photophysics of Coordination Compounds: Rhenium. In Topics in Current Chemistry; Springer-Verlag: Berlin/Heidelberg, Germany, 2007; Volume 281, pp. 45–100. [Google Scholar]
- Wu, C.H.; Kisel, K.S.; Thangavel, M.K.; Chen, Y.T.; Chang, K.H.; Tsai, M.R.; Chu, C.Y.; Shen, Y.F.; Wu, P.C.; Zhang, Z.; et al. Functionalizing Collagen with Vessel-Penetrating Two-Photon Phosphorescence Probes: A New In Vivo Strategy to Map Oxygen Concentration in Tumor Microenvironment and Tissue Ischemia. Adv. Sci. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Chakraborty, I.; Carrington, S.J.; Roseman, G.; Mascharak, P.K. Synthesis, Structures, and CO Release Capacity of a Family of Water-Soluble PhotoCORMs: Assessment of the Biocompatibility and Their Phototoxicity toward Human Breast Cancer Cells. Inorg. Chem. 2017, 56, 1534–1545. [Google Scholar] [CrossRef]
- Marker, S.C.; MacMillan, S.N.; Zipfel, W.R.; Li, Z.; Ford, P.C.; Wilson, J.J. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines. Inorg. Chem. 2018, 57, 1311–1331. [Google Scholar] [CrossRef]
- Heller, M.; Schubert, U.S. Optically Active Supramolecular Poly(L-Lactide)s End-Capped with Terpyridine. Macromol. Rapid Commun. 2001, 22, 1358–1363. [Google Scholar] [CrossRef]
- Guerrero-Sanchez, C.; Lohmeijer, B.G.G.; Meier, M.A.R.; Schubert, U.S. Synthesis of Terpyridine-Terminated Polymers by Anionic Polymerization. Macromolecules 2005, 38, 10388–10396. [Google Scholar] [CrossRef]
- Knapp, R.; Schott, A.; Rehahn, M. A Novel Synthetic Strategy toward Soluble, Well-Defined Ruthenium(II) Coordination Polymers. Macromolecules 1996, 29, 478–480. [Google Scholar] [CrossRef]
- Pefkianakis, E.K.; Tzanetos, N.P.; Kallitsis, J.K. Synthesis and Characterization of a Novel Vinyl-2,2′-Bipyridine Monomer and Its Homopolymeric/Copolymeric Metal Complexes. Chem. Mater. 2008, 20, 6254–6262. [Google Scholar] [CrossRef]
- Aamer, K.A.; De Jeu, W.H.; Tew, G.N. Diblock Copolymers Containing Metal Complexes in the Side Chain of One Block. Macromolecules 2008, 41, 2022–2029. [Google Scholar] [CrossRef]
- Maier, A.S.; Thomas, C.; Kränzlein, M.; Pehl, T.M.; Rieger, B. Macromolecular Rhenium-Ruthenium Complexes for Photocatalytic CO2Conversion: From Catalytic Lewis Pair Polymerization to Well-Defined Poly(Vinyl Bipyridine)-Metal Complexes. Macromolecules 2022, 55, 7039–7048. [Google Scholar] [CrossRef]
- Chu, W.K.; Wei, X.G.; Yiu, S.M.; Ko, C.C.; Lau, K.C. Strongly Phosphorescent Neutral Rhenium(I) Isocyanoborato Complexes: Synthesis, Characterization, and Photophysical, Electrochemical, and Computational Studies. Chem. A Eur. J. 2015, 21, 2603–2612. [Google Scholar] [CrossRef]
- Kondrasenko, I.; Kisel, K.S.; Karttunen, A.J.; Jänis, J.; Grachova, E.V.; Tunik, S.P.; Koshevoy, I.O. Rhenium(I) Complexes with Alkynylphosphane Ligands: Structural, Photophysical, and Theoretical Studies. Eur. J. Inorg. Chem. 2015, 2015, 864–875. [Google Scholar] [CrossRef]
- Morimoto, T.; Ishitani, O. Modulation of the Photophysical, Photochemical, and Electrochemical Properties of Re(I) Diimine Complexes by Interligand Interactions. Acc. Chem. Res 2017, 50, 2022. [Google Scholar] [CrossRef] [Green Version]
- Rohacova, J.; Sekine, A.; Kawano, T.; Tamari, S.; Ishitani, O. Trinuclear and Tetranuclear Re(I) Rings Connected with Phenylene, Vinylene, and Ethynylene Chains: Synthesis, Photophysics, and Redox Properties. Inorg. Chem. 2015, 54, 8769–8777. [Google Scholar] [CrossRef]
- Luo, Y.; Hong, Y.; Shen, L.; Wu, F.; Lin, X. Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech 2021, 22, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wichterlová, J.; Wichterle, K.; Michálek, J. Determination of Permeability and Diffusivity of Oxygen in Polymers by Polarographic Method with Inert Gas. Polymer 2005, 46, 9974–9986. [Google Scholar] [CrossRef]
- Mauro, M.; Procopio, E.Q.; Sun, Y.; Chien, C.H.; Donghi, D.; Panigati, M.; Mercandelli, P.; Mussini, P.; D’Alfonso, G.; De Cola, L. Highly Emitting Neutral Dinuclear Rhenium Complexes as Phosphorescent Dopants for Electroluminescent Devices. Adv. Funct. Mater. 2009, 19, 2607–2614. [Google Scholar] [CrossRef]
- Wan, D.; Satoh, K.; Kamigaito, M.; Okamoto, Y. Xanthate-Mediated Radical Polymerization of N-Vinylpyrrolidone in Fluoroalcohols for Simultaneous Control of Molecular Weight and Tacticity. Macromolecules 2005, 38, 10397–10405. [Google Scholar] [CrossRef]
- Sivtsov, E.; Chernikova, E.; Gostev, A.; Garina, E. Controlled Free-Radical Copolymerization of n-Vinyl Succinimide and n-Butyl Acrylate via a Reversible Addition-Fragmentation Chain Transfer (RAFT) Technique. Macromol. Symp. 2010, 296, 112–120. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H.; Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process—A Second Update. Aust. J. Chem. 2009, 62, 1402–1472. [Google Scholar] [CrossRef] [Green Version]
- Kotch, T.G.; Lees, A.J.; Fuerniss, S.J.; Papathomas, K.I.; Snyder, R.W. Luminescence Rigidochromism of Fac-ClRe(CO)3(4,7-Ph2phen) (4,7-Ph2phen = 4,7-Diphenyl-l,10-Phenanthroline) as a Spectroscopic Probe in Monitoring Polymerization of Photosensitive Thin Films. Inorg. Chem. 1993, 32, 2570–2575. [Google Scholar] [CrossRef]
- Itokazu, M.K.; Polo, A.S.; Iha, Y.M. Luminescent Rigidochromism of Fac-[Re(CO)3(Phen)(Cis-Bpe)]+ and Its Binuclear Complex as Photosensors. J. Photochem. Photobiol. A Chem. 2003, 160, 27–32. [Google Scholar] [CrossRef]
- Nayeri, S.; Jamali, S.; Pavlovskiy, V.V.; Porsev, V.V.; Evarestov, R.A.; Kisel, K.S.; Koshevoy, I.O.; Shakirova, J.R.; Tunik, S.P. A Rare Type of Rhenium(I) Diimine Complexes with Unsupported Coordinated Phosphine Oxide Ligands: Synthesis, Structural Characterization, Photophysical and Theoretical Study. Eur. J. Inorg. Chem. 2019, 2019, 4350–4357. [Google Scholar] [CrossRef]
- Kalyanasundaram, K. Luminescence and Redox Reactions of the Metal-to-Ligand Charge-Transfer Excited State of Tricarbonylchloro-(Polypyridyl)Rhenium(I) Complexes. J. Chem. Soc. Faraday Trans. Mol. Chem. Phys. 1986, 82, 2401–2415. [Google Scholar] [CrossRef]
- Rodríguez, L.; Ferrer, M.; Rossell, O.; Duarte, F.J.S.; Gil Santos, A.; Lima, J.C. Solvent Effects on the Absorption and Emission of [Re(R2bpy)(CO)3X] Complexes and Their Sensitivity to CO2 in Solution. J. Photochem. Photobiol. A Chem. 2009, 204, 174–182. [Google Scholar] [CrossRef]
- Ghadially, F.N. (Ed.) Mitochondria. In Ultrastructural Pathology of the Cell and Matrix, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1988; Volume 1, pp. 191–328. [Google Scholar]
- Javadov, S.; Chapa-Dubocq, X.; Makarov, V. Different Approaches to Modeling Analysis of Mitochondrial Swelling. Mitochondrion 2018, 38, 58–70. [Google Scholar] [CrossRef]
- Sun, M.G.; Williams, J.; Munoz-Pinedo, C.; Perkins, G.A.; Brown, J.M.; Ellisman, M.H.; Green, D.R.; Frey, T.G. Correlated Three-Dimensional Light and Electron Microscopy Reveals Transformation of Mitochondria during Apoptosis. Nat. Cell Biol. 2007, 9, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.J.; Hinner, M.J. Getting across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins. Methods Mol. Biol. 2015, 1266, 29–53. [Google Scholar] [PubMed] [Green Version]
- Komor, A.C.; Barton, J.K. The Path for Metal Complexes to a DNA Target. Chem. Commun. 2013, 49, 3617–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa De Almeida, M.; Susnik, E.; Drasler, B.; Taladriz-Blanco, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding Nanoparticle Endocytosis to Improve Targeting Strategies in Nanomedicine. Chem. Soc. Rev. 2021, 50, 5397–5434. [Google Scholar] [CrossRef] [PubMed]
- Fredericks, S.M.; Luong, J.C.; Wrighton, M.S. Multiple Emissions from Rhenium(I) Complexes: Intraligand and Charge-Transfer Emission from Substituted Metal Carbonyl Cations. J. Am. Chem. Soc. 1979, 101, 7415–7417. [Google Scholar] [CrossRef]
- Le, T.P.; Moad, G.; Ezio Rizzardo, S.H.T. Polymerization with Living Characteristics. Patent WO 98/01478, 10 July 1997. [Google Scholar]
- Sheldrick, G.M. SADABS-2008/1-Bruker AXS Area Detector Scaling and Absorption Correction; Bruker AXS: Madison, WI, USA, 2008. [Google Scholar]
- Bruker. APEX2-Software Suite for Crystallographic Programs; Bruker AXS Inc.: Madison, WI, USA, 2010. [Google Scholar]
- Sheldrick, G.M.; IUCr. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. Reevaluation of Absolute Luminescence Quantum Yields of Standard Solutions Using a Spectrometer with an Integrating Sphere and a Back-Thinned CCD Detector. Phys. Chem. Chem. Phys. 2009, 11, 9850–9860. [Google Scholar] [CrossRef] [PubMed]
- AAT Bioquest. “Quest GraphTM LC50 Calculator”. Available online: https://www.aatbio.com/tools/lc50-calculator (accessed on 12 December 2022).
Name | Mn, g/mol a | Mw, g/mol a | Ɖb | Dh, nm c | PDI d | Re Complex, wt.% | |
---|---|---|---|---|---|---|---|
UV–Vis | ICP-OES | ||||||
Low molecular p(VP) | 4030 | 4600 | 1.14 | - | - | - | - |
p(VP-l-Re1) | 5600 | 6250 | 1.11 | 270 | 0.51 | 0.4 | 0.5 |
p(VP-l-Re2) | 5780 | 6580 | 1.14 | 230 | 0.33 | 2.3 | 2.1 |
p(VP-l-Re3) | 4400 | 7420 | 1.69 | 180 | 0.14 | 1.2 | 1.3 |
p(VP-l-Re4) | 6770 | 7800 | 1.15 | 285 | 0.39 | 2.0 | 2.1 |
High molecular p(VP) | 42,100 | 67,000 | 1.59 | - | - | - | - |
p(VP-h-Re1) | 43,300 | 81,000 | 1.88 | - | - | 0.4 | 0.3 |
p(VP-h-Re2) | 46,000 | 85,000 | 1.84 | 210 | 0.22 | 1.2 | 1.1 |
p(VP-h-Re3) | 51,000 | 87,700 | 1.72 | 180 | 0.13 | 1.0 | 1.3 |
p(VP-h-Re4) | 54,200 | 92,400 | 1.70 | 250 | 0.11 | 2.3 | 2.1 |
Name | Abs, nm (ε × 10−4, L × mol−1 × cm−1); 20 °C | λems, nm; 20 °C (Aer) a | Φ, %; 20 °C (Aer/Degas) | τ, ns; 20 °C (Aer/Degas) b | τ, ns; 37 °C (Aer/Degas) b | kr, s−1; 20 °C (Degas) c | knr, s−1; 20 °C (Degas) d |
---|---|---|---|---|---|---|---|
Re1 | 274 (4.1), 295 (4.5), 410 (0.7) | 635 | 1.7/2.0 | 140/165 | 135/160 | 1.2 × 105 | 5.9 × 106 |
Re2 | 264 (8.1), 297 (4.2), 421 (0.4) | 622 | 2.4/3.9 | 325/550 | 325/495 | 0.7 × 105 | 1.8 × 106 |
Re3 | 264 (10.8), 296 (5.7), 410 (0.6) | 611 | 1.8/4.5 | 245/630 | 245/550 | 0.7 × 105 | 1.5 × 106 |
Re4 | 264 (8.1), 297 (3.3), 363 (0.4) | 617 | 3.0/4.6 | 310/455 | 290/360 | 1.0 × 105 | 2.1 × 106 |
Name | λems, nm; MeOH, 20 °C (Aer) a | λems, nm; H2O, 20 °C (Aer) a | Φ, %; H2O, 20 °C (Aer) a | τ, ns; 37 °C (Aer/Degas) b,c | |||
---|---|---|---|---|---|---|---|
MeOH d | H2O | PBS | DMEM, Serum Albumin, PBS | ||||
p(VP-l-Re1) | 625 | 618 | 0.3 | 170 | 170/240 | 190/275 | - |
p(VP-h-Re1) | 628 | 636 | 0.1 | 215 | 60/80 | 60/80 | - |
p(VP-l-Re2) | 611 | 585 | 3.0 | 350 | 910/1075 | 1010/1190 | 1230/1240 |
p(VP-h-Re2) | 618 | 595 | 3.3 | 385 | 1130/1230 | 1390/1660 | 1130/1160 |
p(VP-l-Re3) | 606 | 584 | 3.7 | 290 | 790/930 | 1015/1150 | - |
p(VP-h-Re3) | 608 | 584 | 3.7 | 345 | 1420/1605 | 1550/1840 | - |
p(VP-l-Re4) | 610 | 592 | 1.8 | 340 | 580/600 | 660/740 | - |
p(VP-h-Re4) | 612 | 594 | 1.6 | 295 | 675/700 | 720/780 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisel, K.S.; Baigildin, V.A.; Solomatina, A.I.; Gostev, A.I.; Sivtsov, E.V.; Shakirova, J.R.; Tunik, S.P. Rhenium(I) Block Copolymers Based on Polyvinylpyrrolidone: A Successful Strategy to Water-Solubility and Biocompatibility. Molecules 2023, 28, 348. https://doi.org/10.3390/molecules28010348
Kisel KS, Baigildin VA, Solomatina AI, Gostev AI, Sivtsov EV, Shakirova JR, Tunik SP. Rhenium(I) Block Copolymers Based on Polyvinylpyrrolidone: A Successful Strategy to Water-Solubility and Biocompatibility. Molecules. 2023; 28(1):348. https://doi.org/10.3390/molecules28010348
Chicago/Turabian StyleKisel, Kristina S., Vadim A. Baigildin, Anastasia I. Solomatina, Alexey I. Gostev, Eugene V. Sivtsov, Julia R. Shakirova, and Sergey P. Tunik. 2023. "Rhenium(I) Block Copolymers Based on Polyvinylpyrrolidone: A Successful Strategy to Water-Solubility and Biocompatibility" Molecules 28, no. 1: 348. https://doi.org/10.3390/molecules28010348
APA StyleKisel, K. S., Baigildin, V. A., Solomatina, A. I., Gostev, A. I., Sivtsov, E. V., Shakirova, J. R., & Tunik, S. P. (2023). Rhenium(I) Block Copolymers Based on Polyvinylpyrrolidone: A Successful Strategy to Water-Solubility and Biocompatibility. Molecules, 28(1), 348. https://doi.org/10.3390/molecules28010348