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Abstract: Relationships between the structures of molecules and their properties form the basis
of modern chemistry and lay the foundation for structure-based drug design. Being the main
two determinants of bioavailability, solubility and permeability of drugs are widely investigated
experimentally and predicted from physicochemical parameters and structural descriptors. In the
present study, we measure the passive diffusion permeability of a series of new fluconazole derivatives
with triazole and thiazolo-pyrimidine moieties connected by different linker bridges through the
PermeaPad barrier—a relatively new biomimetic lipophilic membrane that has been increasingly
used in recent years. The permeability coefficients of new derivatives are shown to be dependent
both on the structure of the linker fragment and on the substituent in the phenyl ring of the thiazolo-
pyrimidine moiety. The impact of the compound ionization state on the permeability is revealed.
Reliable correlations of the permeability with the antifungal activity and distribution coefficient are
found. In addition, the solubility–diffusion approach is shown to be able to successfully predict the
permeability of the studied derivatives. The obtained results can be considered another step in the
development of permeability databases and design of schemes for in vitro permeability prediction.

Keywords: fluconazole derivatives; permeability; lipophilic membrane; PermeaPad barrier;
structure–permeability relationship

1. Introduction

The design of new drug entities is an ongoing process. Among various groups of
drug compounds, the antifungal class is of the greatest importance since fungal infec-
tions are widely spread throughout the world, especially in poorly developed countries.
Patients with coronavirus, weak immunity and oncology are in the high-risk group, for
which fungal infections are crucial and ominous [1]. The marketed antifungal deriva-
tives of the triazole class are highly demanded by patients, e.g., fluconazole, voriconazole,
terconazole, tioconazole, posaconazole, etc. [2]. The well-known representative of this
class—fluconazole—serves as the basis for many newly synthesized biologically active
compounds. On the other hand, the task of evaluating not only the bioactivity but also the
pharmacologically relevant physicochemical properties of the new compounds is another
step forward in promoting these substances to the pharmaceutical market. Among these
properties, solubility in pharmacologically relevant solvents and permeability through
biological membranes are of primary importance [3]. The distribution coefficient in the
1-octanol/water system (logD/logP) is another important parameter often used to predict
the solubility and permeability of a substance. Since solubility and distribution coefficients
of compounds with close permeability coefficients may differ by several orders of magni-
tude (in other words, the ranges of permeability variation are much narrower than those
of solubility and distribution) [4], the task of constructing models to predict permeability
seems to be more difficult than that for solubility and distribution prediction, especially
in a series of structural homologs. As early as 1996, Camenisch et al. [5] revealed that
permeability through a simple membrane depends on the partition coefficient as a measure
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of lipophilicity. However, this dependence can have a linear, bilinear (reaching a plateau
or having a local maximum), sigmoid or parabolic shape. Moreover, specific dependence
is not always observed. This can be due to different factors influencing the permeability.
For example, polarity was confirmed to be a crucial descriptor for human intestinal ab-
sorption, permeability and blood–brain barrier penetration, especially if the compound
has several polar atoms in the molecule [6]. Moreover, in the case of biological barriers
and biomimetic membranes, permeation appears to be a complicated process implying
several steps: desolvation, interactions with phospholipid head groups and access to the
hydrophobic membrane interior [7]. Thus, the medium pH, which determines not only
the ionization state of the compound (anionic, cationic, zwitterionic or neutral) but also
the charge of the components of the lipophilic membrane, comes to the fore. For example,
Sugano et al. [8] found the permeability of basic compounds to be higher than the value
found from the 1-octanol/water partition. In addition, in our previous study of the per-
meability of various drugs (we studied clonixin and dofetilide as an example) through the
liposome-based membrane—PermeaPad barrier—at different pHs [9], we proved that the
negative surface potential of the membrane at pH 7.4 (the anionic particles of the membrane
fatty acids) increases the probability of permeation of cationic species and slows down the
anion movement.

Regardless, or perhaps because, of the complexity of the task, the search for predic-
tion schemes for the permeability of drugs, especially newly synthesized pharmaceutical
entities, has, for many decades, attracted the constant attention of the medicinal scientific
community. Approaches based on quantitative structure–property relationships (QSPRs)
serve as a convenient tool for selecting synthesis objects with desired pharmacological
properties. As a result, the correlation dependences between the permeability and available
descriptors of compounds, including their structural analogues, not only allow predictive
models to be built, but also make it possible to better understand the factors influencing
their permeability. At the same time, dealing with structurally related substances increases
the probability of reliable correlations.

Taking into account the numerous attempts to predict permeability reported in the
literature [10–12] and our own experience [9,13–15], in the present study, we aimed to find a
correlation between the permeability of a number of new fluconazole antifungal derivatives
(Figure 1), measured using the lipophilic PermeaPad barrier and several physicochemical
properties and descriptors. In addition, we derived a reliable correlation equation for
permeability prediction in the framework of the solubility–diffusion theory using the
calculated diffusion coefficients in water and 1-octanol and the distribution coefficient in the
1-octanol/buffer pH 7.4 system determined experimentally in the literature [16]. Notably,
this approach seems, to us, quite promising, although, to the best of our knowledge, it has
been rarely used by other researchers. In addition, taking into account the significance
of the interconnection between biological activity and physicochemical properties, we
determined the relationship between the permeability and antifungal activity.
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2. Results and Discussion
2.1. Coefficients of Permeability through the PermeaPad Barrier

The permeability coefficients of the studied derivatives of fluconazole measured
experimentally are listed in Table 1 and Figure 2. Table S1 represents the concentrations of
the donor solutions and steady-state fluxes through the PermeaPad barrier. In addition,
Table 1 contains the diffusion coefficients of the compounds calculated by Equation (10)
taking into account the hydrodynamic radii of the solutes, the dynamic viscosities of the
solvents (water or 1-octanol) and the distribution coefficients in the 1-octanol/buffer pH
7.4 system taken from the literature [16]. Expectedly, the diffusion coefficients in 1-octanol
are considerably lower than in water (7–8-fold). Moreover, the diffusion slows down in
both solvents with molecular-weight growth.
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Table 1. Van der Waals volumes (Vvdw), diffusion coefficients in water (Dw) and 1-octanol (Doct), ap-
parent distribution coefficient in the 1-octanol/buffer pH 7.4 system (Koct/buf), apparent permeability
coefficients (Papp), permeability coefficients calculated for the neutral species (P0), calculated coeffi-
cients of permeability through the water layer (PABL(calc)), 1-octanol layer (Poct(calc)) and calculated
total coefficient of permeability through both layers (Papp(calc)) for the studied compounds.

№ Vvdw
(Å3) a

Dw·1010

(m2·s−1) b
Doct·1011

(m2·s−1) b logKoct/buf
c Papp·105

(cm·s−1) c
P0 ·105

(cm·s−1) d
PABL(calc)·105

(cm·s−1) e
Poct(calc)
(cm·s−1) f

Papp(calc)·
105 (cm·s−1) g

I 414.24 7.21 9.55 0.79 1.942 ± 0.078 1.942 3.60 5.89 × 10−4 3.40
II 423.22 7.16 9.48 0.47 2.164 ± 0.059 2.164 3.58 1.47 × 10−3 3.49
III 402.61 7.28 9.64 1.19 1.743 ± 0.047 1.743 3.64 2.85 × 10−4 3.23
IV 456.19 6.98 9.25 1.27 2.070 ± 0.074 2.070 3.49 1.72 × 10−3 3.42
V 453.16 6.99 9.27 0.79 2.034 ± 0.066 2.034 3.50 1.34 × 10−3 3.41
VI 444.56 7.04 9.33 1.16 1.896 ± 0.058 1.896 3.52 5.75 × 10−4 3.32
VII 465.17 6.93 9.19 0.80 1.847 ± 0.033 1.847 3.47 5.80 × 10−4 3.27
VIII 557.37 6.53 8.65 2.91 1.825 ± 0.058 6.409 3.26 7.03 × 10−2 3.26
IX 528.71 6.64 8.81 2.40 1.890 ± 0.064 11.36 3.32 2.21 × 10−2 3.32
X 537.31 6.61 8.76 1.65 1.797 ± 0.047 10.80 3.30 3.91 × 10−3 3.28
XI 540.34 6.60 8.74 4.10 1.813 ± 0.045 10.90 3.30 1.10 3.30
XII 523.53 6.67 8.83 2.90 1.876 ± 0.042 11.28 3.33 7.02 × 10−2 3.33

a calculated from the structure; b calculated by Equation (10); c taken from literature [16]; d calculated by the
Henderson–Hasselbalch equation; e calculated by Equation (15); f calculated by Equation (13); g calculated by
Equation (14).
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Figure 2. Experimental permeability coefficients of the studied compounds. The structures of the
linkers between the triazole and pyrimidino[4,5-d]thiazol heterocycles are shown under the diagram.
The columns referring to the same linkers are shaded in the same way. The substituents at the
phenyl ring are colored as follows: CH3—green, OCH3—pink, F—cyan, Cl—yellow. The compound
numbering can be found in Figure 1.

As Figures 1 and 2 show, the molecules of the substances are composed of triazole
and thiazolo-pyrimidine moieties connected by different linkers, illustrated in Figure 2
above the columns in the following order: methylene (I–III), acetamide (IV–VII), hydrox-
ypropylpiperazine (VIII), propylpiperazine (IX–XI) and ethylpiperazine (XII). In addition,
four kinds of substituents at the benzene ring are used: CH3, OCH3, F and Cl. First of
all, we tried to trace the influence of the structural features on the apparent permeability.
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According to Figure 2, the permeation rate is influenced by both the linker structure and the
substituent nature. In the group of compounds with the methylene linker, we determined
the maximal (for methoxy-substituted) and the minimal (for fluoro-substituted) permeabil-
ity, indicating the most pronounced effect of the substituent on the permeability within this
group. The permeability within the group with the acetamide bridge fragment decreased
in the following order: methyl- (CH3) > chlorine- (Cl) > fluoro- (F) > methoxy- (OCH3).
Interestingly, the permeability values of the methyl-substituted substances with acetamide
(VII) and hydroxypropylpiperazine (VIII) linkers were very close and, at the same time,
were essentially lower than that of the methyl-substituted compound (II) from the group
with the methylene bridge. Probably, the presence of the acceptor nitrogen atom had a
negative effect on the molecule permeability. In addition, the lower molecular weight (see
Table S2) of the compound (II) molecule as compared to (VII) and (VIII) could also be re-
sponsible for the permeability reduction. A comparison of methyl-substituted compounds
(XI) and (XII) shows that the elongation of the alkyl chain of the linker fragment lowers the
permeability. Expectedly, the shortening of the alkyl chain combined with the exclusion
of the piperazine ring from the linker moiety (compound I) improves the permeability
in the group of methyl-substituted derivatives. Interestingly, the permeability decrease
was detected for the methoxy-(OCH3)-substituted substances: I (methylene linker) < VII
(acetamide) < VIII (hydroxypropylpiperazine), which agrees with the order in which the
molecular weight decreased as the bridge fragment connecting the triazole and thiazolo-
pyrimidine moieties became bigger. The permeability of the Cl-substituted compounds
Papp (V) > Papp (X) was in complete agreement with their molecular weights, as the linker
structural unit grew bigger in size.

As the ionization constants indicate (Table S2), the investigated compounds have
different protolytic properties. Therefore, substances VIII–XII (pKa = 7.8–8.1) containing the
piperazine ring are more basic in their character and largely (approximately 75%) ionized,
whereas I–VII have only uncharged molecules at pH 7.4. It means that the permeability
of the neutral forms of VIII–XII is expected to be higher than the apparent permeability
and, thus, it was calculated in this study as P0 (Table 1) using the Henderson–Hasselbalch
equation based on pKa values (Table S2). Additionally, the calculated permeability at differ-
ent pH values at 37 ◦C (PpH(calc)) is illustrated in Figure 3. As it shows, the pronounced
decrease in the permeability coefficients with the buffer acidity growth is observed for
compounds VIII–XII due to the bigger portion of charged cationic species, whereas the
permeability coefficients PpH(calc) for compounds I–VII became only slightly lower at pH
< 4. The revealed tendency seems to be of use for permeability evaluation in media with
different pH values.
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To summarize the obtained information and to identify the tendencies in the perme-
ability variations, we tried to find correlations between the permeability and the properties
of the studied compounds that can be calculated based on the structure or are presented in
the literature.

2.2. Permeability Correlations

As a first step, we tried to correlate the permeability of the compounds with the solubil-
ity in 1-octanol as a model of the lipophilic medium of the biological membranes and buffer
pH 7.4 mimicking the blood plasma fluid taken from the literature [16]. Unfortunately,
we did not find any relationships. The dependence of the permeability coefficients on the
well-known descriptor—distribution coefficient—is illustrated in Figure 4. The distribution
coefficient (logKoct/buf) (Table 1) refers to the 1-octanol/buffer pH 7.4 system and was
measured experimentally in the literature [16]. Importantly, for compounds VIII–XII, there
are both cationic and uncharged particles in the distribution system. Figure 4 clearly shows
that the compounds are divided into two groups corresponding to the two dependences
obtained. Interestingly, compound III belongs to both dependences. As a result, two
correlation equations were derived.

Compounds I-VII

logPapp = (−4.81 ± 0.02) + (0.10 ± 0.02) × logKoct/buf (1)

R = 0.9402; F = 38.1; n = 7

Compounds III, VIII-XII

logPapp = (−4.75 ± 0.01) + (0.0058 ± 0.0043) × logKoct/buf (2)

R = 0.5612; F = 1.8; n = 6
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One can see that there is a reliable correlation only for the first group of substances.
Bearing in mind the different protolitic properties, we tried to correlate the permeability
for the uncharged species (logP0) (Table 1) with the distribution coefficient (logKoct/buf)
(Figure 5a). In addition to this, we calculated the partition coefficients for the neutral
particles (logK0) by the Henderson–Hasselbalch equation (Table S2) and plotted the
logP0—logK0 dependence (Figure 5b). Figure 5 demonstrates a similar tendency in the
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logP0—logKoct/buf and logP0—logK0 relationships. However, the correlation coefficient is
slightly higher for the latter dependence. It is worth noting that the permeability of three
compounds (X–XII) does not satisfy the correlation condition. The following equations
were derived:

logP0 = (−4.92 ± 0.02) + (0.24 ± 0.01) × logKoct/buf
R = 0.9911; F =3 88.2; n = 9

(3)

logP0 = (−4.88 ± 0.01) + (0.19 ± 0.01) × logK0
R = 0.9957; F = 813.5; n = 9

(4)
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According to the correlation coefficients and especially the Fisher criterion, the correla-
tion taking logK0 as the independent variable is somewhat more reliable.

Polarizability (α) is a well-known physicochemical descriptor. Being responsible for
the main intermolecular interactions, including the nonspecific (van der Waals) forces,
it is often used to predict solubility, permeability, bioactivity and bioavailabilty of drug
substances [17,18]. Therefore, as the next step, we tried to determine the interplay between
the experimental permeability and polarizability calculated from the structures of the
substances (Table S2). The result was not obvious. As many as four compounds (I, III, VI
and VII) did not satisfy the linear dependence, although the fitting parameters without
these points were rather high: R = 0.9901, F = 299.4, n = 8. The plot and the equation of the
correlation are given in the SI file as Figure S1. Taking into account that the compounds
excluded from the correlation have different linker fragments and substituents, the mutual
influence of the fragments and atoms in the molecule seems to be a possible cause of this
phenomenon. Obviously, increasing the number of structural derivatives under study can
improve the situation.

In addition to the QSPR approach used to predict the properties of drugs and drug-like
compounds, there is another approach—the structure–activity relationship (QSAR)—that
is aimed to make prognostic models for biological activity based on the structure of a
compound and a number of descriptors. Information about the antifungal activity of the
considered fluconazole derivatives can be found in the literature [16]. Using the data on the
microbiological activity against the strains of the C. parapsilosis ATCC 22019 pathogenic
fungi, we tried to correlate the minimum inhibitory concentration (MIC) with the per-
meability through the PermeaPad barrier measured by us in this study. The respective
correlation is illustrated in Figure 6. The following equation was derived through linear
fitting:

Log (1/MIC)exp = (11.05 ± 1.07) + (2.65 ± 0.24) × logP0
R = 0.9608; F = 120.0; n = 12

(5)
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Excluding compounds II and X from the correlation that gives Equation (6) improves
the correlation coefficient and the Fisher criterion:

log(1/MIC)exp = (11.05 ± 1.07) + (2.65 ± 0.24) × logP0
R = 0.9946; F = 739.7; n = 10

(6)

As the obtained permeability–activity correlations show, we can predict the in vivo
biological activity of the studied class of derivatives by measuring the in vitro permeability
through the lipophilic PermeaPad barrier and calculating the permeability for the neutral
species using the Henderson–Hasselbalch equation.

The solubility–diffusion theory previously used in our studies [14,16] was applied
to calculate the permeability coefficient by Equations (13)–(15), taking into account the
heterogeneous structure of the lipophilic membrane. To this end, the permeability of the
lipid and aqueous layers of the membrane was simulated using the diffusion coefficients of
the compounds in 1-octanol and water, respectively, as well as the distribution coefficient
in the 1-octanol/buffer pH 7.4 system. The plot of the correlation is presented in Figure 7.

The respective equation expressing the dependence between the experimental and
the calculated values of the permeability coefficients for the studied compounds is the
following:

log(Papp) = (7.14 ± 0.93) + (2.65 ± 0.21) × log(Papp)(calc)
R= 0.9703; F = 161.0; n = 12

(7)

According to the correlation coefficient, the correlation is reliable and can be used to
predict the permeability of this class of derivatives using the distribution coefficient in the
1-octanol/buffer pH 7.4 system and the diffusion coefficients of the substances calculated
from the structure.

Not surprisingly, the plots of the log(Papp)—(Poct(calc)) and log(Papp)—(PABL(calc))
dependences are similar to those of the (log(Papp)—logKoct/buf) and (log(Papp)—α) depen-
dences, respectively. The plots with the correlation equations and parameters (R and F)
are given in the SI file (Figure S2). Evidently, the correlation parameters are better if the
diffusion coefficients are taken into account in the calculations.
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3. Materials and Methods
3.1. Materials and Reagents

The objects of the present study are the following derivatives of the antifungal drug
fluconazole (hybrids of thiazolo[4,5-d]pyrimidines with (1H-1,2,4)triazoles synthesized in the
Gause Institute of New Antibiotics): N-[2-(2,4-difluorophenyl)-2-hydroxy-3-(1,2,4-triazol-1-
yl)propyl]-3-(p-tolyl)-2-thioxo-thiazolo[4,5-d]pyrimidin-7-one (I), N-[2-(2,4-difluorophenyl)-2-
hydroxy-3-(1,2,4-triazol-1-yl)propyl]-3-(2-methoxyphenyl)-2-thioxo-thiazolo[4,5-d]pyrimidin-
7-one (II), N-[2-(2,4-difluorophenyl)-2-hydroxy-3-(1,2,4-triazol-1-yl)propyl]-3-(4-fluorophenyl)-
2-thioxo-thiazolo[4,5-d]pyrimidin-7-one (III), N-[2-(2,4-difluorophenyl)-2-hydroxy-3-(1,2,4-
triazol-1-yl)propyl]-2-[7-oxo-3-(p-tolyl)-2-thioxo-thiazolo[4,5-d]pyrimidin-6-yl]acetamide (IV),
N-[2-(2,4-difluorophenyl)-2-hydroxy-3-(1,2,4-triazol-1-yl)propyl]-2-[3-(4-chlorophenyl)-7-oxo-
2-thioxo-thiazolo[4,5-d]pyrimidin-6-yl]- acetamide (V), N-[2-(2,4-difluorophenyl)-2-hydroxy-3-
(1,2,4-triazol-1-yl)propyl]-2-[3-(4-fluorophenyl)-7-oxo-2-thioxo-thiazolo[4,5-d]pyrimidin-6-yl]
acetamide (VI), N-[2-(2,4-difluorophenyl)-2-hydroxy-3-(1,2,4-triazol-1-yl)propyl]-2-[3-
(2-methoxyphenyl)-7-oxo-2-thioxo-thiazolo[4,5-d]pyrimidin-6-yl]acetamide (VII), N-[3-[4-[2-
(2,4-difluorophenyl)-2-hydroxy-3-(1,2,4-triazol-1-yl)propyl]piperazin-1-yl]-2-hydroxy-propyl]-
3-(2-methoxyphenyl)-2-methyl-2-thioxo-thiazolo[4,5-d]pyrimidin-7-one (VIII), N-[3-[4-[2-(2,4-
difluorophenyl)-2-hydroxy-3-(1,2,4-triazol-1-yl)propyl]piperazin-1-yl]propyl]-3-(4-fluoroph
enyl)-2-methyl-2-thioxo-thiazolo[4,5-d]pyrimidin-7-one (IX), N-[3-[4-[2-(2,4-difluorophenyl)-2-
hydroxy-3-(1,2,4-triazol-1-yl)propyl]piperazin-1-yl]propyl]-3-(4-chlorophenyl)-2-methyl-2-
thioxo-thiazolo[4,5-d]pyrimidin-7-one (X), N-[3-[4-[2-(2,4-difluorophenyl)-2-hydroxy-3-(1,2,4-
triazol-1-yl)propyl]piperazin-1-yl]propyl]-3-(p-tolyl)-2-thioxo-thiazolo[4,5-d]pyrimidin-7-one
(XI), N-[2-[4-[2-(2,4-difluorophenyl)-2-hydroxy-3-(1,2,4-triazol-1-yl)propyl]piperazin-1-yl]
ethyl]-2-methyl-3-(p-tolyl)-2-thioxo-thiazolo[4,5-d]pyrimidin-7-one (XII). The synthesis pro-
cedure and 1H NMR spectra of the compounds are described in detail in the study by
Blokhina et al. [16].

Bidistilled water (with electrical conductivity of 2.1 µS cm−1) was used to prepare the
buffer solution pH 7.4 (I = 0.26 mol·dm−3) from KH2PO4 (9.1 g in 1 L) and Na2HPO4·12H2O
(23.6 g in 1 L) salts. The reagents for the buffer preparation were received from Merk:
potassium dihydrogen phosphate (purity 99%) and disodium hydrogen phosphate dodec-
ahydrate (purity 99%).
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3.2. Membrane Permeability Assay

A vertical-type Franz diffusion cell (PermeGear, Inc., Hellertown, PA, USA) was
used to measure the permeability of the studied compounds. The biomimetic lipophilic
PermeaPad barrier (PHABIOC, Germany, www.permeapad.com, accessed on 20 May 2021)
fully described by di Cagno et al. [18] was employed in the present study to simulate
the morphology and properties of the biologic membranes. This membrane was chosen
because of its advantageous properties and user friendliness. PermeaPad belongs to cell-
free permeation systems. It is composed of two cellulose membranes with a thin layer
of phosphatidylcholine (S-100) between them. Contacting with water, the phospholipids
generate a tightly packed layer consisting of stacks of bilayers with intercalating water
layers, thus, mimicking the biologic membrane structure [19]. The barrier is mechanically
flexible, withstands a wide spectrum of pHs (pH 1–pH 9), does not require any pretreatment
and can be used as received [18].

Firstly, the donor chamber was filled with the donor solution of the tested compound
in buffer pH 7.4, then the PermeaPad barrier was mounted between the donor and receptor
parts of the diffusion cell (0.785 cm2 effective surface area) carefully avoiding the air bubbles
(which can minimize the active area of the membrane, thus, slowing the permeation).
Then, the receptor chamber was placed onto the membrane, fastened with a clip and
filled with pure buffer pH 7.4 to simulate the compound transition to the blood flow.
The volumes of the donor and receptor solutions were 7.0 and 1.0 mL, respectively. The
temperature was maintained at 37.0 ± 0.1 ◦C throughout the experiment. The donor
solution was stirred with a magnetic stirrer bar (500 rpm). Samples of 0.5 mL were taken
out of the receptor solution every 30 min and replaced with an equal amount of the
respective fresh buffer. The experiment lasted 5 h. The sample solution concentrations were
measured spectrophotometrically (Spectramax 190; Molecular Devices, Molecular Devices
Corporation, San Jose, CA, USA) in 96-well UV black plates (Costar) at λ = 270 nm. The
amount of the permeated drug (dQ/A) was plotted versus time (t), taking into account
the effective surface area of the membrane. The slope of the permeation plot produced the
flux (J):

J =
dQ

A · dt
(8)

The apparent permeability coefficient (Papp) was calculated by normalizing the slope
(J) by the compound concentration in the donor solution (C0) by the equation:

Papp =
J

C0
(9)

The average value of Papp was taken from at least 3 replicated experiments.

3.3. Calculation Procedure within the Solubility–Diffusion Theory
3.3.1. Calculation of the Diffusion Coefficients in Water and 1-octanol

The Stokes−Einstein equation was applied to calculate the diffusion coefficients in
water and 1-octanol:

D =
kT

6πrη
(10)

where k is the Boltzmann constant, T is the absolute temperature, η is the dynamic viscosity
of the solvent and r is the solute hydrodynamic radius.

The van der Waals volumes of the molecules were calculated by the group contribution
approach [20]. Since the particles or molecules were assumed to be spherical, the solute
hydrodynamic radii were determined from the van der Waals volumes as follows [21]:

r =
(

3Vvdw
4π

)1/3
(11)

where Vvdw is the van der Waals volume of the permeating molecule.

www.permeapad.com
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3.3.2. Calculation of the Permeability Coefficients

The well-known solubility–diffusion theory was applied to calculate the permeability
coefficient, taking into account the oil-like nature of the biological membrane [22]. Ex-
pressed mathematically, the transition of the molecule through the lipophilic layer of the
membrane is ruled by its ability to partition into the lipid phase and diffusion coefficient
within the phase and can be expressed as:

Papp =
K · D

h
(12)

where K, D and h are the lipid/water partition coefficient, the solute diffusion coefficient in
the lipid phase and the thickness of the lipid membrane, respectively.

Taking into account that 1-octanol, an amphiphilic solvent, serves as the lipophilic
medium model, the coefficient of permeability through the 1-octanol layer is assumed to
simulate the lipophilic membrane. Thus, it can be calculated by the equation:

Poct(calc) =
Doct · Koct/buf

hoct
(13)

where Doct is the diffusion coefficient of the investigated substance in 1-octanol, Koct/buf is
the distribution coefficient in the 1-octanol/buffer pH 7.4 system and hoct is the 1-octanol
layer thickness.

The value of hoct =100 µm was taken as the thickness of the analogous artificial
membrane [23]. The natural membrane is known to be inhomogeneous. Since it contains
phospholipids and other amphiphilic molecules, a bilayer structure is formed when the
polar “head” groups of the lipids are turned to the external border of the aqueous phase
and the lipophilic “tails” are extended toward the center of the bilayer. The ability of the
membrane surface to form hydrogen bonds with water was stated in [24]. This feature
lowers (by more than one order of magnitude) the mobility of the water molecules directly
adsorbed on the surface promoting the formation of an Aqueous Boundary Layer (ABL).
The thickness of this layer in the human intestinal tract ranges from 10 to 100 µm [25]. The
total resistance of the membrane consists of a sum of the resistances of the individual layers
(lipid and water) and can be expressed by the equation:

1
Papp

=
1

PABL
+

1
PLip

(14)

where Papp is the total coefficient of permeability through the water and lipid layers and
PABL and PLip are the coefficients of permeability through the water and lipid
layers, respectively.

In the case of the in vitro permeability measurement, the resistance of the water layer
at the receptor side can be assumed to be negligible due to the rapid removal of the drug
from the membrane surface in the diluted receptor solution [25]. It means that passive
diffusion through the phospholipid membrane can be considered an additive process of
the molecule passage through the structured water barrier and the lipid layer of the cell
membrane (Equation (15)). As has been said before, the lipid layer permeability coefficient
is calculated (Equation (13)) taking 1-octanol as the model of this layer. Similarly, the water
layer permeability coefficient can be calculated by the equation:

PABL(calc) =
Dw

hABL
(15)

where Dw is the diffusion coefficient of the investigated substance in H2O; hABL is the water
layer thickness; and the partition coefficient of the substance in water is equal to 1.

The thickness of the water layer cannot be determined precisely [26] and was assumed
to be 2000 µm as the maximal possible value for in vitro conditions [19]. The thickness of
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the 1-octanol and water layers taken as 100 µm and 2000 µm, respectively, was successfully
applied in our previous study [9], where a reliable correlation between the experimental
and calculated permeability was obtained in the framework of the diffusion theory.

4. Conclusions

The apparent permeability coefficients of new fluconazole derivatives with triazole
and thiazolo-pyrimidine moieties connected by a variety of linker bridges through the
lipophilic PermeaPad barrier were determined for the first time. Taking into account
the significance of predicting the permeability of the newly synthesized drug substances,
we found the correlations of their permeability with the physicochemical properties and
activity. The permeability coefficients of the compounds within the studied class were
shown to depend both on the structure of the linker fragment and on the substituent in the
phenyl ring of the thiazolo-pyrimidine moiety. The presence of the acceptor nitrogen atom
in the linker appeared to be a negative factor leading to a permeability reduction. Using the
dependence of the permeability coefficients on the distribution coefficients of the substances
in the 1-octanol/buffer pH 7.4 system, we only found a reliable correlation (R = 0.9402)
for compounds (I–VII), which were unionized at the experimental pH 7.4. Recalculating
the permeability coefficients of compounds (VIII-XII) to the uncharged particles, we were
able to improve the correlation by bringing it to R = 0.9911 (compounds IX, X, XII were
excluded). We found a reliable correlation (R = 0.9608) of the permeability coefficients for
the uncharged species of the studied derivatives on the antifungal activity, which proved it
was possible to predict the in vivo biological activity within the studied class by measuring
the in vitro permeability. We also derived an important correlation based on the data on the
whole series of the studied compounds within the framework of the solubility–diffusion
approach (R = 0.9703) using the calculated diffusion coefficients in 1-octanol and water, as
well as the experimental distribution coefficients in the 1-octanol/buffer pH 7.4 system.
There are but a few works where this approach is used, so we hope that our study will be
of interest to scientists dealing with permeability investigation and prediction. Moreover,
the obtained experimental data can enrich the in vitro permeability databases of drug and
drug-like compounds.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28010389/s1. Figure S1: Logarithmic depen-
dences of the apparent permeability coefficient (logPapp) on polarizability (α). The correlation
equation: logPapp = (−4.39 ± 0.02) − (0.0053 ± 0.0003)·α, R = 0.9901, F = 299.4, n = 8; Figure S2: Log-
arithmic dependences of the experimental apparent permeability coefficient (Papp) on the calculated
permeability coefficient through the 1-octanol layer Poct (a) and water layer PABL (b); Table S1: Donor
solution concentrations (C), steady penetration rate (J) for the studied compounds at pH 7.4 and 37 ◦C
(for compounds numbering see Figure 1); Table S2: Physicochemical parameters: polarizability (α),
pKa, distribution coefficients for the uncharged particles (K0), and minimum inhibitory concentrations
for strains of pathogenic fungi C. parapsilosis ATCC 22019 (MIC) for the studied compounds.
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