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Abstract: The separation of oil/water emulsions has attracted considerable attention for decades
due to the negative environmental impacts brought by wastewater. Among the various membranes
investigated for separation, polyvinylidene fluoride (PVDF) membranes have shown significant
advantages of ease of fabrication, high selectivity, and fair pore distribution. However, PVDF
membranes are hydrophobic and suffer from severe fouling resulting in substantial flux decline.
Meanwhile, the incorporation of wettable substrates during fabrication has significantly impacted
the membrane performance by lowering the fouling propensity. Herein, we report the fabrication of
an iron-containing porphyrin (hemin)-modified multi-walled carbon nanotube incorporated PVDF
membrane (HA-MWCNT) to enhance fouling resistance and the effective separation of oil-in-water
emulsions. The fabricated membrane was thoroughly investigated using the FTIR, SEM, EDX, AFM,
and contact angle (CA) analysis. The HA-MWCNT membrane exhibited a water CA of 62◦ ± 0.5 and
excellent pure water permeance of 300.5 L/m2h at 3.0 bar (400% increment), in contrast to the pristine
PVDF, which recorded a CA of 82◦ ± 0.8 and water permeance of 59.9 L/m2h. The hydrophilic HA-
MWCNT membrane further showed an excellent oil rejection of >99% in the transmembrane pressure
range of 0.5–2.5 bar and a superb flux recovery ratio (FRR) of 82%. Meanwhile, the classical molecular
dynamics (MD) simulations revealed that the HA-MWCNT membrane had greater solvent-accessible
pores, which enhanced water permeance while blocking the hydrocarbons. The incorporation of
the hemin-modified MWCNT is thus an excellent strategy and could be adopted in the design of
advanced membranes for oil/water separation.

Keywords: oil/water emulsion; antifouling; membrane; PVDF; MWCNT; MD simulation

1. Introduction

Water contamination due to organic and oily components has become a critical en-
vironmental problem and significantly impacts human and aquatic life [1,2]. Oil can
pollute water from several sources, including the frequent oil spills that happen during the
transportation of oils, and history has shown some severe oil spill incidents that occurred
periodically. Oil and gas extraction industries are the major contributors to oily wastewater.
According to the estimation, almost 3 to 10 barrels of produced water are produced with
each oil barrel and disposing of it without proper treatment can impact water quality
significantly. Other industries produce oily wastewater, including textile, food, mining,
and metal processing. Oil water pollution has become a global concern due to its critical
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implications on the ecological environment [3]. Due to the subject’s significance, oil/water
separation has become a hot area of research.

Oil in water can be present in different droplet sizes, and according to the type or the
size of the oil droplet, a membrane design is required. If the diameter exceeds 150 µm,
it is called free oil and water; if the droplet size diameter is 20 µm ≤ d ≤ 150 µm, it
is called dispersion; and if the diameter is reduced from 20 µm, the term emulsions are
used [4,5]. Several methods have been adopted to treat or recover oil, including air flotation,
coagulation, skimmers, flocculation, hydro cyclones, and gravity-based separations [6,7].
Various adsorbents have also been developed to remove oily contaminants from the wa-
ter [8]. The adsorbent becomes saturated after some time and needs to be regenerated.
The regeneration may involve chemical or physical steps to make this adsorbent reusable.
The overall process becomes tedious if the adsorbent is exposed to highly contaminated
water, which demands the fast regeneration or disposal of the materials, which makes
the process unfavorable to deal with the large quantity of wastewater [9]. Regeneration
of the adsorbent also adds cost to the treatment process [10]. Furthermore, the treatment
of oily wastewater has become critical by conventional methods when the droplet size
decreases to 20 µm as the oil is emulsified in water [11]. Membrane-based separation of
oily wastewater is receiving significant attention due to several desired advantages such as
the energy-efficient, low maintenance cost, dealing with large quantities of water, and no
addition of immediate secondary contaminants [11].

Due to their controlled pore size, low cost, and facile processing, polymeric membranes
have shown great potential for oily wastewater treatment. Therefore, polymeric membranes
such as polysulfone [12], polyethersulfone [13], polyacrylonitrile [14], polypropylene [15],
and poly(vinylidene fluoride) [16] are being evaluated for oil/water separation. The PVDF
membranes are extensively explored for oil–water separation due to their thermal, chemical,
and mechanical stability [17]. PVDF is semicrystalline and consists of the repeating unit of
–(CH2CF2)n–. PVDF can be easily processed into flat sheets, hollow fibers, and tabular and
flat sheet membranes. Most of the water is produced by industries; it is oil-in-water emul-
sions. PVDF is hydrophobic and usually suffers from severe fouling during the separation
process, resulting in substantial flux decline. To improve the performance and antifouling
characteristics of the polymeric membranes, a range of advanced materials have been
used, including graphene [18], graphene oxide [19], g-C3N4 [20], MXenes [21,22], TiO2 [23],
ZIF-67 [24], and halloysite nanotube [25]. Carbon nanotubes also display great potential
to improve the performance of the polymeric membranes for oil/water separations [26].
Recently, more focus has been observed on utilizing functionalized carbon nanotubes to
tune the characteristics of the membranes [27].

In the continuation of this efforts, we introduced an iron-containing porphyrin called
hemin-modified multi-walled carbon nanotube (HA-MWCNT) to improve the characteris-
tics of the PVDF membranes. The HA-MWCNT was thoroughly investigated theoretically
and then experimentally to prove the concept. The HA-MWCNT and the PVDF membranes
were investigated by the FTIR, SEM, cross-sections, EDX, elemental mapping, AFM, XRD,
and contact angle analysis. The membranes were applied for the separation of the surfac-
tant stabilized oil-in-water emulsions. The modified and the pristine PVDF membranes
were evaluated at different pressures to observe the change in flux and rejection while
separating the oil-in-water emulsions. The HA-MWCNT membranes maintained a high
performance at all evaluated pressures without significantly compromising the rejections.
Through computational studies, it was found that the modified MWCNT provided a greater
accessible area for the solvent or the continuous phase and thus provided an opportunity
to enhance the flux of the membranes compared to the pristine membranes.

2. Results and Discussion
2.1. MD Analysis

Figure 1a,b presents the energy-minimized amorphous cells comprising of seven units
of the membrane active layer. The isosurfaces depicted in blue and grey color represents
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the free accessible volume within the membrane materials at a probe radius of 0.84 Å.
Connolly surface area of 20,000 and 25,000 Å2 were estimated for the NH2-CNT (Figure 1a)
and the HA-MWCNT (Figure 1b), respectively. This represents a significant enhancement
on the solvent accessibility of HA-MWCNT. Meanwhile, the fractional free volume (FFV)
estimated by the Bondi equation [28] resulted in values of 0.296 and 0.305 on the NH2-CNT
and the HA-MWCNT systems, respectively, in consonant with the Connolly surface area.
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Figure 1. The energy-minimized amorphous cells consisting of 7 units of (a) the NH2-CNT, and (b) the
HA-MWCNT active layers. The starting geometry of the (c) membrane-oil–water and the (d) emulsi-
fied membrane-oil–water systems. The respective components of water, surfactant, membrane active
layer, and the oil model are shown in (e).

The constructed amorphous cells for the estimation of the oil–water interface stability
is presented in Figure 1c,d. The corresponding final frames of the dynamic simulations
and the relative concentration profiles are shown in Figure 2. Hydrogen bond interactions
between the water molecules and the surface-functionalized amine groups resulted in the
aggregation of the NH2-CNT at the oil interface which acts as a barrier to oil permeation
(Figure 2a). In the emulsified system, however (Figure 2b), a compact layer of the HA-
MWCNT was formed which further increased the interfacial thickness. Using the 90–90%
criterion [29], interfacial thickness of 40.0 and 45.0 Å were estimated for the membrane-
oil–water and the emulsified membrane-oil–water systems (Figure 2c,d), whereas the
corresponding interfacial formation energies of −856.2 and −1542.6 kcal/mol were cal-
culated, respectively. These results suggest that the HA-MWCNT membrane material
exhibits a larger solvent accessible area and greater FFV, and thus has the potential for the
demulsification of oil–water systems.
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Figure 2. The final frame of the dynamic simulations of the (a) membrane-oil–water, and (b) the
emulsified membrane-oil–water systems. The relative concentration profiles of the membrane-oil–water,
and the emulsified membrane-oil–water systems are presented in (c,d), respectively.

Furthermore, the interaction of the NH2-CNT and HA-MWCNT with various hydro-
carbon molecules during the dynamic simulations was revealed by taking screenshots at
various time intervals (Figure 3). The achieved data revealed that almost all of the hydro-
carbons studied (hexane, octane, dodecane) tend to approach the CNT via the hydrophobic
surfaces, while a number of the water molecules interacts via the amine nitrogens. While
hexane and octane were able to diffuse through the hollow openings on the NH2-CNT
(Figure 3a–c), these pathways were inaccessible on the HA-MWCNT due to the gating
characteristics of the hemin chloride moieties (Figure 3d–f) leading to the passage of water
molecules. These results thus reveal the enhancement in the wettability of the HA-MWCNT
due to the intercalation of hemin chloride, and the potential of such material in the separa-
tion of oil/water emulsions.

2.2. Membrane Characterizations

The X-ray diffraction (XRD) patterns of pristine MWCNT, the amine-functionalized
MWCNT (NH2-MWCNT), and HA-MWCNT are depicted in Figure 4a. Accordingly, the
same peak at 2θ 26.5◦ corresponding to (002) reflection of graphite provides proof of the
presence of carbonized functionality on the pristine and functionalized materials. In the
case of NH2-MWCNT, we can observe numerous XRD diffraction peaks demonstrating
the grafting of the amine on the MWCNT surface. Additional peaks at 14.5◦, 19.6◦ and
37.5◦ reflecting the (001), (110), and (002) lattice planes, respectively appeared on the
NH2-MWCNT and the HA-MWCNT affirming the grafting of the amine functionality [30].
Furthermore, the Fe reflections at 7.5◦, 21.0◦, 30.0◦, 32.5◦, and 34.0◦ corresponding to the
(112), (113), (220), (104), and (110) lattice planes, respectively [31], revealed the hemin
adsorption on the HA-MWCNT.
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MWCNT, and HA-MWCNT. FESEM micrographs of MWCNT and HA-MWCNT are shown in (c)
and (d), while the corresponding EDX and elemental mapping are presented in (e–g) and (h–l) for
MWCNT and HA-MWCNT, respectively.
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The FT-IR spectra further revealed the surface groups on the MWCNT, NH2-MWCNT,
and HA-MWCNT and presented in Figure 4b. The –OH and C=O stretching of carboxylic
groups (COOH) in the oxidized MWCNT samples are responsible for the strong and wide
peaks at 3433 cm−1 and 1725 cm−1. MWCNT backbone vibration is responsible for the peak
at 1380 cm−1. The dispersion of MWCNT in liquids is enhanced by these oxygen-containing
groups’ ion exchange capabilities [32]. New peaks at 1350 cm−1 corresponding to the C-N
stretch are seen on the NH2-MWCNT and the HA-MWCNT spectra. Others are the –NH
stretching vibration at 3450 cm−1 which overlaps with the –OH vibrations [33]. The FT-IR
data show that the amine-functionalization and the hemin adsorption of the MWCNT
surface were effective.

The morphology of the MWCNT and the HA-MWCNT are presented in Figure 4c,d.
The MWCNT were aggregated due to van der Waals forces. The length is in the range of
a few microns and tens of microns, and the surface is reasonably smooth with an inner
diameter ranging from 10 to 20 nm. After hemin adsorption, the HA-MWCNT still exhibited
agglomeration with occasional granular clusters adhered to the surface, and the diameter
increase somewhat, which may have been a result of the amine functionalization and the
hemin adsorption.

The energy dispersive X-ray elemental distribution on the surface of MWCNT and the
HA-MWCNT and the corresponding elemental mapping are depicted in Figure 4e–l. On the
surface of MWCNT, a homogeneous distribution of atoms may be readily observed. Only
carbon (C) and oxygen (O) are visible on the MWCNT, while nitrogen (N) and iron (Fe) are
visible on the HA-MWCNT in addition to the C and N. Most of the carbon came from the
carbon nanotubes, whereas the N and the Fe appeared due to the amine functionalization
and the hemin adsorption, respectively.

FTIR spectra of the PVDF and the HA-MWCNT membranes were investigated for
the surface chemistry and to confirm the successful fabrication of the nanocomposite
membrane. The results are displayed in Figure 5a. The –CH vibrations can be seen at
3022 and 2972 cm−1, while the –C–C– and the –C–F– vibrations appeared at 881 and
841 cm−1, respectively. The entire PVDF absorption bands in the region 500–1500 cm−1 can
be seen on both spectra [34], except for the –C–N stretch, the –C=O stretch, and the -NH
stretch which appeared at 1525, 1650, and 3450 cm−1, respectively, which appeared on the
HA-MWCNT membrane, confirming the successful fabrication of the composite membrane.

The surface morphology and the cross-sectional view of the PVDF membrane is
presented in Figure 5b, while the elemental mapping is shown in Figure 5c–e. Similarly,
those of the HA-MWCNT membrane are depicted in Figure 5f–l. The surface morphology
revealed that both membranes did not exhibit surface fracture during the synthesis, and
that the addition of the MWCNT did not cause any agglomeration which limits the pore
formation. Furthermore, the cross-sectional views revealed that both membranes exhibit an
asymmetric finger-like framework with a dense top layer, typical of PVDF membranes [35].
The PVDF membrane, as predicted, has a smaller pore size compared to the HA-MWCNT
membrane. Mixed-matrix membranes often have larger macro-void structures and higher
overall porosity in the selective layer when compared to the pristine membranes [36]. In
particular, the morphology was drastically altered when a specific amount of HA-MWCNT
was added to the casting solution, resulting in macro-voids and pore diameter on the top
that were much broader and larger than the pristine PVDF membrane. The elemental
mapping thus reveals a uniform distribution of the atoms across the membranes.
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Figure 5. (a) The FTIR spectra of the PVDF and the HA-MWCNT membranes, (b) the FESEM of the
PVDF membrane with the elemental mapping on the cross-section shown in (c–e). The morphology
of the HA-MWCNT membrane is shown in (f), while the elemental mappings are shown in (g–l). The
surface morphologies of both membranes are shown as insets on the cross-sectional views.

Surface roughness has an impact on a membrane’s antifouling performance. AFM
analysis was used to measure the membranes’ surface roughness and the results are
depicted in Figure 6a,b. The dark and bright spots on the 2D images represent pores and
heights. An apparent difference in the topography and the surface roughness of the PVDF
and the HA-MWCNT membranes was observed. The root-mean square roughness (Rq) and
the mean roughness (Ra) were quite different, indicating the topography change after the
addition of the HA-MWCNT. The pristine PVDF membrane formed by the phase inversion
appeared much smoother. The mean surface roughness and root mean square roughness
(Rq) were estimated at 36.5 nm and 49.7 nm. These values correlate with those reported
on PVDF membranes in the literature [37]. In the case of the HA-MWCNT membrane, the
mean surface roughness and root mean square roughness were found to be 11.9 nm and
14.7 nm, respectively (Figure 6b). Thus, the modified membrane has a smoother surface.
This can be attributed to the excellent dispersion and the low electrostatic interactions
between the MWCNT particles [38].

Meanwhile, the wettability of the membranes was measured and is depicted in Figure 7.
For effective oil-in-water separations, the size exclusion principle plays a critical role as it
provides an avenue to discriminate between oil and water molecules based on size [39].
However, to prevent the dispersed tiny oil droplets from penetrating and blocking the
pores, the membrane’s hydrophilicity has to be controlled. The water contact angles on
the PVDF and HA-MWCNT membrane surfaces were measured and the results revealed
that the PVDF membrane has a value of 82◦. The HA-MWCNT membrane on the other
hand has a value of 62◦. This considerable decrease can be attributed to the presence of
polar –OH and –NH functional groups on the composite membrane which imparts surface
hydrophilicity and lowers the fouling tendency.
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Figure 7. Water contact angle on the pristine and the HA-MWCNT membrane.

Furthermore, the surface area and the pore diameter of the pristine and the HA-
MWCNT membranes was evaluated with the help of the BET analysis. The N2 sorption
isotherms at 77 K indicate that both membranes are mesoporous in nature (Figure 8a). The
PVDF (HA-MWCNT) membrane showed enhancement in the pore diameter and higher
uptake at high pressure (P/P0 ≥ 0.9); this also conformed to the pore size distribution
(PSD) figure (Figure 8b).
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The fabricated membranes were evaluated for the separation of oil-in-water emulsions
and the results are presented in Figure 9. To assess their demulsification characteristics, the
membranes (50 mm dia.) were fixed in a dead-end filtration cell and compacted for 1 h at
4.0 bar using deionized water. Thereafter, the flux of water through the membranes (Jw)
were evaluated at a transmembrane pressure range of 0.5–3.0 bar using the expression [40]:

Jw =
V

A × ∆t

where V, A, and ∆t represents the permeation volume (m3), the membrane effective area
(m2) and the permeation time (h), respectively. The pristine PVDF membrane recorded
a steady increase in pure water flux reaching up to 59.9 L/m2h at 3.0 bar (Figure 9a).
Similarly, the HA-MWCNT membrane showed an increase in water flux with an increase
in transmembrane pressure (Figure 9b). However, the incorporation of the hemin-adsorbed
amine-functionalized carbon nanotubes created additional pores and increased the hy-
drophilicity on the membrane surface which enhanced water permeation. Consequently,
the HA-MWCNT membrane recorded a high pure water flux of 300.5 L/m2h at 3.0 bar.
This represents a significant increment of about 401% compared to the pristine PVDF and
showed a remarkable enhancement in water flux across the membrane.

Furthermore, the rejection of oil-in-water emulsions on the fabricated membranes was
evaluated by passing a 200 ppm emulsion through the pristine PVDF and the HA-MWCNT
membranes at pressures ranging from 0.5–3.0 bar. The emulsion was stabilized with the aid
of sodium dodecyl sulfate (SDS) surfactant and the oil rejection (R%) across the membranes
was estimated using the Equation [40]:

R% =

(
C f − Cp

C f

)
× 100

where Cf and Cp are the oil concentrations in the feed and in the permeate, respectively.
In contrast to the pristine PVDF membrane, the HA-MWCNT membrane showed

excellent oil rejection of >99% in the transmembrane pressure range of 0.5–2.5 bar. Beyond
this pressure, however, a slight decline in the oil rejection was observed and oil rejection
decreased to 88.7% at 3.0 bar. It is worth mentioning that these results were achieved due
to the unique design of the HA-MWCNT membrane which increased the hydrophilicity on
the membrane surface and increases water accessibility while blocking the oil molecules, in
good agreement with the MD simulation results. The performance of the PVDF membrane
showed that the HA-MWCNTs incorporation into the PVDF membranes improved the flux
and separation efficiency of the membrane. The HA-MWCNTs, provided the additional
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channel for permeation and improved the hydrophilicity of the PVDF membrane which
result into the better flux and high rejection of the PVDF membrane.
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Figure 9. Water permeation flux on (a) pristine PVDF and (b) HA-MWCNT membranes. The permeate
flux and the oil rejection on the pristine PVDF and the HA-MWCNT membranes are shown in (c,d),
respectively. The snapshots of the emulsion feed and the permeate are shown as inset in (c,d).

Membrane fouling during oil-in-water emulsion separation is a common phenomenon
which often results in the blocking of the pores and a consequent decline in flux and oil
rejection [35]. During the demulsification process, the large oil droplets aggregate at the
membrane interface forming cake layers, while tiny droplets penetrate through the pores
and block the channels. Both processes result in severe fouling of the membrane and lower
its rejection efficiency. The fouling resistance of a given membrane is thus evaluated by
analyzing its tendency to resist the cake formation and is expressed in terms of the flux
recovery ratio (FRR) after exposure to the emulsion [35]. The resistance to fouling of the
HA-MWCNT membrane was estimated by fixing the membrane in a dead-end cell and
100 mL of 200 ppm oil-in-water emulsion was added. A transmembrane pressure of 2.0 bar
was applied to assess the antifouling behavior of the membranes and the membrane was
kept exposed for the period of 3 h to the oil-in-water emulsions. Thereafter, the membrane
was removed, thoroughly washed with deionized water, and mounted again in the cell
and the pure water flux was measured. A steady decline in the permeation flux was
observed during the 3 h operation. However, about 82% of flux was recovered after this
process, indicating the fouling resistance of the HA-MWCNT membrane (Figure 10). When
compared to other previously reported membrane materials, as listed in Table 1, the HA-
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MWCNT membrane achieved comparable results with excellent oil rejection of 99.1% at a
transmembrane pressure of 2.0 bar, and an FRR of 82%.
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Table 1. Performance comparison of the HA-MWCNT membrane with previously reported mem-
branes.

Membrane Fabrication Method Rejection (%) FRR (%) Ref.

PVFD + dopamine Inkjet printing 99 82 [37]

PVDF + Cellulose Supramolecular adhesive 99 80 [41]

PVDF + grafted poly(N-acryloylmorpholine Surface-initiated atom transfer
radical polymerization 91 50 [42]

polyacrylonitrile (PAN) membrane Phase inversion 98.7 9.6 [43]

PSf/HAO Phase inversion 100 67 [44]

Hydrophilic Fe2O3 dynamic membrane Pre-coated dynamic membrane 95 53.7 [45]

Nanocomposite Kevlar fabric membranes Dip coating 89.06 88.88 [46]

Isotropic polyether sulfone (PES) membrane Non-solvent vapor-induced phase
separation (VIPS) 98 59.5 [47]

PES/PDA@ZnFe2O4
Non-solvent induced phase
separation (NIPS) process 96 82.5 [48]

PES/γ-Fe2O3 Phase inversion 82 56 [49]

PPSU/PEI Phase inversion 56 42.6 [50]

HA-MWCNT Phase inversion 99.1 81.6 Present study

3. Materials and Methods
3.1. Reagents and Chemicals

All the reagents and chemicals were of high purity and used as-received without
further purifications. Sodium nitrite, NaNO2 (ACS reagent, ≥97.0%), sulfuric acid, H2SO4
(ACS reagent, 95.0–98.0%), chloro(protoporphyrinato)iron(III) (≥96.0%, HPLC), ethy-
lene diamine (for synthesis), MWCNT (20–30 nm in diameter and 2–20 µm in length),
N, N-dimethylformamide (DMF; 99.8% purity), N, N-dimethylacetamide (DMAc; ≥99.8%,
GC), acetic acid (glacial, ACS reagent, ≥99.7%), sodium dodecyl sulfate (SDS; ACS reagent,
≥99.0%), ferric chloride hexahydrate (FeCl3·6H2O; ACS reagent, ≥97%), absolute ethanol,
and methanol were procured from Sigma-Aldrich. The polyvinylidene fluoride, PVDF, was
purchased from Alfa Aesar.
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3.2. Synthesis of Chloro(protoporphyrinato)iron(III)-Adsorbed Amine-Functionalized MWCNT
3.2.1. Synthesis of Amine-Functionalized MWCNT

The amine-functionalized MWCNT was synthesized following a previously reported
method, with slight modifications [51]. Briefly, MWCNT (70 mg, 5.8 mmol of C) was mixed
with NaNO2 (93 mg, 1.4 mmol) and ethylene diamine (85 mg, 1.4 mmol). Concentrated
H2SO4 (0.061 mL, 1.2 mmol) was added and the mixture was heated at 60 ◦C for 1 h.
The mixture was allowed to cool, then DMF was added and the mixture centrifuged and
washed several times with DMF and water to remove any unreacted ethylene diamine
from the product.

3.2.2. Synthesis of Chloro(protoporphyrinato)iron (III)-Adsorbed MWCNT (HA-MWCNT)

Amine-functionalized MWCNT (10 mg, 0.83 mmol of C) was sonicated for 15 min
in dry DMF (40 mL) to provide a dark suspension. Chloro(protoporphyrinato)iron (III)
(complex 1) (5 mg, 0.005 mmol) was then added (resulting in a green colored suspension)
and the mixture stirred for 17 days at which point the green color had faded (indicating
the adsorption of complex 1 onto the MWCNT) [52]. The solid product was separated
from the solution by centrifuging and washing several times with DMF to remove excess
unreacted chloro(protoporphyrinato)iron (III) to obtain the adsorbed species: HA-MWCNT
(complex 2) as a dark green powder. Scheme 1 presents an illustration of the synthesis.

3.3. Membrane Fabrication

The HA-MWCNT membrane was fabricated as follows [35]: the fine PVDF powder
was kept at 60 ◦C under vacuum for 12 h to remove any adsorbed moisture. A calculated
mass of the PVDF powder and HA-MWCNT was added to DMAc to obtain 18% casting
solution of PVDF and 0.5% solution of HA-MWCNT. The solution was stirred at 60 ◦C
overnight to obtain a homogeneous solution and later degassed for 1 h. After that, the
obtained solution was kept for 24 h to remove any trapped bubbles. The PVDF solution
was cast with the help of a doctor’s blade and immediately transferred into the coagulation
bath. The coagulation bath consisted of deionized water. After 10 min, these membranes
were moved into the deionized water and kept overnight for the complete phase inver-
sion process. Afterward, the synthesized membranes were stored in deionized water for
further evaluation.

3.4. Characterizations

The morphologies of the multi-walled carbon nanotubes, the HA-MWCNT and the
fabricated membranes were recorded on Quattro field emission scanning electron micro-
scope (FESEM, Waltham, MA, USA) fitted with an energy dispersive X-ray spectrometer
(Thermo ScientificTM, Waltham, MA, USA). The specimens were coated by gold sputtering
prior to analysis. X-ray diffraction patterns were obtained on a Rigaku Miniflex-II X-ray
diffractometer using CuKα radiation in the range of 2θ 5◦–80◦. The FTIR spectra of the ma-
terials and the fabricated membranes were measured on NicoletTM iS5 FTIR spectrometer
in the range of wavenumber 400–4000 cm−1. The surface wettability of the fabricated mem-
branes was measured on DSA-25 drop-shaped contact angle analyzer (KRUSS Scientific,
Hamburg, Germany) using a drop size of 5 µL. The surface topography and roughness of
the membrane specimens were recorded on Agilent 5500 atomic force microscope (Agilent
Technologies, Santa Clara, CA, USA). Micrometric ASAP 2020 (Brussels, Belgium) was
used to measure the BET surface area and pore size distribution. High-purity N2 (99.999)
gas was used under the liquid nitrogen condition.
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3.5. Oil–Water Separation

The fabricated membranes were evaluated for oil-in-water separation on a Sterlitech
HP4750 high pressure dead-end filtration cell with an internal diameter of 5.1 cm and
membrane active area of 14.6 cm2. Prior to the emulsion separation, the membranes were
compacted at a specific pressure above the working pressure for 1 h. For the preparation of
the oil-in-water emulsions, 1 L of the deionized water was taken and put on the magnetic
stirrer at 700 rpm. The 1 g of SDS was added slowly to avoid the formation of foam in
the deionized water and it was kept stirring for 15 min. After that, 1 g of oil was added
and kept stirring until the milky color emulsion of 1000 ppm of oil-in-water emulsion
formed. After that, it was diluted with the deionized water to obtain 200 ppm of emulsion.
The emulsion droplet size was measured to be about 120 nm with the aid of the Nano-ZS
ZEN 3600 Malvern zetasizer. The transmembrane pressures during the measurements
were carefully controlled using a two-stage regulated argon gas flow. The demulsification
efficiencies of the membranes were estimated using a turbidimeter which measures the
turbidity of the feed and the permeate in NTU units [53,54].
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3.6. Molecular Dynamics (MD) Simulations

Theoretical modeling of the demulsification of oil-in-water emulsions on the HA-
MWCNT membrane was studied on Materials Studio 8.0 suite via the Forcite module.
The universal forcefield which allows the prediction of geometries and conformational
energy differences of organometallic systems was used [55]. The Connolly surface area
and the fractional free volume (FFV) of the membrane systems were estimated by packing
7 units of the functionalized membrane materials (Figure 11a,b) in cubic amorphous cells
with dimensions of 50 × 50 × 50 Å. The constructed cells were geometrically optimized,
followed by dynamics simulations on the NPT and the NVT ensembles each for a duration
of 1000 ps at a timestep of 10−3 ps. The Nose–Hoover thermostat and the Berendsen
barostat were used to control the temperature and the pressure, respectively. Meanwhile,
the Ewald summation method was used to treat the long-range Coulombic interactions,
while the repulsive and attractive interactions were estimated using the Lennard–Jones
potential at a cutoff range of 18.5 Å.
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Figure 11. Models of (a) amine-functionalized MWCNT, (b) the HA-MWCNT membrane active layers.

For the stability at the oil–water interface in the system containing the membrane
material, HA-MWCNT was estimated by the construction of symmetric cells comprising
1000 water molecules, 5 units of HA-MWCNT, 5 molecules of sodium dodecyl sulfate (SDS)
which act as the emulsifier, and 200 molecules of octane which represent the oil model.
Similar cells without the emulsifier were also constructed. All the cells were geometrically
optimized, and thereafter subjected to NPT and NVT dynamic simulations with periodic
boundary conditions each for 500 ps at 298.5 K. All other simulation conditions remained
the same as previously mentioned. The oil–water interface stability was estimated by
calculation of the interfacial formation energy (EIFE) using the equation [56]:

EIFE =
1
2
[
Esystem − (EHA−MWCNT + ESDS + Eoil−water)

]
where Esystem, EHA−MWCNT , ESDS and Eoil−water (kcal/mol) represents the total energies of
the configuration under study, the HA-MWCNT membrane active layer, the SDS emulsifier,
and the oil–water system, respectively.

Lastly, we conducted MD simulations to assess the interactions between the hydrocar-
bon units, water molecules, and the membrane active layer. Amorphous simulation cells
with dimensions of 40 × 40 × 40 Å were constructed comprising a unit of the membrane
active layer, 5 molecules each of hexane, octane, and dodecane, and 1000 molecules of
water. The periodic boundary conditions were set in all directions and the hydrocarbons
each was positioned at distances at least 5.0 Å from the membrane surface. Following the
energy minimizations, and the NPT and NVT dynamics simulations for 500 ps (conditions
remain the same as previously mentioned), the interactions of the hydrocarbon molecules
with the HA-MWCNT membrane active layer were estimated.
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4. Conclusions

We report the successful fabrication of a hemin-modified MWCNT-incorporated PVDF
membrane (HA-MWCNT) to separate oil-in-water emulsions. The fabricated membrane
exhibited an asymmetric finger-like morphology, solvent-accessible macro voids, and sur-
face roughness of 11.9 nm compared to the pristine PVDF, which recorded a roughness of
36.5 nm. In contrast to the PVDF membrane, the HA-MWCNT achieved a water contact
angle of 62◦ ± 0.5, excellent pure water permeance of 300.5 L/m2h at 3.0 bar and main-
tained oil rejection of >99% in the transmembrane pressure range of 0.5–2.5 bar. The flux
recovery of the hemin-modified MWCNT-incorporated PVDF membrane was greater than
80%. These results were consistent with those of computational modeling using classical
MD simulations. Our results reveal that the incorporation of hemin-modified MWCNT
during the fabrication of PVDF membranes is an excellent strategy to improve the fouling
resistance and water permeance and could be adopted in designing advanced membranes
for oil/water separation
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