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Abstract: The article considered the solution of the inverse problem of chemical kinetics of the
analysis of experimental data of a thermogravimetric experiment at a constant sample heating rate.
The fitting method for identifying the parameters of a kinetic triplet using the integral method
for a model of a solid-state reaction based on the modified Arrhenius equation is described. The
effectiveness of the proposed approach was confirmed by solving test cases for low, medium, and
high rates of material conversion. Unlike other methods, setting the parameters of the reaction
mechanism is not required, as they are determined by the solution. Solutions for real data of TGA
studies with high and low sample heating rates were compared with the results obtained by other
authors and experimental data. A description of the full cycle of calculations used to identify kinetic
parameters from thermogravimetric experimental data is given, from the derivation of calculated
relationships to the implementation of a short (three to five formulas) program code for MS Excel
spreadsheets. The presented code is easy to verify and reproduce and can be modified to solve
various problems.

Keywords: thermogravimetric analysis; kinetic triplet; modified Arrhenius equation; general temperature
integral; fitting method; solid-state reaction mechanism; kinetic analysis

1. Introduction

Thermogravimetric analysis (TGA) with a constant heating rate applied to the sample
is widely used to identify the kinetic parameters of solid-state reactions using experimental
data. A TGA experiment determines the change (conversion) in mass of a sample measured
as a function of time (or temperature).

Two main classes of methods are used to analyze the kinetic data of solid-state reac-
tions. The first class includes the so-called fitting methods which are used for experimentally
obtained single dependence of mass change in the sample on time t at a specific heating
rate β, while the second class consists of model-free (isoconversion) methods that require
several dependences with different β values [1–13].

A differential kinetic equation is often used to describe the process of transformation
(decomposition) of a substance. This equation relates the rate of a solid-state reaction dα/dt
of change in the dimensionless degree of conversion α with a given function of the reaction
mechanism f (α) and with the Arrhenius reaction-rate constant k(T). For example, the
assumption of a first-order reaction in the Kissinger method, which is widely used, may
lead to large evaluation errors in TGA studies applying temperature programs other than
linear heating [1,2,14].

The mechanism function of a reaction f (α) can be determined using the logical choice
method [6,15], some specific methods [7,11], or using one of 40 model functions [12,16,17].
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The criterion is the maximum value of the correlation coefficient approximating the depen-
dencies used in a particular method. Prior to kinetic analysis, the thermal decomposition
reaction mechanism f (α) is assumed to have a specific mathematical form.

Fitting methods are used under the assumption that the activation energy E is constant
for the entire range of conversion, whereas isoconversion methods provide a significantly
more insightful alternative by considering the variability of E(α) [2]. Nevertheless, fitting
methods are widely used and are constantly being improved [2] in terms of the accuracy of
determining model parameters. It should be noted that for practical use the dependence
E(α) obtained using the isoconversion method is included as an average value E = const in
the final form of the mathematical model of the reaction [6].

A significant difficulty in implementing both fitting and isoconversion methods is
the lack of a reliable criterion for choosing an adequate model of the reaction mechanism
f (α), corresponding to the actual process [18]. In most fitting methods, a dependence f (α)
is initially specified. In model-free isoconversion methods, the pre-exponential A of the
Arrhenius function is determined using a given reaction mechanism f (α) and an obtained
apparent activation energy value [6,19].

The classical Arrhenius equation is widely used for calculations in both methods,
which may be considered as a disadvantage, since a number of studies have shown that
its various modifications significantly improve the accuracy of determining the kinetic
parameters [20,21]. In particular, Criado et al. [20] examined the dependence of the preex-
ponential factor on temperature and estimated the errors involved in the activation energy
calculated from isothermal and non-isothermal methods. The study demonstrated that
the error in determining the activation energy calculated ignoring the dependence of A
on temperature T can be rather large and depends on the parameter x = E/RT (R is the
universal gas constant), independent of the experimental method used.

The general differential equation of the model, which is widely used for thermal
experiments, does not have any limitations regarding the temperature effect (heating or
cooling the sample) [12]. Upon cooling, single-step thermally stimulated reactions are
usually studied using the data obtained under continuous heating run [21], as it is assumed
that the kinetics measured on cooling is similar to that measured on heating. When studying
such processes, a number of authors concluded that the modified Arrhenius equation
provides higher accuracy of the results. Some observed differences in the kinetics measured
on heating and cooling can be reduced by changing the curvature of the Arrhenius plots [22].
Moon et al. [3] when studying the mechanical properties of polymers at low temperatures
noted that the use of the modified Arrhenius equation instead of the general one reduced
the average deviation between the calculated and experimental values from 42% to 17%.

The parameters of the mathematical model of the reaction (the so-called kinetic triplet
A, E, f (α)) were determined by solving the inverse problem of chemical kinetics based
on the obtained experimental data. The adequacy of the reaction model was estimated
by the coincidence of the initial experimental data and the results of solving the direct
problem of kinetics for known parameters of the process model, identified from the solution
of the inverse problem of kinetics. Most often, the criterion was either the square of the
difference between the calculated and experimental values of the degree of conversion,
or the maximum value of the non-linear coefficient of determination R2. Nevertheless,
in a number of studies [4,7,11,16,23,24], the accuracy of solutions was confirmed by the
coefficient of determination for some internal intermediate approximations obtained while
solving the inverse problem. In this study, we did not consider this method to verify the
results to be quite correct.

In practice, fitting methods require either numerical differentiation of experimental
data (differential methods), or the integration of the general equation of the model (inte-
gral methods). The former requires smoothing of experimental tabular data, while in the
latter case the difficulties consist in the calculation of non-elementary integrals. Kinetic
analysis using integral methods is most often used by researchers and is widely presented
in relevant studies [4,8,12–14,24]. Over the last 50 years, a large number of studies have
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discussed improving the accuracy of approximations of the temperature integral (the in-
tegral of the Arrhenius function), which does not have an analytical expression. Infinite
series, rational and special functions, series of Chebyshev polynomials, and approxima-
tions obtained directly from numerical solutions are used to approximate the values of the
integral [1,2,5,6,10,14,25–27]. At present, according to the literature, the proposed approxi-
mations and approaches associated with them are less significant, since the solution of the
corresponding inverse problems of chemical kinetics is usually performed on a computer,
and the exact numerical calculation of temperature integral [28] is easily included into the
algorithms for solving inverse problems of kinetics.

We should also note that generally studies do not consider issues related to the
discussion of the adequacy of the description of mathematical models and methods of their
implementation together. Either code fragments [9] or flowcharts [10] are given.

The aim of this study was to describe the fitting method for identifying the parameters
of the kinetic triplet using the integral method for a model based on the modified Arrhenius
equation. The study was also to present an algorithm for the numerical calculation based
on the proposed method, which:

• Does not use any approximate estimates of the temperature integral or data approxi-
mations in the solution;

• Does not require any detailed preliminary assumptions about the reaction mechanism;
• Can be easily generalized for non-linear heating regimes;
• Can be simply implemented by a short (3–5 MS Excel formulas without VBA macros)

spreadsheet program code, which is easily verified and reproducible.

2. Results of Theoretical Analysis— Proposed Approach

The kinetics of solid-state reactions is described by a differential equation taking into
account the features of the specific reaction mechanism f (α). The reaction rate constant is
linked to the dimensionless degree of conversion:

dα
dt

= k(T)· f (α) , α ∈ [0; 1]. (1)

The literature suggests using specific dependence for a formal description of the
mechanism of solid-phase reactions f (α). In this case, the dependence is specific for
different reactions (chemical reaction, diffusion, random nucleation and nuclei growth,
phase-boundary reaction).

Information on the real mechanism of the reaction allows choosing an optimal reaction
mechanism f (α). When there is no information available, a special study or justification is
conducted to select the type of reaction mechanism [13].

Most studies provide a list of expressions for the function f (α). Almost all the expres-
sions are listed, for example, in [15,29].

The temperature dependence of the rate constant k(T) (where T is the absolute tem-
perature) is expressed by means of the modified Arrhenius equation (at q = 0 corresponding
to the simple or initial form):

k(T) = A·
(

T
1 K

)q
· exp

(
− E

RT

)
, R = 8.3144 J·mol−1·K−1 , (2)

where q is temperature parameter of the modified Arrhenius function (MAF);
A is pre-exponential factor (frequency factor), [A] = [t]−1;
E is the apparent activation energy, [E] = [RT] = J·mol−1.
The simple (initial) form of the Arrhenius equation was a special case with q = 0,

but for some solid-state reactions q tended to range from −1.5 to 2.5, and for pyrolytic
reactions or gas combustion reactions it had a wider range (from −4 to 4), as reported [26].
In particular, q = 0.5 was predicted by collision theory in the homogeneous gas phase
and q = 1 was predicted by transition state theory. Other modifications of the Arrhenius
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equation, including the stretched exponential, super- and sub-Arrhenius models [21,30,31],
can also be easily used within the proposed approach.

The general equation of the solid-state reaction is the mathematical model of the
process that could be expressed by a combination of the above relationships

dα
dt

= A·
(

T
1 K

)q
· exp

(
− E

RT

)
f (α) . (3)

When the temperature rises at a constant rate is expressed as follows:

β = dT/dt = const , (4)

after substitution of t by T, Equation (3) can be represented as:

dα
dT

=
A
β

(
T

1 K

)q
· exp

(
− E

RT

)
f (α) , α(T = T0) = α0. (5)

When the kinetic triplet A, E, f (α) is known, Equation (5) with boundary conditions
with α0 at temperature T0 determines the mathematical formulation of the direct problem
of chemical kinetics (the Cauchy problem [32]) for the calculation of the dependence
α(T), T > T0.

To identify the kinetic triplet, Equation (5) was also used when the inverse problem of
chemical kinetics was solved based on the results of the TGA experiment, the given data
table {Ti,αi} i = 0, 1, . . . , N.

According to the physical meaning, the analyzed data should start with the value α0 = 0.
However, when the sample mass was small (only a few milligrams), the analytical signal at the
initial part of the experimental curve α(T) can be comparable to the instrumental error, so data
processing was usually carried out starting from values α0 > 0 (α0 ≈ 0.01− 0.1).

The function of the process f (α) depends on the reaction mechanism, which can be
expressed by the Šesták–Berggren equation [18]:

f (α) = αm(1− α)n[− ln(1− α)]p , (6)

where: m, n, and p are empirically obtained exponent factors, one of which is always
zero [18]. The combinations of different orders of m, n, and p make it possible to predict
probable mechanisms.

It should be noted that the algorithm for the identification of the required parame-
ters A, E, f (α) of the kinetic triplet is difficult to implement, when the Šesták–Berggren
function (6) is included in Equation (5) of the process. In most cases, a specific simplified
form of the function f (α) is chosen [12,29].

When the integral method is implemented to solve the inverse problem of kinetics,
the variables are separated in Equation (5) and the r.h.s. and l.h.s. are integrated:

α∫
α0

dα
f (α)

=
A
β

T∫
T0

(
T

1 K

)q
· exp

(
− E

RT

)
dT , (7)

where l.h.s is the so-called integral form of the conversion function, equal to:

g(α0,α) = Iα(α0,α) =
α∫

α0

dα
f (α)

=

α∫
α0

dα
αm(1− α)n[− ln(1− α)]p

. (8)

When α0 6= 0 the time corresponding to the temperature changes at 0 ≤ α ≤ α0 can
be attributed to the induction period.
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The integral of the r.h.s. of Equation (7) is non-elementary and cannot be determined
analytically. A number of studies that estimated the value of this temperature integral proposed
different techniques and approximations and included many references (e.g., [1,2,5,6,10,14,25–27]).

The Coats–Redfern approximation by with parameter q = 0 is the most widely used
approximation of the temperature integral [5]

IT(T1, T2) =

T2∫
T1

(
T

1 K

)q
· exp

(
− E

RT

)
dT , (9)

when q 6= 0 the previous relationship is as follows:

IT(0, T) ≈ RT2

E

(
T

1K

)q
· exp

(
− E

RT

)
·
[

1− (q + 2)
RT
E

(
1− (q + 3)

RT
E

)]
. (10)

According to the proposed approach, a numerical method is used to calculate the
temperature integral.

Non-isothermal thermogravimetric analysis with a linear temperature rise at a constant
heating rate β = const is a standard method for the kinetic study of solid-state reactions
which implies monitoring the mass change of the tested sample as a function of time or
temperature. Using Equation (4), the initial data of the thermogravimetric experiment can
be transformed into the data table {Ti,αi} i = 0, 1, . . . , N.

In accordance with Equation (7), it is possible to calculate a set of “constants” Aβi of
the frequency factor A for each range [T0 − Ti] and [α0 − αi] (i = 1, 2, . . . , N) of the initial
data table {Ti,αi}

Aβi = Iα(α0,αi)/IT(T0, Ti) , i = 1, 2, . . . , N . (11)

Within the proposed approach, it is assumed that the optimal values of the kinetic triplet
A, E, (m, n, p) are reached when the set of calculated constants Aβi (i = 1, 2, . . . , N) has a min-
imum scatter since ratio A/β is constant by definition. This assumption can be mathematically
expressed by the functional F , which corresponds to the variation coefficient [8]:

F =
1

Aβ

·

√
∑i
(

Aβi − Aβ

)2

N
, Aβ =

1
N ∑

i
Aβi . (12)

In other words, the optimal parameters E and m, n, p should be selected in such a way
so that there is minimal difference between total deviation of the constants Aβi (i = 1, . . . , N)
calculated by formula (12) and the average Aβ. Due to the minimization of the functional (12),
the obtained values of E, (m, n, p) and Aβ = A/β = Aβ determine the optimal parameters of
the kinetic triplet. The undoubted advantage of the proposed approach is that in the process
of searching for the optimal values of A, E, (m, n, p), the number of parameters that vary
during optimization is reduced by one.

3. Verification of Method

The accuracy of the calculations made within the proposed approach is ensured by
the MS Excel program code and was tested on theoretical simulation curves at various
linear heating rate β, reaction mechanisms f (α) and temperature range with varying
degrees of conversion 0.1 < α < 0.9 (Figure 1). The parameters of the selected test cases are
characterized by the width of the temperature range, which determines the low, medium,
and high degrees of the conversion rate.

According to the generally accepted classification [4,29], the models are indexed
by symbols A2 and R1, and their parameters are given in Table 1. The dependences
α(T) were obtained by solving the direct problem of kinetics and were chosen as test
problems: presented models (a) and (c) were analyzed in the study [4]; the modified
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Arrhenius equation was used in model (b) which was characterized by a narrow conversion
temperature range [6].
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method 
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approach 
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symbol A2, p = 1/2 dα
dT = A

β · exp
(
− E

RT

)
·(1− α)·[− ln(1− α)]1/2

The value of the complex x = E/(RT) [4,28] has a significant impact on the accuracy
of the approximation of the Arrhenius integral. In the case of Figure 1c, variation interval is
3.8 < x < 6.0, and for Figure 1a it is 20 < x < 30 (Table 1).

Perez–Maqueda et al. [4] analyzed kinetic curves and concluded that the Coats–
Redfern method showed the best accuracy in identifying the activation energy. In this
study, we compare the proposed approach with the Coats–Redfern method. The numerical
calculation of the general temperature integral is one of the main aspects determining the
accuracy of the proposed approach.

Table 2 presents the comparison of the relative errors of direct numerical calcula-
tion and the Coats-Redfern approximation in the range of values of complex x, which is
interesting on practical grounds, when integrated within 500–600 K. The relative error
was estimated by numerical integration value with an accuracy of 10−10 according to the
Simpson’s rule [32].

Table 2. Relative errors of Arrhenius integral approximations, %.

E/R, K 2000 4000 8000 16,000 32,000 64,000

x = E/(RT) 3.3 ÷ 4.0 6.7 ÷ 8.0 13.3 ÷ 16.0 26.7 ÷ 32.0 53.3 ÷ 64.0 106 ÷ 128

Coats-Redfern
method 46.4% 11.8% 3.0% 0.8% 0.2% 0.05%

proposed
approach 8·10−9% 5·10−8% 2·10−7% 9·10−7% 3·10−6% 1·10−5%

The aim of the study by Perez–Maqueda et al. [4] was to analyze the errors of various
approximations used in the algorithms and not to conduct a kinetic analysis.
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Moreover, as emphasized by the authors [4], the reaction mechanism could not
be determined adequately based on a single curve α(T), that is why the authors [4]
used specific types of reaction mechanisms coded by symbols A2 and R1 for the formal
kinetic description.

To evaluate the efficiency of the proposed approach, we extended the list of problems
to be solved. It is assumed that indexes of power n, p in the Šesták–Berggren function (6)
are unknown in advance, except m = 0, i.e., f (α) = (1− α)n[− ln(1− α)]p, where n and p
are required parameters and their values should be determined.

The parameter q of the modified Arrhenius Equation (5) is considered to be given.
The value of the general temperature integral of the r.h.s. Equation (7) is calculated

according to the midpoint rule [32] for 10,000 integration subintervals

IT(T1, T2) =

T2∫
T1

(
T

1 K

)q
· exp

(
− E

R·T

)
dT ≈ hT

10000

∑
j=1

( Tj

1 K

)q

· exp

(
E

R·Tj

)
, (13)

Tj = T1 + (j− 0.5)hT , j = 1, 2, . . . , 10000 , hT = (T2 − T1)/10000 .

The necessary sequence of numbers (1, 2, . . . , 10000) to calculate the general temper-
ature integral in MS Excel is generated using the array formula or CSE formula (
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A numerical integration to calculate of the l.h.s. by Equation (7) was used, such as in

Equation (13).

g(α1,α2) = Iα(α1,α2) =

α2∫
α1

dα
αm(1− α)n[− ln(1− α)]p

≈ hα
10000

∑
j=1

1
αm

j
(
1− αj

)n[− ln
(
1− αj

)]p , (14)

where αj = α1 + (j− 0.5)hα, j = 1, 2, . . . , 10000 , hα = (α2 − α1)/10000
Kinetic Šesták–Berggren Equation (6), containing three exponential terms, can describe

any TGA curve [34]. Nevertheless, it is noted that the mathematical analysis of Equation (6)
showed [35] that no more than two kinetic exponents are needed. Therefore, one of the
exponents of relationship (6) can be excluded, and, in particular, as is done below, the
mechanism (6) of the reaction can be identified at m = 0.

Algorithm to solve the inverse kinetics problem for the test curve Figure 1a involves
the following steps.

1. Generated array of initial data {Ti,αi} of the test example (Figure 1 and Table 1) is
shown in the screenshot Figure 2, in the cell range B14:C24. The parameter q of the general
temperature integral was entered in cell C1, and in this case it was equal to zero. The
ROW($A$1:$A$10000)−0.5 formula in Excel was used to create the Excel Gen name via
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.
2. The minimum allowable value of E/R was entered into cells C4 and H5. In this test

case, this value was 6917. The method of its calculation is given below when analyzing the
uniqueness of the search for the minimum of the functional. Cells C6 andC7 contain the
maximum values of the parameters of the truncated Šesták–Berggren equation (6), which,
in accordance with their physical interpretation [14,18,29], vary in the ranges 0 ≤ m ≤ 4
and 0 ≤ p̂ ≤ 4; the exponent was determined by integer values p̂ = 0, 1, 2, 3, 4 –i.e., p = 0,
1/2, 2/3, 3/4, 4/5. Here, the values were set to 4 and 4, respectively.

After executing the Solver add-in [8] in cells C8, C5, and C7, the optimal values of E,
m, and p were calculated.

3. The integration step of the general temperature integral was calculated in cell F2 for
the temperature range T ∈ [Ti; Ti+1], which was equal for all subintervals in this case.

The subintervals were determined in cell E15 to calculate the integral Iαi = g(αi,αi+1)
in cell F15 using Equation (14) for the current values of α ∈ [αi;αi+1]. The formula to
calculate the general temperature integral according to Equation (13) was entered into cell
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G15. Excel formulas in cells F15 and G15 are used as CSE array formulas [33]. Based on the
ratio of the integrals Iαi and IT

i , the value of the pre-exponential factor Aβi for the given
interval was determined in H15 according to Equation (11). The formulas in E15:H15 were
copied to line 24 by dragging the fill handle in Excel [36].
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4. The average (=AVERAGE(·)) value Aβ was determined in C9, according to Equation (12),
the functional F was calculated in F3 by using the STDEV.P(·) function in Excel.

5. When running the Solver add-in, the Solver Parameters panel was displayed. The
basic parameters for the minimization of the functional F were set using the generalized
reduced gradient algorithm (“GRG Nonlinear” are set (Figure 2, right side).

To increase the rate and ensure convergence, the appropriate restrictions on the vari-
able parameters are described in the Subject to the constraints box. In Options, we set
advanced settings of the solution:

– The fields “Restriction accuracy” and “Convergence” set to 0.0000001;
– The field “Integer optimality, %” set to 0;
– The “Derivatives” radio button fixed in the “Central” position;
– The flag “Use automatic scaling” sets.

Optimization was run by clicking the Solve button on the main Solver panel.
The screenshot of the worksheet after Solver executed optimization is shown in

Figure 2, left side. The “true” values of the mechanism parameters (6), activation en-
ergy E and pre-exponential factor A according to Equation (5) of the reaction model are
shown in cells C5 and C7–C9.

If necessary, the final values of parameters n and p with fewer fractional digits could
be adjusted, which should be followed by restarting the Solver when there was only one
E/R variable (cell C4).

For Windows 7 (Home Edition) and MS Office Excel 2016 (Intel® Core™ i7-3770
processor; 3.40 GHz), the solution time was ≈ 17 s.
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The uniqueness of the search for the minimum of the functional (12) can be confirmed
by the diagram in Figure 3. The diagram for a number of E/R values showed the opti-
mal exponents n and p of the Shestak–Berggren dependence, providing the maximum
agreement between the solution and the experimental curve α(T). It can be seen from the
diagram that at small E/R, there are local minima in front of the global minimum. One of
the effective strategies for finding minimum for the Solver algorithm in this case was to set
the initial (E/R)min value on a curve segment that decreased from the left to a minimum
(Figure 3).
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Estimation (E/R)min was carried out based on the assumption that this value deter-
mines the minimum level of activation energy that ensures the reaction without thermally
stimulated acceleration by the f (α) mechanism, i.e., through the solution of the inverse
problem of kinetics for Equation (5) with f (α) = 1. To solve this problem, a template in
Figure 2 was used, where we entered zero in cells C5 and C6, and cell C4 was the only one
variable parameter (Figure 4). The obtained value (E/R)min was used as a constraint in the
search for a solution in the algorithm which was used to identify a kinetic triplet using a
template in Figure 2.

The other problems of the test cases were solved using the template, as shown in
Figures 2 and 3, where the initial data were replaced and the corresponding cell ranges
in formulas E3 and C9 were corrected. For all test cases, the comparative accuracy of
determining the activation energy of the proposed approach is given in Table 3.
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Table 3. Percentage error E in determining the activation energy E

Reaction Ranges x and T,K Method E, J·mol Error
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1.69 · 1014

β
(

𝑇

1 K
)

0.5
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152737
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, %

A2
700 < 1100

3.8 < x < 6, x ≈ 5
Coats-Redfern 33,450 4.4

proposed approach 35,000.7 0.002

F1, R1
400 < 600

20 < x < 30, x ≈ 2.25
Coats-Redfern 99,650 0.35

proposed approach 10,0001.1 0.001

MAF
705 < 750

24 < x < 26, x ≈ 25
Coats-Redfern 142,032.4 2.1

proposed approach 149,997.1 0.002

A significant decrease in accuracy of most approximations in this range of the complex
x [4,8,27] led to higher relative errors at small values x < 6 when the activation energy
was determined, while no such effect was obviously noted for numerical integration when
the accuracy even increased. It should be noted that when real experimental data of
thermogravimetric analysis were processed at the beginning of the process, the average
signal level was comparable with the background level and resolution of the measuring
equipment, the initial part of the curve was excluded from the analysis. In this case, the
moment of time (or the temperature corresponding to this moment), when the signal level
was higher than the amplitude of the average background level, can be assumed as the
induction period end.

The end of the induction period can be characterized by the beginning moment of the
active stage of the process when the rate and/or the reacted sample mass is higher than the
defined value (e.g., 5% of the maximum reaction rate; 2% weight loss of the initial mass of
the sample, etc.).

Since in the model according to Equation (5), the reaction rate at α < 1 at T > 0 K was
always different from zero. For example, the αind = 10−6 can be taken as the starting point
of the induction period.

If kinetic parameters and measured values α0(T0) were known, the temperature
coordinate Tind of the beginning moment and the length tind of the induction period can be
determined from the relationship:

α0∫
αind

dα
f (α)

=
A
β

T0∫
Tind

exp
(
− E

RT

)
dT, tind = (T0 − Tind)/β . (15)

It is quite easy to calculate the induction period by the Solver add-in using Equations (13)–(15),
for which Tind is the variable parameter, but the objective function was the minimization of the
difference between the right and left-hand sides of Equation (15).

In particular, for dependence (a) Table 1 tind ≈ 9.8 min, for (b) tind ≈ 14.7 min and for
dependence (c) tind ≈ 26.5 min.

After checking the accuracy of the proposed approach on the test curves (Figure 1), it
is advisable to check it on real data of the TGA experiment and compare it with the results
of the solutions of other authors. A well-studied reaction [12,37] of BaCO3 decomposition
for the classical Arrhenius equation was compared with the results of the study of the
kinetics of decomposition of the energetic material HNIW using the integral method based
on the Kooij formula for the modified Arrhenius equation [6]. Experiments performed with
significantly different sample heating rates were selected for verification.

In this regard, the errors were compared (maximum and mean) between the re-
sults of the solutions of the direct problem (Equation (5) with initial data α0(T0)) for
the kinetic triplets, which were identified by different integral methods, with the initial
experimental data.

The coefficient of determination as the proportion of variance in the model error was
used to assess the quality of conformance of the kinetic curves. Such checking procedure
of the methods adequacy corresponds to ICTAC Kinetics Committee recommendations to
perform kinetic computations on thermal analysis data [13].
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The modified Arrhenius equation was compared with a single curve at β = 20 K min−1

from an isoconversional non-isothermal experiment [6], as a result of which the following
form of Equation (5) was established:

dα
dT

=
1.69·1014

β

(
T

1 K

)0.5
· exp

(
−152737

RT

)
· f (α) , α(T0 = 520.5 K) = 0.075 , (16)

in which f (α) = (1−α)·[− ln(1−α)]2/3 was determined by a logical choice method [6,7,15].
The results of comparing these methods (Figure 5a and Table 4) showed a difference

in the calculated values of the activation energy by 5.5% with a higher accuracy of the
proposed approach relative to the approximation of experimental data.
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methods: (a) 1—proposed approach, 2—estimation [6]; (b) 1—proposed approach, 3—combined
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The study [12] discussed the modification of the combined kinetic analysis with an
empirical equation without any preliminary assumptions about the reaction mechanism.
The method proposed is based on the condition that the kinetic triplet must correspond
to the general differential equation of the reaction model, regardless of the experimental
conditions. The authors [12] tested this approach by analyzing TGA data on the thermal
decomposition of a barium carbonate sample.

Table 4. Percentage accuracy of various kinetic triplets for the model Equation (5).

No Method n A, min−1 E, J·mol R2
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∙ exp (−
152737

𝑅𝑇
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aver,%

Experiment [6], = 20 K·min−1, f (α) = (1− α)[− ln(1− α)]2/3

1 proposed approach 2.56·1013 144,300 0.9967 3.79 2.05
2 estimation [6] 1.69·1014 152,737 0.9948 5.79 2.85

Experiment [12,37], = 0.2 K·min−1

1 proposed approach 1.172 7.1709·108 226,630 0.9996 1.47 0.58

3 combined analysis [12,37] 1.081 *
0.0246 5.76·108 225,000 0.9980 3.66 1.51

4 Coats-Redfern [5] 1.207 1.5079·109 232,840 0.9996 1.65 0.59

* combined analysis results were obtained in [12] for f (α) = α−0.0246(1− α)1.081

The calculation results by the proposed approach, the Coats–Redfern method [5] and
the combined kinetic analysis [12] are shown in Figure 5b for kinetic data of the thermal
decomposition of BaCO3 in vacuum at a constant decomposition rate, β = 0.2 K min−1.
This reaction was well studied and described [12,37]. The kinetic data of the thermal
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decomposition of BaCO3 fully correspond to the F1 kinetic model shown in Figure 5b and
presented in Table 4.

Thus, the article presented the results of verification of the proposed method using real
experimental data, compared them with data obtained in other studies, which corresponded
with higher accuracy of approximation of the initial data.

4. Conclusions

1. An integral method to estimate kinetic parameters and mechanism function of
a reaction using the modified Arrhenius equation was proposed. An original statistical
functional was used to solve the inverse problem for identification of optimal kinetic triplet
parameters, which allowed reducing the number of variable parameters when the data
fitting was conducted. The articles also presented a detailed computational algorithm to
determine the induction period.

2. The effectiveness of the proposed approach was confirmed by solving several test
cases for low, medium, and high conversion rates of materials. Unlike other methods,
setting the reaction mechanism parameters was not required, since they were determined
as the solution. Real data of TGA studies involving samples with high and low heating
rates were compared with the data obtained by other authors and experimental data. In all
cases, the proposed approach showed higher accuracy when determining the kinetic triplet
parameters compared to methods using approximations of the generalized temperature
integral for the entire range of the parameter E/(RT).

3. The article describes the full cycle of calculations made to identify kinetic parameters
for the thermogravimetric experimental data—from the derivation of the calculation ratios
in parametric form to the implementation of a short (three to five formulas) program code
for MS Excel spreadsheet. The simplicity, brevity, and transparency of the code, which is
easily accessible to researchers without programming skills, make it possible to use the
code for verification and reproduction, and also provide the possibility to modify the code
to solve various problems.
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