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Abstract: Soil organic matter (SOM) and its heterogeneous nature constitutes the main factor de-
termining the fate and transformation of organic chemicals (OCs). Thus, the aim of thus research
was to analyze the influence of the molecular chemodiversity of a stable SOM (S-SOM) on the sorp-
tion potential of different groups of OCs (organochloride pesticides—OCPs, and non-chlorinated
pesticides—NCPs, polycyclic aromatic hydrocarbons—PAHs). The research was conducted as a
batch experiment. For this purpose, a S-SOM was separated from six soils (TOC = 15.0–58.7 gkg−1;
TN = 1.4–6.6 gkg−1, pH in KCl = 6.4–7.4 and WRB taxonomy: fluvisols, luviosols, leptosols) by
alkaline urea and dimethylsulphoxide with sulfuric acid. Isolated S-SOM fraction was evaluated by
UV–VIS, FT-IR and EEM spectroscopy to describe molecular diversity, which allowed the assessment
of its potential sorption properties regarding OCs. In order to directly evaluate the sorption affinity of
individual OCs to S-SOM, the mixture of the 3 deuterated contaminants: chrysene (PAHs), 4,4′DDT
(OCPs) atrazine (NCPs) were applied. The sorption experiment was carried out according to the
106 OECD Guidelines. The OCs concentration was analyzed by gas chromatography triple mass
spectrometry (GC-MS/MS). OCs were characterized by different sorption rates to S-SOM fractions
according to the overall trend: atrazine (87.5–99.9%) > 4,4′DDT (64–81.6%) > chrysene (35.2–79.8%).
Moreover, atrazine exhibited the highest saturation dynamic with fast bounding time amounting to
6 h of contact with S-SOM. Proportionally, the chrysene showed the slowest binding time achieving
an average of 55% sorption after 78 h. Therefore, S-SOM isolated from different soils demonstrated
varying binding capacity to OCs (CoV = 21%, 27% and 33% for atrazine, DDT and chrysene, respec-
tively). Results indicate that each sample contains S-SOM with different degrees of transformation
and sorption properties that affect the OCs availability in soil. Spectroscopic analyses have shown
that the main component of S-SOM are biopolymers at various stages of transformation that contain
numerous aromatic–aliphatic groups with mostly hydrophilic substituents.

Keywords: atrazine; DDT; chrysene; organic matter; humins; soil contamination; aging; sorption
processes

1. Introduction

Increased industrial use and emission of organic chemicals (OCs), along with the
increased exposure of environmental and agricultural systems to them, has intensified
in recent decades. OCs include many groups of structurally diverse compounds with
varying molecular conformation and physico-chemical properties. Some of these com-
pounds exhibit long dissipation half-live times and mutagenic, teratogenic and carcinogenic
properties, acting as endocrine disruptors. OCs that are resistant to degradation can cause
negative environmental effects due to their susceptibility to dispersion associated with high
sorption ability to organic matter [1–3]. A direct consequence of their excessive industrial,

Molecules 2023, 28, 429. https://doi.org/10.3390/molecules28010429 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28010429
https://doi.org/10.3390/molecules28010429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-9253-2383
https://orcid.org/0000-0002-6924-4922
https://orcid.org/0000-0003-3487-0664
https://doi.org/10.3390/molecules28010429
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28010429?type=check_update&version=1


Molecules 2023, 28, 429 2 of 18

agricultural or domestic usage causes an increased level of environmental pollution, espe-
ciallyin soils [4]. Therefore, the inevitability of soil resources protection is included in the
main EU documents ‘Soil Strategy for 2030: Reaping the benefits of healthy soils for people,
food, nature and climate’ [5] as well as the assumptions of the European Green Deal [6].

Organic pollutants that draw a lot of attention due to their environmental impact are
persistent organic pollutants, which include polycyclic aromatic hydrocarbons (PAHs),
organochlorine pesticides (OCPs) and nonchlorinated pesticides (NCPs). PAHs are com-
pounds formed in the incomplete combustion of biomass and fossil fuels and are deposited
in soils as a result of natural and human activities (Tang et al. 2022). Compounds from
this group, including >4 benzene rings (e.g., chrysene), may cause negative effects to hu-
man health and are highly lipophilic. OCPs were used for pest control in crops, the most
recognized compounds of this group being 4,4 ‘DDT and its metabolites: 4,4′DDD and
4,4′DDE. Among the non-chlorinated pesticides, the content of atrazine requires control in
the environment. It was used as an active substance of many herbicides, being applied for
weed control. DDTs and atrazine are currently banned from use in agriculture in the EU,
but their residues are still present in the terrestrial ecosystem [7]. All of these contaminants
are mainly deposited and accumulated in the soil, where they can remain for a long period
of time [2,3,7–9]. Studies conducted in different countries showed that, in soils, high con-
centrations of organic contaminants were found even after many years since their emission
or application [3,4,10]. This fact is considered to be relevant in the context of soil health
and environmental risk as well as long-term soil management.

Soil organic matter (SOM) and their heterogenous nature constitutes the main factor
determining the fate and transformation of contaminants [7–9,11–13]. SOM is defined as
the mixture of organic substances remaining after the advanced decomposition of biomass
that includes different organic compounds whose chemical structures and properties de-
pend on in the processes of their formation. Many researchers indicate that OCs–SOM
interactions are a limiting factor for the processes of compounds’ bioavailability and degra-
dation [1–3,12,13]. Therefore, the persistence of contaminants in soils is mainly determined
by the affinity to SOM, which occurs mainly in the humus-rich A horizon. The strength of
these processes depends greatly upon many factors, i.e., compound properties (hydropho-
bicity, solubility, volatility, molecular weight), soil organic matter properties (structural
variations, functional group compositions, aromaticity, polycondensation of aromatic rings),
and climatic conditions [3]. Processes, such as partitioning, sorption/desorption, seques-
tration, aging of pollutants, and the formation of bound residue, cause the retention of
various groups of OCs in soils at different concentration [11]. Theoretically, OCs may
interact with SOM by non-covalent associations (hydrophobic sorption, charge transfer
complexes, hydrogen bonding) and the formation of covalent bonds (ester, ether, carbon–
carbon bonds) [14,15]. However, the overall process of SOM–OCs complexes formation is
often considered a naturally occurring humification of anthropogenic contaminants, since
the xenobiotic carbon is embedded in the SOM structure [1]. Thus, the non-soil-originated
carbon is sequestered within SOM matrices and is not easy to access by common chemical
analytical techniques [3]. With the binding, OCs may also lose their structural identity,
including their characteristic physical, chemical and biological properties [12].

SOM may exist in a variety of states, such as dissolved molecules or molecular ag-
gregates, colloidal particles, surface patches or coatings on minerals, intimate complexes
with clay-size minerals and discrete particles. At the primary level, SOM is a heteroge-
neous mixture of functional units within charged, polydisperse molecules that include
non-polar alkyl, carbohydrate-like, protein-like, lignin-like, heterocyclic and polyaromatic
moieties [12]. These compounds are characterized by different mobility and turnover
times in the soil, which makes it possible to distinguish fractions of stable forms (strongly
humified, protected by mineral association and occluded within micro and macro aggre-
gates) and labile forms (easily soluble, at the initial stage of transformation). According
to literature data [1,2,12], as well as our previous research [16], a stable fraction of organic
matter (S-SOM) has the greatest impact on the accumulation and persistence of OCs in
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soil. Generally, S-SOM constitutes the largest part of total organic matter; nevertheless
its chemical characteristics and composition can significantly define the processes of OCs
sorption [9]. The type of OCs binding with SOM affects their availability. The OCs sorbed
by labile SOM fractions are mainly bioavailable, while the bound and residual fractions of
OCs connected with stable organic matter fraction are difficult or impossible to uptake by
soil organisms, resulting in a strong limitation of their bioavailability. Thus, knowledge of
the mechanisms by which soil pollutants are stabilized by binding to S-SOM is extremely
important. The quantities of contaminant-bound residue listed in some literature reviews
range from a few percent up to more than 90% of the applied substance [1,3,9]. This
indicates that the accumulation of contaminants mostly depends on the mutual relations
between S-SOM and OCs, as well as their chemical properties.

The aim of this research was to analyze the influence of S-SOM molecular chemodiver-
sity on the sorption potential to different groups of OCs with regard to their environmental
behavior and persistence in soil. The S-SOM fraction was extracted from agricultural
soils exposed to a great extent to organic contaminants. Moreover, the S-SOM fraction, as
the most resistant part of soil organic matter, was separated from the soil A horizon by
sequential extractions with organic solvents, which additionally allowed the exclusion of
the influence of the mineral fraction on the studied sorption process.

2. Results and Discussion
2.1. Spectroscopic Characterization of the S-SOM Fractions
2.1.1. UV–VIS Spectroscopy

So far, there has been little research into the molecular evaluation of a stable fraction of
organic matter due to their non-specific character and the need to develop the appropriate
separation methods. The obtained spectra (Figure 1) are characterized by the presence
of a specific maximum at high intensity within 250–280 nm, which is not convergent
with the previous research on the analysis of organic matter components. Thus, it can be
assumed that S-SOM is characterized by a specific pattern of spectra with an expressive
maximum at low wavelengths. In the higher wave ranges, spectra are broad, featureless and
monotonously decrease with increasing measuring range, similar to the graphs obtained
for labile organic matter components, i.e., dissolved organic matter, fulvic acids and humic
acids [17,18]. Among all samples, two groups with similar spectral properties emerged in
the studied spectral range (S1, S2, S3 and S4, S5, S6, respectively) displaying the same basic
pattern of wavelength trend.

4 
 

observed samples, confirming the presence of a ‘high congestion of structures’ in the sta-
ble organic matter fraction [12]. 

 
Figure 1. Spectral characteristics of the S-SOM in the UV–VIS range. 

Moreover, higher absorption in the UV range is related to an increase in the amount 
of ‘π’ electrons in unsaturated bonds and aromatic fragments of the structure. In addition, 
acceptor–donor complexes may be responsible for S-SOM in the visible region, which may 
arise from internal and external molecular aggregation [17,19,23]. These assumptions are 
reflected in the parameters of the molar absorption coefficients (Table 1). S-SOM exhibited 
a high value of ε 280 (in range 367–463, 372–563, 366–559, respectively) and a lower value 
of ε 465, and ε 665 (in range 5–110, 40–76, 24–40, 18–32, respectively). The determined 
coefficients reflect the high optical density, indicating a greater conjugation of double 
bonds and the high transformation degree. 

Table 1. Molar absorption coefficients values for extracted S-SOM (n = 6). 

S-SOM Sample ε 280 ε 465 ε 665 ε 280/465 ε 280/665 ε 465/665 
S1 498.5 55.9 22.5 8.92 22.16 2.48 
S2 417.4 40.1 19.9 10.40 20.98 2.02 
S3 558.8 52.2 26.3 10.70 21.27 1.99 
S4 453.3 75.6 31.7 6.00 14.30 2.38 
S5 449.9 54.7 17.7 8.23 25.45 3.09 
S6 366.4 57.5 22.9 6.38 16.03 2.51 

2.1.2. FT-IR Spectroscopy 
FT-IR spectroscopy allowed the determination of the hydrophobic/hydrophilic prop-

erties that indicate the chemical nature of the separated SOM fractions [24,25]. The hydro-
phobicity is essentially caused by aliphatic C-H groups, present in methyl, methylene and 
methine units, which are structural elements of alkyl chains, carbohydrates, proteins and 
lipids [26]. The number of C-H groups in the structure of S-SOM influence their resistance 
against microbial degradation, rate of wetting, water affinity and the sorption processes 
of pollutants [24,25,27]. However, the presence of hydrophilic groups also determines the 
susceptibility of S-SOM to peptization/coagulation processes, which is associated with 
their resistance to the input of chemical reagents, the mobility in the soil profile and the 
ability to form chelates with polyvalent cations [26,28]. 

A higher value of CoV (24.6%) describes the occurrence of hydrophobic components 
and is indicated by their greater diversity in the S-SOM fraction in comparison to the hy-
drophilic group characterized by lower CoV (17.0%) (Table 2, Figure 2). The results show 
that hydrophilic components are predominant, more stable and less affected by changes 

Figure 1. Spectral characteristics of the S-SOM in the UV–VIS range.



Molecules 2023, 28, 429 4 of 18

The main differences between these two groups of samples result from the maximum
absorbance intensity, indicating the content of individual groups in S-SOM structures.
Generally, the absorption of light by organic matter at low-wave range increases with the
increasing degree of the condensation of aromatic rings, the ratio of carbon in the aromatic
“nucleus” of the molecule to carbon in aliphatic chains and molecular weight [19]. The
efficiency absorbance in the UV–VIS range is mainly related to the chromophore substituent
groups at the aromatic benzene ring or aliphatic chains. In organic matter, each aromatic
chromophore has three distinct absorption bands in spectra: (1) the local-excitation band
at wavelengths < 190 nm, (2) the benzoid band with absorbance between 190 and 230 nm
and (3) the electron-transfer band at wavelengths > 240 nm. However, depending on the
composition of the chromophore’s structure and type of solvents used, the transition’s
energy and molar absorbance will be different [20–22]. An increase in the number of
aromatic rings and their crowding may results in the batochromic shift of all absorption
bands towards the visible range. The presence on the ring of substituents containing
lone-pair electrons (OH, OR, NH2, NR2) includes a batochromic shift with a hyperchromic
effect. On the other hand, the alkyl substituents induce a slight shift in the bands toward
longer wavelengths [20]. Such behavior may result in the presence of wide bands in the
observed samples, confirming the presence of a ‘high congestion of structures’ in the stable
organic matter fraction [12].

Moreover, higher absorption in the UV range is related to an increase in the amount
of ‘π’ electrons in unsaturated bonds and aromatic fragments of the structure. In addition,
acceptor–donor complexes may be responsible for S-SOM in the visible region, which may
arise from internal and external molecular aggregation [17,19,23]. These assumptions are
reflected in the parameters of the molar absorption coefficients (Table 1). S-SOM exhibited
a high value of ε 280 (in range 367–463, 372–563, 366–559, respectively) and a lower value
of ε 465, and ε 665 (in range 5–110, 40–76, 24–40, 18–32, respectively). The determined
coefficients reflect the high optical density, indicating a greater conjugation of double bonds
and the high transformation degree.

Table 1. Molar absorption coefficients values for extracted S-SOM (n = 6).

S-SOM Sample ε 280 ε 465 ε 665 ε 280/465 ε 280/665 ε 465/665

S1 498.5 55.9 22.5 8.92 22.16 2.48

S2 417.4 40.1 19.9 10.40 20.98 2.02

S3 558.8 52.2 26.3 10.70 21.27 1.99

S4 453.3 75.6 31.7 6.00 14.30 2.38

S5 449.9 54.7 17.7 8.23 25.45 3.09

S6 366.4 57.5 22.9 6.38 16.03 2.51

2.1.2. FT-IR Spectroscopy

FT-IR spectroscopy allowed the determination of the hydrophobic/hydrophilic proper-
ties that indicate the chemical nature of the separated SOM fractions [24,25]. The hydropho-
bicity is essentially caused by aliphatic C-H groups, present in methyl, methylene and
methine units, which are structural elements of alkyl chains, carbohydrates, proteins and
lipids [26]. The number of C-H groups in the structure of S-SOM influence their resistance
against microbial degradation, rate of wetting, water affinity and the sorption processes
of pollutants [24,25,27]. However, the presence of hydrophilic groups also determines the
susceptibility of S-SOM to peptization/coagulation processes, which is associated with
their resistance to the input of chemical reagents, the mobility in the soil profile and the
ability to form chelates with polyvalent cations [26,28].

A higher value of CoV (24.6%) describes the occurrence of hydrophobic components
and is indicated by their greater diversity in the S-SOM fraction in comparison to the
hydrophilic group characterized by lower CoV (17.0%) (Table 2, Figure 2). The results show
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that hydrophilic components are predominant, more stable and less affected by changes in
soil conditions because they are more susceptible to extraction and hence are distinguished
with greater precision. The difference between the value at the maximum and minimum
intensities of the hydrophobic compounds of S-SOM was 0.578, while it was 8.817 for
hydrophilic components (Table 2). The small contribution of C-H groups in the hydrophobic
compounds of the S-SOM structure may be indicated by their limited occurrence in aromatic
rings or in their abundance in the functional groups with a high dipole moment. This may
also be associated with the presence of additional compounds that stabilize the structure
of S-SOM, such as lipids, proteins, plant waxes, pectin, polysaccharides, lignin and other
biopolymers [29–31]. Hayes [11] claims that S-SOM is mainly simply a less soluble form of
other SOM fractions. He also states that, in order to have an understanding of the origins
of components of SOM, it is appropriate to consider the composition and structures of the
materials and the processes from which these components could be derived and that cause
an increase in a wide range of SOM components classified into different fractions.

Table 2. Hydrophobic/hydrophilic properties of S-SOM. Intensity values are derived from
2950–2830 cm−1 (hydrophobic component) and 1770–1560 cm−1 (hydrophilic component) areas
of absorption bands of the FT-IR spectra.

Sample of S-SOM Hydrophobic
(Intensity)

Hydrophilic
(Intensity)

Hydrophobicity
Index (HI)

S1 0.698 17.175 0.041

S2 1.103 13.359 0.083

S3 1.112 17.109 0.065

S4 1.027 18.005 0.057

S5 1.247 22.176 0.102

S6 0.669 18.583 0.050

5 
 

in soil conditions because they are more susceptible to extraction and hence are distin-
guished with greater precision. The difference between the value at the maximum and 
minimum intensities of the hydrophobic compounds of S-SOM was 0.578, while it was 
8.817 for hydrophilic components (Table 2). The small contribution of C-H groups in the 
hydrophobic compounds of the S-SOM structure may be indicated by their limited occur-
rence in aromatic rings or in their abundance in the functional groups with a high dipole 
moment. This may also be associated with the presence of additional compounds that 
stabilize the structure of S-SOM, such as lipids, proteins, plant waxes, pectin, polysaccha-
rides, lignin and other biopolymers [29–31]. Hayes [11] claims that S-SOM is mainly 
simply a less soluble form of other SOM fractions. He also states that, in order to have an 
understanding of the origins of components of SOM, it is appropriate to consider the com-
position and structures of the materials and the processes from which these components 
could be derived and that cause an increase in a wide range of SOM components classified 
into different fractions. 

Table 2. Hydrophobic/hydrophilic properties of S-SOM. Intensity values are derived from 2950–
2830 cm−1 (hydrophobic component) and 1770–1560 cm−1 (hydrophilic component) areas of absorp-
tion bands of the FT-IR spectra. 

Sample of 
S-SOM  

Hydrophobic  
(Intensity) 

Hydrophilic  
(Intensity) 

Hydrophobicity Index 
(HI) 

S1 0.698 17.175 0.041 
S2 1.103 13.359 0.083 
S3 1.112 17.109 0.065 
S4 1.027 18.005 0.057 
S5 1.247 22.176 0.102 
S6 0.669 18.583 0.050 

 
Figure 2. Spectral characteristics of the S-SOM in the infrared range. 

Generally, a wide range of possible precursors is available in the literature data, but 
emphasis is mainly placed on the biomolecular structures (cellulose, hemicellulose, lignin, 
tannins, lipids, cutins and cutans, suberins and suberans, latex materials, algaenan, mela-
nins, char/biochar) that are most likely to contribute to the formation of the stable frac-
tions. It is the view of the authors that, because of their wide distribution, chemical com-
position and their degree of resistance to microbial degradation, cutins, cutans, suberins, 
suberans, lipids, algaenans and latex exudates should make significant contributions to 

Figure 2. Spectral characteristics of the S-SOM in the infrared range.



Molecules 2023, 28, 429 6 of 18

Generally, a wide range of possible precursors is available in the literature data,
but emphasis is mainly placed on the biomolecular structures (cellulose, hemicellulose,
lignin, tannins, lipids, cutins and cutans, suberins and suberans, latex materials, algaenan,
melanins, char/biochar) that are most likely to contribute to the formation of the stable
fractions. It is the view of the authors that, because of their wide distribution, chemical
composition and their degree of resistance to microbial degradation, cutins, cutans, suberins,
suberans, lipids, algaenans and latex exudates should make significant contributions to
insoluble and non-hydrolyzable components in S-SOM [32–35]. Some or all of these
substances are very likely to be major precursors through the selective preservation of
aliphatic moieties in S-SOM. Cellulose, hemicellulose, peptides and latex materials can
be expected to degrade readily in soils and would need to be protected by sorption or
associations with other persistent soil components in order to be found to any significant
extent in S-SOM [36–39]. Altered lignins, tannins and melanins make an inconsiderable
contribution to the S-SOM [33]. Char/biochar material, if present, will form part of the
S-SOM fraction, but, because it was formed as the result of fire and has not been formed as
part of a biological process [40], it is best considered a separate entity though its presence
may cause ring forms to be observed in stable SOM fractions.

2.1.3. EEM Spectroscopy

Fluorescence analysis can provide important information on structural and functional
similarity and/or differences of individual macromolecules, which can be related to their
origin and the degree of transformation [41–45]. Although fluorophore groups constitute
only a minor portion of organic matter macromolecules, three-dimensional EEM fluo-
rescence spectroscopy can give spectral information, including the peak intensity, peak
location and distribution, as well as information discovered from spectral decomposition
and related to electron/photon energy in the fluorescence process [46,47].

The EEM spectra examined the S-SOM fraction divided into two main regions at ex/em
of: 280–287/328–344 (peak I) and 316–340/384–412 (peak II), as illustrated in Figure 3,
except the S2 sample with one main fluorophore group. Peak I belongs to soluble microbial
by-product-like substances, whereas peak II is attributed to humic-like substances, which
may indicate their presence as a bound residue in stable forms of organic matter [45–49].
These observations are consistent with the data on the formation of various forms of organic
matter, which pointed out that the individual phases that created individual fractions
mutually interpenetrate due to chemical dependencies.

Peak I, which is very clearly visible, is associated with biodegradable components char-
acteristic for soluble microbial metabolites and reflects fluorescence from simple structural
components of low molecular weight, which can be attributed to amino-acid fluorescence
within proteins and lignin or waxes [46]. Peak II refers to non-biodegradable terrestrial
organic compounds [45] and can be attributed to the presence of high-molecular-weight
components of linearly condensed aromatic ring systems with electron-withdrawing sub-
stituents, such as carbonyl and carboxyl groups, and/or to other unsaturated bond systems
capable of a great degree of conjugation [46,50]. According to Cory and Mcknight [51], the
presence of this band may also be associated with the presence of quinone-like or phenolic
fluorophores substituted on both the ring and long aliphatic chain.

The fluorescence intensity for individual samples is presented in Table 3. According
to the obtained data, higher intensity of fluorescence is characterized by peak I in the
examined S-SOM fractions as compared to peak II. This observation confirms the slight
presence of unsaturated bond systems, such as aromatic structures with different types
and number of substituents (carboxyl and carbonyl groups), capable of a high degree of
conjugation—considered “mature” SOM compounds. Therefore, the proportion of IFl
(I) to IFl (II) at the range of 1.17 to 1.78 results from the higher share of low-molecular-
weight-component structure with a low degree of transformation and a small number of
conjugated chromophores rich in electron-donor substituents (hydroxyl, methoxyl and
amino groups) occurring in the analyzed S-SOM fractions [17,46,50].
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Table 3. Fluorescence intensity of IFl (I) and IFl (II) peaks and their proportion in S-SOM fraction
extracted from soils.

Sample of S-SOM IFl (I)
[a.u.]

IFl (II)
[a.u.] IFl (I)/IFl (II)

S1 39.5 26.8 1.47
S2 54.5 n.d -
S3 35.5 19.9 1.78
S4 31.5 24.7 1.27
S5 29.6 25.1 1.17
S6 40.0 25.6 1.56

n.d: non detected.

2.2. Sorption of OCs to S-SOM

The efficiency of the sorption process obtained in the experiment for the investigated
OCs has been summarized in Table 4. The tested compounds were characterized by a
significantly different sorption rate to S-SOM according to the overall trend: atrazine
(87.5–99.9%) > 44′DDT (64–81.6%) > chrysene (35.2–79.8%). Atrazine exhibited the highest
saturation dynamic with fast bounding time amounting to 6 h of contact with S-SOM
(sorption above 98%). Proportionally, the chrysene showed the slowest binding time,
achieving an average of 55% sorption after 78 h, while 44′DDT had an average sorption
amount at 63.6% after 48 h of contact time.

The sorption equation has reasonably described the adsorption of OCs compounds on
the S-SOM, with correlation coefficients (r) ranging from 0.887 to 0.986, 0.876 to 0.989 and
0.902 to 0.924, respectively, for atrazine, 44′DDT and chrysene. The adsorption coefficient
expressed in the equation indicates the soil sorption capacity (sorption isotherm slope). A
high value of these parameters reflects the high adsorption capacity of S-SOM and thus
the lower permeability of soils and the lower leaching potential of contaminants. For
chrysene, these parameters were the highest (14.89–23.38), then for 4,4′DDT (9.03–10.82)
and the lowest for atrazine (0.067–0.318). These findings indicate that chrysene and 4,4′DDT,
despite relatively slow sorption, have a much higher affinity for S-SOM than atrazine. This
also means that it is likely that these compounds need a much longer time to diffuse into
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the S-SOM structures to achieve almost 100% sorption level. So, the observed sorption
rate and time is probably controlled by the dimensional structure of the OCs molecule,
molecular weight, solubility, vapor pressure and log Ko/w.

Table 4. Sorption equations calculated for OCs as influenced by S-SOM (y(OCs) = b−ax(SOME )).

Sample of S-SOM Sorption Equation Total Accumulated Amount

Atrazine

S1 y = 0.192e−0.028x R2 = 0.986 99.93% Aa
S2 y = 0.074e−0.021x R2 = 0.922 87.52% Ba
S3 y = 0.067e−0.016x R2 = 0.923 99.91% Aa
S4 y = 0.099e−0.019x R2 = 0.926 99.78% Aa
S5 y = 0.140e−0.027x R2 = 0.932 99.84% Aa
S6 y = 0.264e−0.028x R2 = 0.887 99.84% Aa

DDT

S1 y = 10.02e−0.015x R2 = 0.903 74.35% Bb
S2 y = 9.03e−0.007x R2 = 0.876 75.50% Ba
S3 y = 9.26e−0.001x R2 = 0.977 79.99% ABb
S4 y = 9.15e−0.003x R2 = 0.989 64.67% Cb
S5 y = 9.50e−0.007x R2 = 0.920 64.22% Cb
S6 y = 10.82e−0.012x R2 = 0.956 81.64% Ab

Chrysene

S1 y = 23.38e−0.002x R2 = 0.935 79.82% Ab
S2 y = 17.94e−0.006x R2 = 0.924 48.56% Cc
S3 y = 14.89e−0.006x R2 = 0.946 45.24% Cc
S4 y = 21.05e−0.007x R2 = 0.932 35.23% Dc
S5 y = 11.19e−0.001x R2 = 0.929 49.15% Cc
S6 y = 14.85e−0.009x R2 = 0.902 60.40% Bc

Uppercase letters indicate significant differences between OCs sorption on different S-SOM samples, while
lowercase letters indicate significant differences between OCs sorption on the S-SOM extracted from the same
samples (ANOVA, U Mann–Whitney’s test, p < 0.05).

On the other hand, the S-SOM isolated from different soils demonstrated the various
binding capacities of OCs expressed by CoV = 21%, 27% and 33% for atrazine, 44′DDT
and chrysene, respectively. This indicates that SOM is characterized by structural diversity
that affects the retention of contaminants in the soil. Additionally, the observed sorption
time dependencies (irrespective of the type of the analyzed compound) were nonlinear and
similar to the Freundlich isotherm. According to the Freundlich isotherm model [52], the
surface of an adsorbent with a large number of adsorption sites has a wide range of possible
adsorption capacity for the contaminant molecules. This will result in the multilayer and
heterogeneous adsorption of the contaminant on the adsorbent surface during the adsorp-
tion process. The Freundlich model also assumes that the contaminant molecules occupy
the stronger binding sites of the adsorbent first, and, as the degree of occupation increases,
the binding strength decreases [53]. According to the Freundlich equation superscript less
than 1, the adsorption process is considered favorable, showing the formation of stronger
interactions between the adsorbent and the contaminant molecules [53], which was ob-
served in our research (Table 4). This is related to the competition for sorption sites on
the S-SOM sorbent and the diversified binding strength of contaminants, which, showing
high affinity to S-SOM, arrange themselves in adhering layers. Freundlich bond isotherms
are compound- and sorbent-specific and describe the strength and nature of the mutual
attraction. Nevertheless, the variation in the sorption strength points to the heterogeneous
nature of the S-SOM.
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2.3. Influence of S-SOM Molecular Properties on OCs Sorption Affinity

The relationship between molecular features (measured by UV–VIS, FTIR and EEM)
and sorption affinity expressed by maximum sorption amount of OCs to separated S-SOM
are shown in Figure 4 and Table 5. All analyzed data were represented by three main
components, explaining 93% of the total variance of the results (Table 5), whereas up to 75%
of the variance was explained by the first two factors (Figure 4). The first PCA component
(PCA 1), which accounted for 45% of the variance, was significantly positively correlated
with absorbance indices ε 280/465 (r = 0.96), ε 280/665 (r = 0.67) and ε 465/665 (r = 0.96)
and fluorescence parameters IFl (I)/IFl (II) (r = 0.78). Moreover, PCA 1 described the
sorption of atrazine and 4,4′ DDT (r = 70 and 71, respectively), which indicates that the
sorption of these compounds is influenced by similar physicochemical processes, probably
related to their spatial structure equipped by radical substituents (Hofmann et al., 2016)
contrary to chrysene.
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Figure 4. PCA-ordination biplot (component 1 and component 2) and eigenvectors of correlation
matrix used to generate the PCA components.

Table 5. Table of PCA factor loadings matrix.

Parameters PCA 1 PCA 2 PCA 3

ε 280/465 0.96 0.13 −0.08
ε 280/665 0.67 0.54 −0.71
ε 465/665 0.96 0.13 −0.08

IFl (I)/IFl (II) 0.78 −0.53 0.33
HI 0.26 0.90 0.13

Atrazine sorption −0.70 −0.17 −0.42
DDT sorption 0.71 −0.78 0.07

Chrysene sorption 0.17 −0.48 −0.77

% of variance 45 30 18
Cumulative % 45 75 93

Loading ≥ 0.5 is shown in bold.
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The second measured component (PCA 2), which represented merely 30% of the OCs
sorption variance, was significantly positively correlated with 4,4′ DDT (r = −0.78), as well
as the associated parameters of HI (r = 90) and ε 280/665 (r = 0.54), IFl (I)/IFl (II) (r = −0.53).
The high correlation of HI and DDT within PCA 2 indicates a strong dependence of DDT
sorption on the components of organic matter characterized by the hydrophobic nature
derived from numerous short aliphatic chains (lignin, proteins, waxes) obtained in the
first stage of the decomposition of plant residues. These relationships may influence the
processes of strong sorption and explain the very long time persistence of 4,4′DDT in
the soil.

The third PCA component (PCA 3), explaining only the variability of chrysene sorption
(r = −0.77), showed a negative correlation with the coefficient ε 280/665 at the level
r = −0.71, which indicates that this compound is sorbed in the phases of organic matter
with high optical density, indicating a greater conjugation of double bonds and high
transformation degree. The previous research of the authors [16] supports this thesis,
because chrysene was strongly bound to aromatic fractions of organic matter with short
multiple bonds. In this case, the organic matter was isolated through analytical procedures
and separated from the mineral forms responsible for its binding and protection. Hence, it
may result in weaker chrysene bonding by S-SOM than other OCs.

All of these findings pointed out that the chemodiversity of S-SOM impacts the
accumulation of OCs in varying degrees. The heterogeneity of SOM is a property related
to its chemodiversity due to the presence of various chemical groups that form sorption
domains characterized by different sorption selectivity. This hypothesis holds that strands
of SOM associate together on the basis of functional group identity to form domains
large enough in scale to act independently as a micropartition phase, e.g., carbohydrate-
like domain or aromatic domain. Several researchers identified the structure of SOM as
two condensed phases—a hard/glassy/condensed phase and a soft/rubbery/amorphous
phase—containing different lengths, densities and reactivity of the aliphatic side chains
relative to the soil organic components [12,14,15]. The condensed domains originate from
the remnants of plant cuticular waxes, cutan, cutin and subarin, which are long preserved
in SOM, especially in the S-SOM fraction. Sorption in condensed domains generally is
hindered due to the high rigidity of the structure and its high density. Hence, the slow
sorption of chrysene and 44′DDT was characterized by the highest molecular weight among
analyzed OCs. Moreover, the condensed phase forms regions of disordered side chains,
which have a high density but low reactivity and flexibility due to the presence of numerous
unsaturated bonds [11,12,14,15,29], which also restricts the sorption of molecules with low
reactivity due to the small number of substituents or their absence (again chrysene and
44′DDT). On the other hand, atrazine undergoes rapid sorption, probably resulting from a
lower molecular weight and higher reactivity of the amino and methylene substituents in
the structure of this compound (Table 2).

Additionally, the side chains with a high degree of branching may condense with
the OCs molecules combining to each other throughout the covalent bonds and thereby
reduce the intermolecular interactions by building them into the SOM structures [12,14,15].
The amorphous phase is dominated by carbohydrate-like and lignin-like moieties that
are intimately mixed and therefore do not form independent sorption domains. The high
content of lignin and aliphatic compounds in the analyzed S-SOM fractions has been
confirmed by the UV–VIS, FTIR and EEM techniques, and the results are presented in
Sections 2.1.1–2.1.3. It can therefore be assumed that these groups dominate in the studied
fractions, strictly influencing the greater preference to sorb the atrazine. Nevertheless, the
interpenetration of condensed and amorphous phases cause more active and stable binding
sites, which allow for the effective occlusion of other molecules but over a much longer
period of time [12,23].

The obtained results confirmed that the properties of the tested contaminants but also
the heterogeneous structure of organic matter control the sorption rate. Thus, the analyzed
processes were considered in terms of both chemical actions between a compound and
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a sorbent in which molecules penetrate and are retained by the S-SOM through different
chemical forces that determine mutual affinity. Nevertheless, the range of this interaction
depend on the organic matter state (dissolved or solid), age (young or old) and other
factors [12,14,15] controlled by environmental conditions and soil properties.

3. Materials and Methods
3.1. Soil Sampling

The six soil samples (S1–S6) were collected from the surface layer (0–30 cm) of agricul-
tural lands, including arable fields. The distribution of sampling points aimed to reflect
various soil properties, preliminarily based on maps (1:25,000 scale; database of the Insti-
tute of Soil Science and Plant Cultivation). For each sampling site, six replicate samples
were collected at the center and vertices of a 1 m × 1 m square, averaged on the site after
the removal of the upper layer of organic vegetative materials, and mixed to provide a
bulked sample for the site. The collected soil samples were air-dried and passed through
a 2 mm mesh sieve. All samples were then stored in the dark at 12–16 ◦C before the
laboratory analysis.

3.2. Chemical and Physical Analysis
3.2.1. Soil Physicochemical Analysis

The soils were analyzed for the particle size distribution, pH and organic matter
concentration including: determination of total carbon (TC) and total organic carbon (TOC,)
and total nitrogen (TN). Thus, the pH was measured potentiometrically in a 1:2.5 (m V−1)
soil suspension in KCl (PN-ISO10390, 1997). The particle size distribution was analyzed
via the aerometric method (PN-R-04032, 1998) to determine the soil A horizon texture;
total organic carbon content was determined after sulfochromic oxidation, followed by
the titration of the excess of K2Cr2O7 with FeSO4(NH4)2SO4·6H2O (PN-ISO 14235, 2003).
To express their mutual proportion, TN and TC were analyzed by the dry combustion
method on a TC/TN Vario Macro Cube analyzer. All measured soil parameters are in-
cluded in Table 6. The soils were characterized by different physicochemical properties
(TOC = 15.0–58.7 gkg−1; TN = 1.4–6.6 gkg−1, pH in KCl = 6.4–7.4 and WRB taxonomy: flu-
visols, luviosols, leptosols), which allow finding potential variations in the characteristics
of the secreted stable organic matter fraction.

Table 6. Soil physicochemical properties (n = 6).

Soil Properties S1 S2 S3 S4 S5 S6

Clay (%) 1 1 1 2 0 8
Silt (%) 66 7 70 17 0 33

Sand (%) 33 92 29 81 0 59
WRB taxonomy Fluvisols Luviosols Luviosols Luviosols Fluvisols Leptosols

pH in KCl 7.3 6.4 6.9 7.1 7.3 7.4
TOC (g kg−1) 19.2 19.3 16.9 15.0 58.7 29.4
TN (g kg−1) 2.2 1.9 1.8 1.4 6.6 2.9

TC/TN 10.8 11.4 10.2 14.8 11.4 13.4

S1–S6: number of soil samples selected for the S-SOM extraction.

3.2.2. Extraction Procedure of Stable Organic Matter

In order to reliably assess the studied dependencies, the S-SOM fraction was separated
from the soil in order to isolate the most resistant fraction of soil organic matter and,
consequently, exclude the sorption potential of the mineral fraction.

The S-SOM was extracted by alkaline urea and dimethylsulphoxide (DMSO) with
sulfuric acid, according to the method described by Song et al. [54]. Thus, the dried and
grated soil sample (20 g) was first exhaustively extracted, by 0.1 M HCl to pH = 2 and then
0.1 M NaOH-adjusted to pH = 7 to discharge isolate mobile and easily soluble organic
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matter fractions. Extraction was carried out in several cycles, about 15 times each, until the
solutions were completely discolored.

The soil residues were further exhaustively extracted with 0.1 M NaOH + 6 M urea
(base urea) using a soil/solution ratio 1:5 (all extractions in basic media were carried out
under N2). The pH of the isolate was adjusted to 1.5 (6 M HCl) and discarded. According
to the methodology, the SOM components exhibit a tendency to concentrate in soil mico-
and macro-aggregates. Therefore, the recalcitrant organic fraction was concentrated in
the dark clay/silt surface layer after the centrifugation of humic-like substances. This
layer was isolated, air-dried, mixed with DMSO + 6% (v/v) H2SO4 (98%) (DMSO + H2SO4;
soil/solution ratio 1:10), shaken for 12 h and centrifuged. The process was repeated until
the supernatant was discolored. The obtained extract was diluted in distilled water to
pH = 2 and then the residue containing the complex of DMSO:S-SOM was isolated by
centrifugation, washed with distilled water, de-ashed with 10% HF and freeze-dried.

The obtained cleansed S-SOM fractions were then characterized using spectroscopic
methods and subjected to sorption batch experiments with organic contaminants selected
for the study.

3.2.3. Characteristics of the Isolated Stable Organic Matter Fraction

The separated S-SOM were characterized by elemental and structural arrangement
to evaluate their sorption properties. Ultraviolet–Visible spectroscopy (UV–VIS), Fourier-
transform infrared spectroscopy (FTIR), and excitation–emission matrix (EEM) fluorescence
spectroscopy were used for this purpose. The application of tese methods enabled the as-
sessment of S-SOM structures’ chemical diversification in the formation of specific moieties
of chemical compounds that potentially determine the organic matter sorption processes.

The UV–VIS Spectroscopy

The UV–VIS spectra were recorded for the determination of molecular structure
diversity in the form of aromaticity and maturity degree of S-SOM fractions. The UV–VIS
spectra were measured with the UV–VIS–NIR Jasco V-770 spectrophotometer (Easton,
United States). The absorbance measurements were carried out in the range of 230 to
700 nm at a constant concentration of 0.01 mg C·cm−3 in a DMSO + 6% (v/v) H2SO4 (98%
wt) solution in a quartz cuvette with an optical path length of 1 cm. Before performing
the analysis, the S-SOM solutions were pre-filtered through a syringe filter with 0.45 µm
pore size in order to obtain a high homogeneity of the sample. On the basis of the obtained
absorption spectra, the following coefficients: ε280, ε465, ε665 and their mutual proportions
were calculated according to the absorbance ratio.

The FT-IR Spectroscopy

The FT-IR spectra were recorded for S-SOM due to their specific chemical character
and least-known complex nature. Individual spectra were measured in the absorption
mode on KBr pellets in the wave number range of 4000 to 400 cm−1 using a IR300 FT-IR
spectrometer (Thermo Mattson, Madison, WI, USA). The KBr pellets were obtained by
pressing, under a reduced pressure, a mixture of 1 mg of freeze-dried S-SOM and 300 mg
KBr (spectrometry grade). To minimize the interference from water, the KBr was dried by
heating (at 105 ◦C) and kept under vacuum in the desiccator prior to use. The recording
was performed with a resolution of 4 cm−1 and 20 scans per sample. Each spectrum was
corrected on the ambient air as a background spectrum. The hydrophobicity index (HI)
was calculated according to Capriel [26]) and Matějková and Šimon [55] as the ratio of
the area of C-H bands that occurred in the range of 2950 to 2830 cm−1 to the area of C-O
bands that occurred in the range of 1770 to 1560 cm−1. The areas of the absorption bands,
regarding the hydrophobic (CH-groups) and hydrophilic (CO-groups), were integrated
with Omnic, version 6.0, spectrometer software (Thermo Nicolet, Madison, WI, USA) and
were defined as intensities.
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The EEM Spectroscopy

Currently, three-dimensional EEM fluorescence spectroscopy provides a comprehen-
sive and complete view of all the features present in the selected spectral range; therefore,
it is often referred to as a “molecular fingerprint” for many different types of samples.

The EEM were recorded on a Hitachi F-7000 fluorescence spectrophotometer (Chiyoda,
Tokyo, Japan). The EEM spectra were scanned at emission wavelengths from 250 to
600 nm (10 nm interval) by varying the excitation wavelengths from 250 to 600 nm (10 nm
interval). The spectra were recorded at a scan speed of 1200 nm min−1, and the scanning
interval for excitation and emission was 10 nm. The spectral recordings were performed
at a constant concentration of 0.01 mg C·cm−3 in a DMSO + 6% (v/v) H2SO4 (98%wt)
solution in a non-fluorescent quartz cuvette with an optical path length of 1 cm at room
temperature. Before performing the analysis, S-SOM solutions were pre-filtered through a
syringe filter with 0.45 µm pore size. The EEM spectra were processed to a higher resolution
in QUANTUM GIS program v. 3.10. The TIN interpolation was used in order to increase
the resolution spectra. The SAGA GIS program (Hamburg and Göttingen, Germany) was
used for smoothing the spectra distortions on individual raster.

3.3. Experimental Design
3.3.1. Tested Compounds

In order to assess the sorption affinity of individual OCs to S-SOM, the mixture of the
three deuterated organic contaminants: chrysene from the PAHs group, 4,4′DDT from the
OCPs group and atrazine from the NCPs group was applied. The selected compounds are
widespread in the environment due to their historical usage in agriculture. Moreover, they
represent different groups of contaminants with specific properties reflecting the behavior
of these compounds in the natural soil ecosystem, e.g.,: octanol/water partition coefficient
indicating the sorption potential in the organic phase of the soil; half-life time determining
the susceptibility to degradation and the rate of this process; and hydrophobicity influ-
encing the ability of the compound to migrate within the soil profile, as well as the ability
to bind with organic components. The chemical characterization of tested compounds is
summarized in Table 7.
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3.3.2. Method for OCs Determination

Determinations of OCs compounds were carried out using gas chromatography triple
mass spectrometry (GC-MS/MS; Agilent 7890 B GC system; Agilent Tech., Santa Clara,
CA, United States), equipped with an Agilent 7000 C detector and Agilent 7693 Au-
tosampler (Santa Clara, California, United States). Table 8 displays the GC, backflush
and MS/MS method parameters. GC was configured with a multimode inlet (MMI)
equipped with an 4 mm ultra-inert liner, splitless single taper and a glass wool liner (p/n
5190–2293). From the inlet, 2 HP-5 ms UI columns (0.7 m × 150 µm, p/n 160–2625-5; and
30 m × 250 µm × 0.25 µm, p/n 19091S-431 UI, Agilent Technologies) were coupled to each
other through a purged ultimate union for the use of mid-column/post run backflush-
ing. The identification of atrazine, chrysene and 4,4′DDT compounds were performed
in multiple reactor monitoring (MRM) mode with individual diagnostic ions. Samples
were analyzed up to 24 h after their recovery in order to reduce the possibility of the
decomposition of contaminants. To ensure the quality of the compounds identification, the
PCB 155 compound was used (2,2′,4,4′,6,6′-hexachlorobiphenyl, Dr. Ehrenstorfer GmbH,
Augsburg, Germany) as a surrogate standard (samples fortified at 5 ug ml−1 directly before
sample concentration) to estimate and control the matrix effects in the analyzed samples.
Additionally, PCB 207 (2,2′,3,3′,4,4′,5,6,6′-nonachlorobiphenyl, Dr. Ehrenstorfer GmbH,
Augsburg, Germany) was used as an internal standard (added in the same concentration to
the sample extract directly before injection) that allowed the control of the instrument and
injection GC MS/MS parameters.

Table 8. GC-MS/MS method conditions.

Parameter GC-MS/MS

Injection mode Hot-splitless; MMI injection mode
Injection volume 2 µL
Inlet temperature 280 ◦C

Carrier gas He, constant flow 1.00 mL min−1

(column 2 = 1.20 mL min−1)
Detector temperature -

Makeup gas -

Oven program
70 ◦C for 2 min 25 ◦C/min to 150 ◦C for 0 min;

3 ◦C/min to 200 ◦C for 0 min; 8 ◦C/min to 280 ◦C
for 10 min hold time

MS transfer line temperature 280 ◦C
Backflush settings 5 min during post-run / 310 ◦C
Aux EPC pressure ~50 psi

Inlet pressure ~2 psi
Column pressure ~3 psi
Electron energy 70 eV

MS1 and MS2 resolution Wide
Collision cell 1.5 mL min−1 N2 and 2.25 mL min−1 He

Source temperature 300 ◦C
Quad temperatures 150 ◦C

The precision of the method expressed as a relative standard deviation (RSD) was in
the range of 2 to 5%, and the recovery for individual compounds for certified reference
solution was within 90–95%. The limit of detection (LoD) for individual OCs compounds
was at the 0.01 µg kg−1 level. The detection limit value was adopted as the minimal value
of the content of measured OCs compounds.

3.3.3. Sorption Experiment

The sorption experiment was carried out according to the Guidelines for the Testing of
Chemicals OECD no. 106 over 0, 6, 12, 24, 48, 72, 78 h in darkness and constant temperature
conditions (20 ± 1 ◦C). The mixture of the OCs was dissolved in hexane (test solution) and
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added to S-SOM isolated fractions at a concentration level of 10 µg·mL−1 and 1:1 volume
ratio, e.g., 20 mL of OCs solution and 20 mL S-SOM fraction. The used mixture was a
system of two immiscible liquids due to the different polarity of the solutions, at the same
time ensuring the free diffusion of compounds at the liquid–liquid interface striving to
achieve a state of dynamic equilibrium through the sorption of OCs to S-SOM.

The parameters of the sorption processes were evaluated based on the optimization
experiment with the assumption that the concentration of the test compound in the solution
should not exceed half of its solubility and be at least two times higher than the limit
of detection of the GC MS/MS. The quality control parameters of the experiment were
ensured by the inclusion of blank samples, such as reagent and matrix blanks, as well as
performing the experiment in three replications for each individual mixture.

The quantitative assessment of the content of contaminants adsorbed on the studied
fractions of S-SOM was determined in the test OCs-spiked solution by GC MS/MS after
each time period. The adsorbed concentration of OCs was calculated from the difference
between the initial concentration in the test solution and the concentration after a specified
time. The initial concentration was considered to be the amount of OCs present in the
control (without S-SOM).

3.4. Statistical Analysis

The software package Statistica (Dell Statistica, version 13.3) was used for statistical
analysis. Basic statistical parameters, such as mean, median, lower quartile (LQ), and upper
quartile (UQ), standard deviation (SD) and coefficient of variation (CoV), were calculated.
Spearman’s correlation was used to assess the strength of the dependence of OCs to S-SOM
sorption over time described by an exponential function according to the assumption of
the Freundlich equation (Venkanna and Swati, 2010). The one-way analysis of variance
(ANOVA) with the U Mann–Whitney test was used to evaluate the difference between the
sorption affinity of individual OCs. Moreover, principal component analysis (PCA) was
applied to assess the relationship between the molecular sorption properties of isolated
S-SOM and the sorption affinity expressed by the maximum sorption amount of OCs.

4. Conclusions

The obtained results indicate that each of the analyzed soil samples contains organic
matter characterized by various degrees of transformation and chemical properties and
thus may interact with organic pollutants in different ways and determine their availabil-
ity in the soil. Spectroscopic analyses have shown that the main component of S-SOM
are biopolymers at various stages of transformation, which contain numerous aromatic–
aliphatic groups of substituents that are mostly hydrophilic in nature. These properties
significantly influence the sorption behavior of OCs and thus their potential to accumulate
in soils. The sorption rate expressed by the concentration of binding compound and the
time of this process differs depending on the properties of OCs (the presence of substituents,
thus the more effective sorption of atrazine and 4,4′DDT) and the characteristics of S-SOM
variability resulting from the properties of the soils from which they were isolated. Atrazine
was characterized by the fastest sorption in contrast to 4,4′DDT and chrysene, but the affin-
ity of individual compounds to S-SOM resulting from the sorption equation was inversed.
These specific relationships significantly affect the translocation, residence and availability
of contaminants in the soil; therefore, they are extremely important in terms of the environ-
mental risk assessment of areas with excessive potential and current pollution deposition
in soils.
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