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Abstract: Graphitic carbon nitride (g-C3N4), with facile synthesis, unique structure, high stability,
and low cost, has been the hotspot in the field of photocatalysis. However, the photocatalytic perfor-
mance of g-C3N4 is still unsatisfactory due to insufficient capture of visible light, low surface area,
poor electronic conductivity, and fast recombination of photogenerated electron-hole pairs. Thus,
different modification strategies have been developed to improve its performance. In this review, the
properties and preparation methods of g-C3N4 are systematically introduced, and various modifi-
cation approaches, including morphology control, elemental doping, heterojunction construction,
and modification with nanomaterials, are discussed. Moreover, photocatalytic applications in energy
and environmental sustainability are summarized, such as hydrogen generation, CO2 reduction,
and degradation of contaminants in recent years. Finally, concluding remarks and perspectives
on the challenges, and suggestions for exploiting g-C3N4-based photocatalysts are presented. This
review will deepen the understanding of the state of the art of g-C3N4, including the fabrication,
modification, and application in energy and environmental sustainability.

Keywords: g-C3N4; preparation; modification; hydrogen evolution; CO2 conversion; organic pollutants

1. Introduction

Along with the rapid growth of the global population and the development of in-
dustrialization and urbanization, the demand for fossil energy, such as petroleum, coal,
and natural gas, is increasing, as well as the deterioration of environmental pollution [1].
Driven by the ongoing energy and ecological crisis, the development of sustainable energy
is a matter of great urgency and is related to the vital interests of people worldwide. As
a green and renewable energy, solar energy has become a hot topic [2] and converting it
into chemical energy by using photocatalysis is regarded as a potential pathway to supply
renewable energy and alleviate environmental issues in the future. The photocatalyst
is the most important key in economic photocatalysis application; it should be efficient,
stable, low-cost, and capable of harvesting visible light [3]. Many photocatalytic materials
have been reported and used in various fields, including hydrogen evolution, contaminant
photo-oxidization or photodecomposition, and photoelectrochemical conversion [4,5]. For
example, titanium dioxide (TiO2) and related photocatalysts have been used in solar energy
conversion, due to their merits of low price, unique optical-electronic properties, great dura-
bility, and non-toxicity [6]. However, the large bandgap of TiO2 (3.2 eV) prevents it from
actual solar energy utilization [7,8]. Compared to TiO2, the newly emerged graphitic carbon
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nitride (g-C3N4) is a visible-light-response material with a narrower bandgap of 2.7 eV.
It is a kind of metal-free photocatalyst and possesses the advantages of simple synthesis,
suitable semi-conducting properties, and high structural stability under both thermal and
photochemical conditions. These merits make g-C3N4 a unique material for energy and
environmental applications, including photocatalytic H2 generation, CO2 reduction, and
degradation of organic pollutants (dyes, pesticides, pharmaceuticals, phenolic compounds)
and inorganic pollutants like heavy metals, carbon dioxide reduction, etc. [6,9–14]. In 2009,
Wang et al. [15] for the first time proved that g-C3N4 could be used for photocatalytic
hydrogen production upon visible-light irradiation, marking a significant milestone in
metal-free photocatalysts. Nevertheless, due to the rapid recombination of photo-induced
charges, the photocatalytic performance of g-C3N4 still possesses a significant possibility to
be further enhanced, and the research on g-C3N4 gives rise to a new upsurge. So far, differ-
ent strategies have been adopted to increase the photocatalytic efficiency of g-C3N4, such
as morphological control, element doping, heterojunction construction, and nanomaterial
composition [8,16,17]. In this review, we introduce the recent advances in the preparation
and modification of g-C3N4, and summarize its photocatalytic application in H2 generation,
CO2 reduction, and degradation of organic pollutants in recent years. Finally, we conclude
the research challenges with g-C3N4 and suggest perspectives for future research direction.

2. Properties and Preparation of g-C3N4

2.1. The Origin and Properties of g-C3N4

Carbon nitride (C3N4), composed of carbon and nitrogen elements, is a kind of or-
ganic semiconductor material. The history of C3N4 can be traced back to 1834. One type
of material named “melon” was synthesized by Berzelius and also reported by Liebig,
which is a linear polymer connected triazine and tri-s-triazines (Figure 1) via secondary
nitrogen [18,19]. However, this material did not attract much attention due to the lack of
comprehensive characterization at the time. Along with the development of characteri-
zation methods, Franklin [20] probed this material in 1922 and proposed the concept of
C3N4, which indicated that C3N4 could be obtained by polymerizing various ammonia
carbonic acids. Later, Pauling and Sturdivant [21] demonstrated that tri-s-triazine was the
unit of melon in 1937. Still, its chemical instability and insolubility in most reagents made
it impossible to unveil the structure until 1989, researchers found that when Si in β-Si3N4
was replaced by C, the derived β-C3N4 was as hard as a diamond [22]. Based on the study,
five types of C3N4, comprising α, β, pseudocubic, cubic, and graphitic, were predicated in
1996 [23]. Among them, the first four materials are hard materials but not favorable to be
synthesized due to their low stability [24] and g-C3N4 is confirmed as the most resistant
under surrounding situations; it possesses a similar layered structure to graphene and
sp2 hybrid π-conjugated electronic band structure. In recent years, large numbers of g-C3N4
materials have been synthesized by thermal polymerization of urea, melamine, cyanamide,
dicyandiamide, and thiourea, which indicated that g-C3N4 was composed of melem units
and further confirmed that tri-s-triazine was the basic unit of g-C3N4.

Molecules 2023, 27, x FOR PEER REVIEW 2 of 33 
 

 

[4,5]. For example, titanium dioxide (TiO2) and related photocatalysts have been used in 

solar energy conversion, due to their merits of low price, unique optical-electronic prop-

erties, great durability, and non-toxicity [6]. However, the large bandgap of TiO2 (3.2 eV) 

prevents it from actual solar energy utilization [7,8]. Compared to TiO2, the newly 

emerged graphitic carbon nitride (g-C3N4) is a visible-light-response material with a nar-

rower bandgap of 2.7 eV. It is a kind of metal-free photocatalyst and possesses the ad-

vantages of simple synthesis, suitable semi-conducting properties, and high structural sta-

bility under both thermal and photochemical conditions. These merits make g-C3N4 a 

unique material for energy and environmental applications, including photocatalytic H2 

generation, CO2 reduction, and degradation of organic pollutants (dyes, pesticides, phar-

maceuticals, phenolic compounds) and inorganic pollutants like heavy metals, carbon di-

oxide reduction, etc. [6,9–14]. In 2009, Wang et al. [15] for the first time proved that g-C3N4 

could be used for photocatalytic hydrogen production upon visible-light irradiation, 

marking a significant milestone in metal-free photocatalysts. Nevertheless, due to the 

rapid recombination of photo-induced charges, the photocatalytic performance of g-C3N4 

still possesses a significant possibility to be further enhanced, and the research on g-C3N4 

gives rise to a new upsurge. So far, different strategies have been adopted to increase the 

photocatalytic efficiency of g-C3N4, such as morphological control, element doping, het-

erojunction construction, and nanomaterial composition [8,16,17]. In this review, we in-

troduce the recent advances in the preparation and modification of g-C3N4, and summa-

rize its photocatalytic application in H2 generation, CO2 reduction, and degradation of 

organic pollutants in recent years. Finally, we conclude the research challenges with g-

C3N4 and suggest perspectives for future research direction. 

2. Properties and Preparation of g-C3N4 

2.1. The Origin and Properties of g-C3N4 

Carbon nitride (C3N4), composed of carbon and nitrogen elements, is a kind of or-

ganic semiconductor material. The history of C3N4 can be traced back to 1834. One type of 

material named “melon” was synthesized by Berzelius and also reported by Liebig, which 

is a linear polymer connected triazine and tri-s-triazines (Figure 1) via secondary nitrogen 

[18,19]. However, this material did not attract much attention due to the lack of compre-

hensive characterization at the time. Along with the development of characterization 

methods, Franklin [20] probed this material in 1922 and proposed the concept of C3N4, 

which indicated that C3N4 could be obtained by polymerizing various ammonia carbonic 

acids. Later, Pauling and Sturdivant [21] demonstrated that tri-s-triazine was the unit of 

melon in 1937. Still, its chemical instability and insolubility in most reagents made it im-

possible to unveil the structure until 1989, researchers found that when Si in β-Si3N4 was 

replaced by C, the derived β-C3N4 was as hard as a diamond [22]. Based on the study, five 

types of C3N4, comprising α, β, pseudocubic, cubic, and graphitic, were predicated in 1996 

[23]. Among them, the first four materials are hard materials but not favorable to be syn-

thesized due to their low stability [24] and g-C3N4 is confirmed as the most resistant under 

surrounding situations; it possesses a similar layered structure to graphene and sp2 hy-

brid π-conjugated electronic band structure. In recent years, large numbers of g-C3N4 ma-

terials have been synthesized by thermal polymerization of urea, melamine, cyanamide, 

dicyandiamide, and thiourea, which indicated that g-C3N4 was composed of melem units 

and further confirmed that tri-s-triazine was the basic unit of g-C3N4. 

 

Figure 1. Structures of (a) triazine and (b) tri-s-triazine. Reprinted with permission from Ref. [25].
Copyright 2021 American Chemical Society.



Molecules 2023, 28, 432 3 of 32

The electronic structures of both carbon and nitrogen atoms in g-C3N4 determine their
electronic and optical properties. The lone pair electrons of carbon and nitrogen atoms of
g-C3N4 interact to create a large π bond, analogous to the benzene ring, and then form a
highly delocalized conjugate system. The delocalized conjugate chemical structure con-
tributes to the formation of the stacking of the carbon nitride layer, which connects through
amines, and such a structure makes the superior electronic conductivity of g-C3N4 [1]. In
addition, the solid covalent bond between carbon and nitrogen atoms leads to the excellent
chemical and thermal stability of g-C3N4. After experimental measurements [26,27] the
conduction band (CB) and valence band (VB) of g-C3N4 are −1.3 V and 1.4 V at pH = 7
versus the standard hydrogen electrode (SHE), respectively. Such band positions promote
visible light harvesting under oxidation and reduction systems. In short, g-C3N4 possesses
unique electronic, structural, physicochemical, and optical properties, sufficient for photo-
catalytic application in H2 production, CO2 photoreduction, and degradation of organic
pollutants [9,28].

2.2. Preparation of g-C3N4

The property of a catalyst varies substantially depending upon the preparation pro-
tocols. To achieve the application of g-C3N4 in the field of photocatalysis, the synthesis
of high-performance g-C3N4 is a prerequisite. Various methods have been proposed, in-
cluding thermal condensation, hydrothermal and solvothermal approaches, solid-state
fabrication, self-hand synthesis, template-supported formation, deposition-precipitation,
and ball milling process [1,29].

Among these methods, thermal condensation, a combination of polycondensation and
polyaddition, is the most common method to prepare g-C3N4. Nitrogen-rich chemicals,
such as melamine, urea, and dicyandiamide, are usually used as precursors, and after the
deamination process, g-C3N4 is generated under high temperatures. For example, Yan
et al. [30] synthesized g-C3N4 with a high photodegradation activity toward methyl orange
in a semiclosed system with a two-step heat treatment. By investigating the influence of
heating temperature upon the thermal condensation of melamine, the optimal reaction
condition for g-C3N4 was 520 ◦C for 2 h. Liu et al. [31] used urea as a precursor and
produced g-C3N4 on a large scale by pyrolysis under ambient pressure without additive
assistance. The retainable pyrolysis-generated self-supporting atmosphere and the reaction
temperature are two necessary conditions.

Hydrothermal synthesis is also one of the most widely used methods, which is ben-
eficial to control the accuracy in influencing reaction molar ratio and physio-chemical
properties [1]. Wu et al. [32] prepared oxygen-containing-groups-modified g-C3N4 (OG/g-
C3N4) through an in situ one-step hydrothermal treatment of bulk g-C3N4 in pure water.
Hydrothermal treatment at 180 ◦C could promote the increase in the specific surface area
of the resulting product from 2.3 to 69.8 m2 g−1, and oxygen-containing groups (-OH
and C=O) were also successfully grafted on the surface of OG/g-C3N4 via the interlayer
delamination and intralayer depolymerization. Due to its high surface area and oxygen-
containing surface properties, OG/g-C3N4 demonstrated high photocatalytic performance
on H2 evolution. Ahmad et al. [33] synthesized a highly efficient double Z-scheme g-
C3N4/AgI/β-AgVO3 (g-CNAB) ternary nanocomposite using a one-pot hydrothermal
route. They have characterized the optical properties, phase structure, and morphology
of the as-prepared photocatalysts and evaluated their photocatalytic performance toward
the photodegradation of different pollutants under visible-light irradiation. Experimental
characterization indicated that g-CNAB possessed a dual Z-scheme heterojunction, which
had the features of better spatial separation and charge-carrier transfer. As such, reactive
species such as superoxide anion radical and hydroxyl radical can be favorably generated
for the degradation of various contaminants.

To improve the photocatalytic performance of g-C3N4, templating strategy has also
been applied to synthesize materials with unique appearance, structure, and properties.
Due to the high specific surface area and low surface reflection, silica-based materials,
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including silica spheres, mesoporous silica, and SBA-15, usually serve as hard templates to
fabricate g-C3N4. Sun et al. [34] used silica as a template to prepare a highly stable, hollow
g-C3N4 nanosphere (HCNS) (Figure 2). Adjustable shell thickness performed as a light-
harvesting platform for H2 evolution under visible light irradiation. However, corrosive
reagents (e.g., NaOH, NH4HF2) are often used to remove silica templates, which are not
friendly to the environment. On the contrary, the soft templating method uses ionic liquid
as a template or co-template to fabricate g-C3N4, which is an environmentally friendly
and one-step approach to prepare g-C3N4 with excellent performance. Zhao et al. [35]
utilized cyanuric acid-melamine complex and an ionic liquid as soft templates to prepare
hollow g-C3N4 spheres with a specific surface area as high as 84 m2 g−1. The morphology
of g-C3N4 could be well controlled by adjusting ionic liquid and solvent. It has been
demonstrated that the as-prepared hollow mesoporous carbon nitride exhibits ~30 times
higher than traditional g-C3N4 in hydrogen production. Although significant progress has
been achieved in the preparation and modification of g-C3N4, some preparation methods
are neither environmentally friendly nor time-saving. Thus, it is necessary to develop green
and facile synthesis routes.
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3. Modification of g-C3N4

3.1. Morphology Control

Morphology control of g-C3N4 is one of the practical and effective methods to improve
its photocatalytic performance. g-C3N4 can be regulated to different dimensions (Figure 3).
Then, with g-C3N4 having a larger specific surface area, more adequate active sites can
be obtained. Moreover, the visible-light response range of g-C3N4 will be expanded, and
the carrier diffusion path will be shortened. This section will discuss 0–3D g-C3N4-based
materials and their catalytic performance.

3.1.1. 0D g-C3N4

g-C3N4 dots are new members of the g-C3N4 family, smaller than 10 nm in size,
and have quantum size effect, surface effect, and quantum confinement effect [36]. As
the size effect causes the reverse motion of CB and VB, g-C3N4 with broad absorption
(from ultraviolet to visible light) can be obtained. The photogenerated charge carriers
favorably migrate to the particle surface for initiating oxidation or reduction reactions. In
recent years, a variety of low-cost and size-controlled methods have been developed to
prepare g-C3N4 dots with different physicochemical properties, including hydrothermal
treatment [37], ultrasonic exfoliation [38,39], microwave-assisted solvothermal process [40],
and solid reaction approach [1]. A hydrothermal and hot-air assisted chemical oxidation
method was proposed to prepare g-C3N4 QDs by etching bulk g-C3N4 to graphene-like
nanosheets [41]. Concentrated H2SO4 and HNO3 etched the nanosheets to produce g-C3N4
nanoribbons with sizes below 10 nm. Then, 5–9 nm g-C3N4 QDs can be obtained after the
hydrothermal treatment of nanoribbons at 200 ◦C (pH = 5). The obtained g-C3N4 QDs
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exhibited a strong blue emission and upconversion behavior, promising visible-light-driven
metal-free photocatalytic systems. Liu et al. [38] synthesized g-C3N4 QDs by recrystal-
lization and ultrasonic exfoliation from the precursor of dicyandiamide. g-C3N4 QDs
with different sizes (5–200 nm) can be prepared by adjusting ultrasonic time up to 90 min.
Chen et al. [40] prepared 0D/2D CNQDs/g-C3N4 isotype heterojunctions by a simple
microwave assisted-polymerization method. The obtained product exhibited excellent
photocatalytic performance toward norfloxacin degradation, and its reaction rate was as
much as two times higher than pristine g-C3N4. Zero-dimensional QDs structure materials
with nanometer size have a large surface/volume ratio, abundant surface atoms, and un-
saturated coordination state, which conduce to their high activity for photocatalysis [42,43].
In addition, the absorption spectra of QDs/g-C3N4 will appear blue shift, and band gaps
will be broadened, affecting their electronic band structures in photocatalysis [44]. Thus,
grafting 0D QDs on g-C3N4 is a promising approach to creating great reactive active sites
and enhancing photoelectric conversion ability to improve photocatalytic activity.
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3.1.2. 1D g-C3N4

As morphology significantly affects materials’ photochemical properties and electron
transfer rate, the photocatalytic activity of g-C3N4 can be improved by adjusting its size and
shape. The polymer characteristics of g-C3N4 make it an excellent flexible structure. One-
dimensional g-C3N4, including nanowires [45], nanorods [46,47], and nanotubes [48], can
be prepared by non-metallic hard-template, soft-template, self-template, and template-free
methods. Bai et al. [47] found it possible to transform g-C3N4 from nanoplates to nanorods
in a simple reflux way. They compared the photocatalytic activity and intensity of both
shapes; results achieved in their study demonstrated that the photocatalytic activity and
power of nanorods were ~1.5 and 2.0 times higher than those of nanoplates under visible
light, attributable to an increase in active lattice face and elimination of surface defects. Jiang
et al. prepared melamine crystals by a transitional metal derived re-crystalline process and
then created g-C3N4 nanotubes with melamine crystals through a thermal polymerizing
reaction method. They have applied transitional metal ions (Fe3+, Co2+, Ni2+, and Mn2+) in
the growing of melamine crystals and have characterized the obtained ion-modified g-C3N4
nanotubes with XRD, FT-IR spectra, and XPS (Figure 4). It has been demonstrated that Fe3+-
ion-modified g-C3N4 nanotubes (Fe3+ R-650 CN) exhibited enhanced absorbance at 500 nm
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and decreased band gap. The hydrogen evolution rate (7538 µmol h−1 g−1) is almost
13.5-fold than that of conventional g-C3N4 nanosheets. Mo et al. [48] synthesized defect-
engineered g-C3N4 nanotubes through an efficient self-assembled method, and applied
them to hydrogen evolution. Around 6.8% external quantum efficiency was achieved at
420 nm. Among 1D g-C3N4, nanotubes are superior to others because they allow more
effective light absorption, offer more active sites, and invent different electron pathways
with tube morphology [25]. Generally, due to the nanometer scale of 1D g-C3N4-based
materials in the radial direction, the diffusion distance (from volume to the surface) of
photoexcited charges would be reduced, and the charge separation during photocatalytic
reactions would be promoted. In addition, if g-C3N4-based materials are transformed from
2D to 1D structure, polygonal defects may appear to form the active sites and increase the
contact surface of reactions, thus improving the photocatalytic performance.
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3.1.3. 2D g-C3N4

Bulk g-C3N4, prepared by the traditional one-step calcination method, has a small
specific surface area (10 m2 g−1), and the photogenerated electrons and holes tend to
recombine, which reduces its photocatalytic activity [50]. Since g-C3N4 has a 2D layered
structure connected by van der Waals force, it will produce unique chemical and physical
properties as below when it is stripped into multilayer or single-layer nanosheets. First,
the large surface area and easy access to active reaction centers facilitate interactions with
reactants. Second, nanoscale thickness or even less can minimize the migration distance
of charge carriers, ensuring the rapid transport of charge carriers from the bulk phase to
the surface of a catalyst. As a result, it would effectively inhibit electron-hole pairs from
recombination. Third, the unique two-dimensional flexible planar structure can enhance
compatibility with various modification strategies, such as heterojunction construction,
cocatalyst modification, and vacancy introduction. This feature further improves the quan-
tum efficiency in a photocatalysis process [51]. Various methods have been developed
to prepare g-C3N4 nanosheets, such as thermal oxidation etching, chemical peel etching,
supramolecular self-assembly, and ultrasonic treatment of exudation [1,51]. Among these,
thermal oxidation etching is the most common method, which can overcome van der Waals
force between layers and peel bulk g-C3N4 into 2D nanosheets under high-temperature
oxidation conditions. Niu et al. [52] prepared g-C3N4 nanosheets (~2 nm thickness) by
thermal oxidation etching of bulk g-C3N4 in the air. UV-visible absorption (Figure 5A)
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exhibits a blue shift of the intrinsic absorption edge in the nanosheets. Compared to the
bulk (2.77 eV), the nanosheets possess a higher specific surface area and 0.2 eV larger
bandgap (Figure 5B). These characteristics benefit electron transport along the in-plane
direction and increase the lifetime of photoexcited charge carriers because of the quantum
confinement effect. Furthermore, the average hydrogen evolution rate of nanosheets is
170.5 µmol h−1 under UV-visible light, which is 5.4 times higher than that of the bulk
counterpart. Due to the simplicity of operation, the supramolecular self-assembly method
has attracted much attention. For example, conventional melamine-cyanuric acid (MCA)
complexes can be obtained by mixing melamine and cyanuric acid in a solution. However,
the use of solvent limits the batch preparation of MCA complexes. To address this issue,
Liu et al. [53] proposed synthesizing supramolecular precursors through hydrothermal
treatment of dicyandiamide and prepared 3D holey g-C3N4 nanosheets with excellent
photocatalytic performance. The precursor exhibited a similar structure to that of con-
ventional MCA. In contrast, their thermal decomposition and morphology were different,
which led to the distinction of microstructures, optical properties, charge recombination,
photoelectrochemical behavior, and photocatalytic activity. The holey g-C3N4 can make up
for the shortcomings of recombination of charge carriers, retarded visible light utilization,
and the limited surface-active sites in the bulk g-C3N4 catalysts, which could contribute to
their outstanding application in photocatalytic hydrogen evolution.
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3.1.4. 3D g-C3N4

Three-dimensional nanostructures are considered an effective way to improve the
properties of photocatalytic materials because they can provide a larger specific surface
area and more reactive active sites. Although soft and hard template methods have been
widely used in the preparation of 3D g-C3N4, they generally employ toxic substances and
organic solvents to remove the template, which limits their application in actual green
production. Salt templates have replaced some traditional templates (silica, sodium dodecyl
sulfate, anodic alumina) for safe synthesis processes. Qian et al. [54] introduced a simple
and effective sodium-chloride-assisted ball milling method to prepare 3D porous g-C3N4.
Three-dimensional cubic sodium chloride particles can be used as an easily removable
template to design 3D porous structures and as a limiting structure to prevent aggregation of
g-C3N4 during calcination. The modified 3D interconnecting network structure of g-C3N4
has a large specific surface area, significantly improving the photocatalytic performance.
The hydrogen production rate can be as high as 598 µmol g−1 h−1 with 3.31% quantum
efficiency at 420 nm. In addition, ionic liquids are widely used in many fields due to
their excellent fluidity and solubility. In the process of nanomaterial preparation, the
ionic liquid can self-assemble into micelles, which impacts the size and morphology of
the nanomaterials. For example, Zhao et al. [35] controlled the morphology of hollow
mesoporous g-C3N4 spheres by changing ionic liquid concentration. At a low ionic liquid
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concentration, the prepared mesoporous g-C3N4 showed a hollow spherical structure while,
at a high ionic liquid concentration, the cyanate-melamine (CM) complex rearranged, which
could induce the formation of a flower-like structure with ultrathin nanosheet (Figure 6).
Moreover, the hollow as-prepared g-C3N4 exhibits higher light absorption in the visible
range and a faster separation rate of photogenerated hole-electron pairs than bulk C3N4.
In addition, the hydrogen production of as-prepared hollow mesoporous g-C3N4 exhibits
~30 times higher than traditional g-C3N4, because of its high surface area.
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In addition, some unique g-C3N4-based structures, like the “seaweed” network, spiral
rod, and hollow fusiform, have also been reported [55–59], and a superior photocatalytic
activity to bulk samples was observed for higher specific surface areas. Among these
morphologies of g-C3N4, 1D nanoribbons, with a large specific surface area, more active
sites, a short diffusion distance, and preferential directions for photo-generated electron-
hole carriers, effectively accelerate the catalytic performance of g-C3N4. Better yet, the 3D
morphology assembled from 1D units have depressed agglomeration, increased exposure
of active sites, and decreased mass transportation resistance.

3.2. Elemental Doping

Heteroatom doping effectively regulates the electrical, optical, and structural prop-
erties of semiconductors by introducing active impurities [60]. In general, non-metallic
heteroatoms can participate in the C3N4 lattice and partially replace C or N atoms, while
metal atoms can insert into the triangular gap cavity of the g-C3N4 lattice. Doped metal
and non-metal atoms generate intermediate band gaps near CB and VB to regulate the
band structure of g-C3N4, which can effectively realize the separation and transmission of
electron-hole pairs and broaden their optical response range [55,60]. Therefore, doping is a
prevalent method to improve the photocatalytic performance of semiconductors.

3.2.1. Non-Metal Doping

Non-metal element doping could maintain the metal-free character of g-C3N4. Ad-
ditionally, due to the high ionization energies and electronegativity of non-metals, they
can quickly form covalent bonds with other compounds by gaining electrons during the
reaction process [61,62]. The introduction of non-metals will break the symmetry of g-C3N4
and result in a faster separation speed of electron-hole pairs [63]. The ordinary non-metallic
doping atoms include O, P, S, B, C, N, and halogens (F, Cl, Br, and I). Among them, the O
atom, one of the most typical non-metallic doping elements, has shown extraordinary po-
tential in improving the photocatalytic performance of g-C3N4. Zhang et al. [64] presented
a hydrothermal method and fabricated a porous and oxygen-doped g-C3N4 photocatalyst
for efficient photocatalytic hydrogen production by forming homogeneous supramolec-
ular complexes (Figure 7). They introduced porous structure and heteroatom doping in
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g-C3N4 to adjust its active sites and electronic structure for enhanced light harvesting,
charge separation, and transfer. Compared with bulk g-C3N4, the hydrogen evolution
activity of the g-C3N4 photocatalysts is 11.3-fold higher than bulk g-C3N4. She et al. [65]
introduced oxygen in g-C3N4 and prepared 2D porous ultrathin oxygen-doped g-C3N4
nanosheets. It has been demonstrated that the band gap was enlarged (~0.20 eV), and the
transport ability of photogenerated electrons and the redox ability were improved, which is
caused by the quantum confinement effect. Besides, the specific surface area of non-metal
doped g-C3N4 is larger (~20 times) than that of the bulk, which will supply more active
sites with adequate quality and offer more adsorption sites. In short, due to the increased
bandgap, the introduction of the electrophilic groups and the morphology structure, the
electron-hole recombination probability is inhibited and the redox ability will be improved,
which contribute to the enhanced photocatalytic activity.
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3.2.2. Metal Doping

In terms of metal-doped g-C3N4, the porous structure of heptamine and electron-rich
sp2 nitrogen atoms can provide sites for metal coordination, and doped metal can easily
bind to the three neighboring N atoms in the form of g-C3N4. Metal element doping,
especially alkali, has been demonstrated to reduce the energy gap, supply more active
reaction sites, adjust VB position and improve photocarrier separation to enhance the
visible light absorption [66]. Due to the uneven distribution of semiconductor charge
space, the improvement of photogenerated carrier separation efficiency is increased. In
addition, the alkali metal doping can increase the π-conjugated systems and reduce the
recombination rate of the semiconductor electron-hole pairs, which will be beneficial to
improve the efficiency of H2 evolution by photolysis [67]. The ordinary doping metal
atoms are K, Na, Ag, Au, Fe, Ni, Pt, etc. Gao et al. [68] designed a simple one-step
pyrolysis process to synthesize Fe-doped g-C3N4 nanosheets with NH4Cl as a “dynamic
gas template” and FeCl3 as a Fe source, respectively (Figure 8). The experimental results
show that Fe species may exist at the state of Fe3+ and form Fe-N bonds in g-C3N4, thereby
expanding visible light absorption regions and reducing the band gap of g-C3N4 nanosheets.
Moreover, doping specific amounts of Fe could promote exfoliation and increase the specific
surface area of g-C3N4, while excessive Fe might break the sheeting structure. The specific
surface area of optimized Fe-doped g-C3N4 nanosheets reached 236.52 m2 g−1, which
was 2.5 times higher than g-C3N4 nanosheets. In addition, Deng et al. [69] prepared K+

and cyano-group co-doped crystalline polymeric carbon nitride (KC-CCN) by a one-step
thermo-polymerization approach. They applied thiourea and potassium thiocyanate as
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precursors, and the resulting KC-CCN demonstrated a highly crystal structure, stronger
light harvesting, and a higher electron-hole separation ratio.
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3.3. Heterojunction Construction

The key factor that restricts the activity of semiconductor photocatalysts is improving
the separation and transport efficiency of electron-hole pairs. Thus, the construction of
g-C3N4-based heterojunction photocatalysts is one of the most common and effective
methods. When two semiconductors with different band structures combine to form a
heterojunction, effective charge transfer will be included at the interface, improving charge
separation and transport efficiency [70–74]. In addition, the light absorption capacity of
a photocatalytic system can be enhanced by combining it with narrow-band gap semi-
conductors. For example, Xu et al. [75] proposed a wet chemical method to fabricate
CdS/g-C3N4 (CSCN) heterojunctions in situ. Through the result of XRD, FTIR, TEM, and
optical band gap for CSCN, the formation of heterojunctions was confirmed. The CdS
nanoparticles dispersed uniformly on the surface of g-C3N4 nanosheets and the interfaces
between g-C3N4 and CdS in composites is very close, which can efficiently enhance the
electron transfer between the two semiconductors. Comparing the UV–vis DRS spectra of
g-C3N4 (474.9 nm) and CdS (685.7 nm), the absorption thresholds of all CSCN composites
locate between that of g-C3N4 and CdS, which indicates strong visible-light absorption.
Among the materials, including the individual CdS, g-C3N4, and different CSCN compos-
ites, CSCN733 possesses the highest adsorption capacity and exhibits the highest methyl
orange degradation efficiency, 100% with 40 min adsorption. Liu et al. [76] embedded
nanorod-like CoP nanoparticles into g-C3N4 nanosheets to form CoP-CN heterostructure.
The XRD data indicated that the 0.5% CoP-CN hybrid incorporates the representative peaks
of g-C3N4 and CoP with g-C3N4 demonstrating the main phase. The TEM of 0.5% CoP-CN
composites displays a porous and fluffy structure. The binding energy of P 2p3/2 is lower
than that of P 2p3/2, while the binding energy of Co 2p3/2 eV is a little higher than that
of metallic Co 2p3/2. This result indicates that the electron transfer from Co to P to form
Co-P covalent bonds results in a small positive charge of Co and negative charge of P.
This finding would account for the excellent activity of CoP-based photocatalysts in the
HER process, in which Co serves as active center while P performs as the proton acceptor.
The flat band potentials of 0.5% CoP-CN were decreased to −0.28 V and the CB tuned
upward for more negative potential, achieving more efficient interfacial charge transporta-
tion and separation by establishing a certain inner electric field. Furthermore, among the
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evaluation of photocatalytic water half-splitting for H2 production, 0.5% CoP-CN exhibit
excellent activity and reached 959.4 µmol h−1 g−1, which is almost 3.1-fold than that of
pristine g-C3N4 nanosheets. This can be attributed to its decreased over-potentials, more
negative photo-reductive potentials, increased interfacial charge transfer efficiency, and
higher solar-to-hydrogen efficiency. Ma et al. [77] combined TiO2 with g-C3N4 to form a
Z-type heterojunction, which can effectively separate photogenerated electrons and holes
and improve the photocatalytic activity. However, the utilization of visible light of TiO2
is very low because of its large band gap. Thus, to improve this weakness, the Eg of TiO2
should be reduced, followed by its potential change of valence band and the conduction
band. Such a move would change the heterojunction type, which is not consistent with
improving the catalytic efficiency of composite materials to visible light. Therefore, var-
ious kinds of g-C3N4-based heterojunction photocatalysts have emerged to enhance the
efficiency of photogenerated carrier separation further and light absorption capacity, includ-
ing ternary [78–83] and other type II [84–88] and S-type heterojunction [89,90], Schottky
junction [91,92], and van der Waals heterojunction [93,94].

The S-type heterojunction is composed of reduction photocatalysts (RPs) and oxidation
photocatalysts (OPs) with staggered band structures, similar to the type-II heterojunction
but with an entirely different charge-transfer route [95]. S-type photocatalysis is an effective
way to control charge separation in various photocatalytic reactions. Since Yu et al. first
proposed the concept of S-type heterojunction in 2019 [96], a large number of studies on
the g-C3N4-based S-type heterojunction have been reported, such as Sb2WO6/g-C3N4 [97],
S-doped g-C3N4/TiO2 [98], ZnFe2O4/g-C3N4 [99], g-C3N4/Zn0.2Cd0.8S-DETA [100],
g-C3N4/Bi/BiVO4 [101], WO3/g-C3N4 [102], etc. The Schottky junction photocatalyst
has also attracted much attention. Generally, conductor-semiconductor heterojunction
has two main combined modes: Schottky junction and ohmic contact. Conductors and
semiconductors with different Fermi levels will generate Schottky effects at their contact
interfaces to induce internal electric fields to drive charge flow until the system reaches
equilibrium. The proper orientation of built-in electric fields will promote the directional
separation of charge carriers, leading to the practical generation of photogenerated charge
carriers and improving the photocatalytic activity. A large number of g-C3N4 Schottky
junction photocatalysts have been reported, such as CoP/g-C3N4 [103], CuS/g-C3N4 [104],
Ti3C2/g-C3N4 [105], carbon/g-C3N4 [106], MoO2/g-C3N4 [107], Cu-NPs/g-C3N4 [108], etc.
Recently, van der Waals (vdW) heterojunction has been proposed to regulate the electrical
and optical properties of 2D materials accurately. vdW heterojunction not only overcomes
the lattice matching limitation for enhancing interfacial charge separation and transfer but
also leads to strong electronic coupling between layers to improve catalytic activity [109].
The research on g-C3N4-based vdW heterojunctions is currently enjoying a boom, and
different types have been reported, including phosphorene/g-C3N4 [110], g-C3N4/Zn-Ti
LDH [111], g-C3N4/C-doped BN [112], g-C3N4/COF package-TD [113], etc.

Moreover, metal-organic framework (MOF) materials have exhibited excellent pho-
tocatalytic performances due to their unique porous structures and favorable transfer of
e− and h+ [114–116]. However, most MOFs have low stability and weak light response.
Therefore, the heterojunction of MOF and g-C3N4 materials has become popular in recent
years. For example, Zhang et al. [117] synthesized a novel hybrid of Zr-based metal-organic
framework with g-C3N4 (UiO-66/g-C3N4) nanosheets (10:10) by annealing their mixture.
The photoelectron can transfer efficiently from the CB of g-C3N4 to that of UiO-66 through
the inner electric field generated by the heterojunction, which is beneficial to decrease the
recombination of electron/hole. Together with their porous structures, much more organic
dye molecules can absorb on the surface of the heterojunction catalyst, thus facilitating
the electron/hole transfer and enhanced photocatalytic activity. Han et al. [114] prepared
TPVT (tridentate ligand 2,4,6-tris(2-(pyridin-4-yl)vinyl)-1,3,5-triazine)-MOFs and combined
them with g-C3N4. It has been demonstrated that the TPVT-MOFs@g-C3N4-10 can reach
56.4 µmol·g−1·h−1 in CO2 reduction, which is 3.2-fold higher than that of g-C3N4. All these
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researches have provided a new insight into the design of g-C3N4 based photocatalysts to
deal with the organic dyes in environment.

3.4. Modification with Carbon Nanocomposites

The weak van der Waals forces between layers and the abundant hydrogen bonds in
the molecular structure make g-C3N4 exhibit slow charge transfer kinetics and poor electri-
cal conductivity. Carbon materials have been widely used in photocatalysis due to their low
price, good conductivity, high stability, non-toxicity, and harmlessness. Many composite
photocatalysts with excellent photocatalytic performance have been prepared by combining
carbon nanomaterials (such as fullerene [118], graphene [119], carbon nanotubes [120], etc.)
with g-C3N4, which have unique nanostructures and excellent electron-optical properties
(Figure 9). The introduction of carbon material reduces the electron-hole pair recombination
rate of photocatalysts and improves the photo absorption, thus improving the photocat-
alytic performance of g-C3N4-based materials. g-C3N4 photocatalysts modified by carbon
materials can promote photocatalytic reaction through heterojunction interaction, cocatalyst
effect, surface recombination, local charge modification, and other ways [121]. For exam-
ple, Yuan et al. [122] prepared a graphene-g-C3N4 composite photocatalyst by calcining
graphene with melamine, and excellent photocatalytic degradation performance toward
RhB was observed under acidic conditions. Ge et al. [123] prepared multi-walled carbon
nanotubes (MWNTs)/g-C3N4 composite photocatalyst by heating MWNTs and g-C3N4, in
which MWNTs favored the efficient separation of photo-generated charge carriers. As a
result, this material exhibited unique performance in photocatalytic H2 production under
visible light conditions.
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composites in photocatalytic action. (a) Different types of carbon materials. (b) Chemical structure 
Figure 9. Schematic illustration of enhancement mechanism over carbon-induced g-C3N4 nanocom-
posites in photocatalytic action. (a) Different types of carbon materials. (b) Chemical structure of
g-C3N4; black and red dots represent C and N, respectively. (c) The enhanced photocatalytic mecha-
nisms and (d) energetic photocatalytic application of carbon-induced metal-free g-C3N4 nanocom-
posites. Reprinted with permission from Ref. [121]. Copyright 2020 John Wiley and Sons.

As a new carbon-based nanomaterial, carbon dots (CDs) exhibit excellent up-conversion
photoluminescence and remarkable photogenerated charge-carrier transfer and reser-
voir [124–126]. They can also modify g-C3N4 and broaden optical absorption by reducing
the electron-hole pair recombination rate [127,128]. Such features have caused exten-
sive attention to CDs-modified g-C3N4. For instance, Fang et al. [129] prepared a CDs-
modified g-C3N4 hybrid by dicyandiamide and CDs obtained from the combustion soot
of alcohol. Based on the investigation of CDs modification on the structure and photocat-
alytic activity of g-C3N4, they found that CDs modification caused the lattice distortion of
g-C3N4, and CDs performed as an electron sink, which could prevent the recombination of
photo-generated electron-hole pairs. Ai et al. [130] reviewed the combination methods of
g-C3N4 and CDs (Figure 10) for enhancing photocatalytic performance and indicated that
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g-C3N4/CDs hybridization has strong practicability in efficient photocatalytic hydrogen
generation, photocatalytic carbon dioxide reduction, and organic pollutant degradation.
However, it is still in the early stage. Much effort should be made to develop green and
facile synthesis routes and solve the insufficient utilization of visible and near-infrared light.
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Figure 10. Schematic illustration of the preparation process for g-C3N4/CD-based nanocomposites
through different methods. (a) Mechanical mixing method. (b) Ultrasonication method. (c) Electro-
static attraction method. (d) Hydrothermal/solvothermal method. (e,f) Calcine method. Reprinted
with permission from Ref. [130]. Copyright 2021 John Wiley and Sons.

4. Photocatalytic Application in Energy and Environmental Sustainability

The energy and environmental crises have been an ongoing challenge, which is re-
lated to the vital interests of people around the globe. How to solve this problem through
sustainable development strategies is considered deeply by scientific researchers. Pho-
tocatalysis provides a powerful technique for fully utilizing solar in the field of energy
conversion [28,131]. Here, we will mainly introduce the photocatalytic application of
g-C3N4 in energy and environmental remediation, including H2 production, CO2 photore-
duction, and pollutant degradation.

4.1. H2 Production

Hydrogen is gathering strong momentum as a pivotal energy transition pillar driven
by the global shift toward decarbonization. Nevertheless, 85% of H2 is produced from
fossil fuel combustion, which generates roughly 500 metric tons of carbon dioxide every
year and proffers a challenge and obstacle toward the sustainable living of future gen-
erations [132]. Solar-driven photocatalytic H2 generation as a promising technology has
received extensive attention in addressing the global energy crisis [133,134]. Photocatalytic
water splitting for the energy transformation from solar to eco-friendly fuels has been
studied for decades with various semiconductor photocatalysts. As a type of semicon-
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ductor photocatalyst, g-C3N4 is simple and inexpensive to fabricate, and has an adequate
bandgap (≈2.7 eV) for activation upon sunlight irradiation. Wang’s group first utilized
g-C3N4 in photocatalytic H2 evolution [15,135]. Nonetheless, pristine g-C3N4 is far from
satisfactory energy conversion because of its low light energy utilization, low density
active sites, and ineffective isolation of the photogenerated excitons. Thus, researchers
have proposed numerous strategies to boost the photocatalytic activity of g-C3N4-based
materials for H2 production. For example, the g-C3N4/carbon-dot-based nanocomposites,
which possess enormous visible light absorption and applicable energy structures, have
been prepared and serve as efficacious photocatalysts in photocatalytic water splitting for
H2 generation under light illumination [128,134,136,137]. Gao et al. reported hexagonal
tubular g-C3N4/CD-based nanocomposites which exhibited nine times higher than bulk
g-C3N4 in H2 production rate [134] and related results indicated that CDs performed as
both photosensitizer and electron acceptor. CDs could absorb long wavelength light to
extend the visible-light response region and suppress the recombination of electron-hole
pairs. Hussien et al. [138] combined four different strategies (non-metal doping, porosity
generation, functionalization with amino groups, and thermal oxidation etching) in a one-
pot thermal reaction and successfully prepared amino-functionalized ultrathin nanoporous
B-doped g-C3N4 by using NH4Cl as a gas bubble template, together with a thermal exfolia-
tion process to produce ultrathin sheets (Figure 11). According to the process, the surface
area, adsorption capacity, and charge migration of the as-prepared photocatalyst have
been improved, and a 3800 µmol g−1 h−1 H2 generation rate and 10.6% prominent quan-
tum yield were recorded. Li et al. [139] decorated carbon self-doping g-C3N4 nanosheets
with gold-platinum (AuPt) nanocrystals through a photo-deposition route and compared
the photocatalytic H2 evolution performance of Pt/CCN, Au/CCN, Au/Pt/CCN, and
Pt/Au/CCN, in which AuPt/CCN stood out and gave the highest H2 generation rate
(1135 µmol h−1). The excellent performance can be ascribed to the non-plasmon-related
synergistic effect of Au and Pt atoms in AuPt nanocrystals. Sun et al. [140] assessed the
arrangements of metal- and non-metal-modified g-C3N4 composites in hydrogen evolution
and found that the contribution of dye conjugation in non-metallic g-C3N4 composites
favored their performance (Figure 12). However, the co-catalyst doping strategy was rec-
ommended for metallic g-C3N4 composites. In addition, the hybrid of MOF materials and
g-C3N4 is also a good approach to develop novel photocatalysts. For example, Devaraya-
palli et al. [141] reported a g-C3N4/ZIF-67 nanocomposite and obtained a 2084 µmol g−1

H2 production, which is 3.84-fold greater than that of bare g-C3N4.
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Figure 12. Schematic diagram for the performance comparison on hydrogen evolution between metal-
and non-metal-modified g-C3N4 composites. Reprinted with permission from Ref. [140]. Copyright
2023 Elsevier.

Based on the descriptions mentioned above, Table 1 compares the performance of
different g-C3N4-based materials for photocatalytic H2 generation reported within the last
three years.

Table 1. Photocatalytic H2 generation over g-C3N4-based materials.

Entry Photocatalyst Experimental
Details H2 Evolution Rate

Reference
Material

/µmol·g−1·h−1

Enhancement
Relative to

Conventional
g-C3N4

Apparent
Quantum

Efficiency/%
Ref.

1
Cyano-group-

modified crystalline
g-C3N4 (CCN0.1)

50 mg CCN,
80 mL lactic acid
(10 vol%), 1 wt%

Pt/CCN

758.8 µmol·h−1 Bulk g-C3N4
379.4 µmol·h−1 2 1.17% [142]

2 Ba5Nb4O15/g-C3N4
(1:20)

420 nm LEDs
(3 W single), Pt

co-catalyst,
0.05 g, 100 mL

oxalic acid

2.67 µmol·h−1 g-C3N4
1.14 µmol·h−1 2.35 6.1 [143]

3
P-doped g-C3N4 with

aromatic ring
(AS/P-CN)

300 W Xe, 10
vol% TEOA,

2 wt% Pt, 40 mg
550 µmol·h−1·g−1 Pristine CN

120 µmol·h−1·g−1 4.58 0.33 [144]

4 Ni3S2-NiS2/CN-3

300 W Xe, 20 mg
Ni3S2-NiS2/CN-
X, 90 mL water,
10 mL TEOA

1206.6 µmol·h−1·g−1 Pure g-C3N4
4.01 µmol·h−1·g−1 300.7 [145]

5 2%
MoS2-g-C3N4/Ni2P

300 W Xe
(>420 nm), 5 ◦C,

50 mg, 90 mL
water, 10 mL of

TEOA

298.1 µmol·h−1·g−1 Pure g-C3N4
4.32 µmol·h−1·g−1 69 2.51%

(λ = 420 nm) [146]

6 HBTiO2/g-C3N4
QDs

300 W Xe,
0.025 g, 50 mL

0.25 M Na2S, and
0.35M Na2SO3

10.57 mmol h−1·g−1 g-C3N4
0.32 mmol. h−1·g−1 33 18.6%

420 nm [147]

7 0.8 wt.%
g-C3N4/BiVO4

200 mL lake
water, 500 W

halogen, 0.5 M
Na2SO4

21.4 mmol h−1 4.27% at 420 nm [148]

8 g-C3N4/CoP-4%
350 W Xe, 10 mg,

70 mL water,
10 mL TEOA

936 µmol g−1 h−1 g-C3N4—4 wt% Pt
665 µmol g−1 h−1 1.41 [149]

9 NiCoP-3/C3N4

300 W Xe
(300–780 nm),
100 mg, 10 mL

methanol, 90 mL
water

159 µmol g−1 h−1

CoP-3/C3N4:
63.6 µmol g−1 h−1

Ni2P-3/C3N4:
4.54 µmol g−1 h−1

CoP-3/C3N4: 2.5
Ni2P-3/C3N4: 35 4.2% [150]

10 15% FeSe2/CNNS
2D/2D composite

0.15/0.35 mol/L
Na2S/Na2SO3,

30 mg, 300 W Xe
1655.6 µmol g−1 h−1

C3N4:
624.8 µmol g−1 h−1

FeSe2:
957 µmol g−1 h−1

Pristine g-C3N4: 2.65
FeSe2: 1.73 [151]
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Table 1. Cont.

Entry Photocatalyst Experimental
Details H2 Evolution Rate

Reference
Material

/µmol·g−1·h−1

Enhancement
Relative to

Conventional
g-C3N4

Apparent
Quantum

Efficiency/%
Ref.

11 5%-NiCo2O4/g-C3N4

300 W Xe, 50 mg,
100 mL

solution (10 vol%
of TEOA, 3%
of H2PtCl6)

1041.9 µmol g−1 h−1 g-C3N4
521.4 µmol g−1 h−1 2 [152]

12 CoS/g-C3N4/NiS
ternary photocatalyst

300 W Xe, 100
mg, 85 mL water,

15 mL TEOA
1.93 mmol h−1·g−1 Bare g-C3N4

0.15 mmol h−1·g−1 12.8 16.4% at 420 nm [153]

13 5ZnO/
g-C3N4

0.2 g, 80 mL
deionized water,
20 mL methanol

70 µmol h−1 g-C3N4
8 µmol h−1 8.75 [154]

14 20 wt%
CuFe2O4/g-C3N4

200 W Hg−Xe,
20 mg,

Na2S/Na2SO3,
TEOA

700.34 µmol g−1 h−1 g-C3N4 nanosheets
280.1 µmol g−1 h−1 2.5 25.09% [155]

15 Boron-doped g-C3N4

150 W Xe, 20 mg,
10 vol% TEOA,

Pt (1 wt%)
18.2 µmol h−1 g-C3N4

6.1 µmol h−1 3 [156]

16 3.0%
β-Bi2O3/g-C3N4

500 W Xe, 50 mg,
200 mL glycerol

(10% vol.)
8600 µmol g−1

Bare β-Bi2O3
and g-C3N4
counterparts

>20 [157]

17 Pt/CN-A150
composite

300 W Xe, 10 mg,
100 mL DI water

containing
20 vol% TEA

1150.8 µmol h−1
Pt/CN-PR

18.2 µmol h−1

g-C3N4

63.2
4.6 [158]

18 g-C3N4@Ni3Se4
gC3N4@CoSe2

5 W LED, 10 mg,
30 mL 15% v/v

TEOA

16.4 µmol·h−1

25.6 µmol·h−1
Pristine g-C3N4
1.9 µmol·h−1

8
13 [159]

19 MoS2/g-C3N4

300 W Xe, 5 mg,
40 mL DI water,

10% v/v of TEOA
1787 mmol h−1 g−1 MoS2

g-C3N4

6
40 [160]

20 Carbon vacancies
containing g-C3N4

300 W Xe, 100
mg, 90 mL

deionized water,
10 mL TEOA, 3

wt% Pt

450 µmol h−1 g−1 Pristine g-C3N4
225 µmol h−1 g−1 2 [161]

21 3 wt%
La2NiO4/g-C3N4

300 W Xe, 10 mg,
80 mL 20 vol%

methanol
312.8 µmol h−1 g−1

La2NiO4
5.8 µmol h−1 g−1

g-C3N4
7.1 µmol h−1 g−1

53.8
43.9 3.7% 420 nm [162]

22 18%
Ag/AgBr/g-C3N4

300 W Xe, 50 mg,
90 mL deionized

water, 10 mL
TEOA

1587.6 µmol h−1 g−1 g-C3N4
59.1 µmol h−1 g−1 26.9 [163]

23 g-C3N4/N-doped
carbon

300 W Xe, 10 mg,
20 mL 10 vol%
TEOA, 0.5 wt%

Pt

23.0 µmol h−1 g-C3N4/C
5.9 µmol h−1 4 [164]

24
Dendritic fibrous

nanosilica/
g-C3N4-0.5

300 W Xe, 10 mg,
0.019 M, 80 µL
K2PtCl4, 5 mL

TEOA

4662 µmol h−1 g−1 Pristine g-C3N4 7 [165]

25 Ag0.1Pd0.9/2D CNNs

300 W Xe,
100 mg, 3:1

FA/SF (1.0 M,
4 mL)

231.6 mmol h−1 Ag0.1Pd0.9/2D CNNs
under no light 1.87 27.8% 400 nm [166]

26 g-C3N4/WO3/WS2

300 W Xe, 20 mg,
100 mL (20 vol%)

TEOA
29 µmol h−1 g−1 g-C3N4 nanosheets 7.8 8.9% 420 nm [167]

27 CeO2/g-C3N4-6

500 W Xe
(400 nm), 0.1g,
100 mL 0.35 M

Na2SO3 and
0.25 M Na2S

1240.9 µmol h−1 g−1 Pure CeO2 5.2 [168]

28 Nitrogen
vacancies-g-C3N4

3 W 420 nm LED,
0.02 g, 90 mL
H2O, 10 mL
TEOA, 1%

H2PtCl6 2H2O
(10 mg/mL)

3259.1 µmol h−1 g−1 Pristine g-C3N4 8.7 [169]

29 Black Cu-g-C3N4
nanosheets composite

300 W Xe, 10 mg
100 mL (1:9

TEOA: Water)
526 µmol h−1 g−1 g-C3N4: 280 [170]

30

Amino-group-rich
porous g-C3N4

nanosheets
(AP-CN 1.0)

420-nm LED,
0.05 g, 80 mL

10 vol% TEOA,
1 wt% Pt

130.7 µmol h−1 Bulk g-C3N4 4.9 5.58 [171]
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Table 1. Cont.

Entry Photocatalyst Experimental
Details H2 Evolution Rate

Reference
Material

/µmol·g−1·h−1

Enhancement
Relative to

Conventional
g-C3N4

Apparent
Quantum

Efficiency/%
Ref.

31 0.3-MoS2/g-C3N4

300 W Xe,
100 mg, 50 mL,

deionized water
and 5 mL TEOA

12 mmol h−1 g−1 Pristine g-C3N4
g-C3N4 (Pt)

218
3 0.5% 420 nm [172]

32 g-C3N4/ZIF-67
MaX 303 solar

simulator, 20 mg,
0.5 M Na2SO4

2084 µmol g−1 Bare g-C3N4
541 µmol g−1 3.84 [141]

33 2D/2D
ZnCoMOF/g-C3N4

300 W Xe, 10 mg,
0.1 mL DMF 1040.1 Bulk g-C3N4: 33.2

2D g-C3N4: 3.5 [116]

34 PCN-222(M)/g-C3N4
300 W Xe, 10 mg,

25 mL TEOA 1725.5 µmol h−1 g−1 PNi: 19.3
CN: 3.7 [115]

4.2. CO2 Photoreduction over g-C3N4

Rising atmospheric levels of CO2 and the consumption of fossil fuels raise a concern
about the continued reliance on the utilization of fossil fuels for both energy and chemical
production [173]. Photocatalytic reduction of CO2 is a promising strategy to meet increasing
energy needs and reduce the greenhouse effect [174]. Through photocatalytic reduction,
CO2 can be converted to light oxygenates and hydrocarbons. Photocatalytic CO2 reduction
is a multielectron transfer process. Fu et al. [175] have listed the possible reaction and
corresponding redox potentials and stated that CO2 was complicated to reduce at room
temperature due to its stable chemical structure. For the complex reaction, five factors,
comprising the matching of band energy, separation of charge carrier, kinetic of e- and hole
transfer to CO2 and reductant, the basicity of photocatalyst, and the strength and coverage
of CO2 adsorption, are considered to be crucial [176]. As a hot member of photocatalysts,
g-C3N4 has been applied to CO2 photo-reduction in recent years because the CB of g-C3N4
is sufficient to reduce CO2 to various hydrocarbons, such as CH3OH, CH4, HCHO, and
HCOOH, etc. (Figure 13) [177].
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Figure 13. Schematic illustration of energy levels of PCN for photocatalytic CO2 reduction. Reprinted
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However, metal-free g-C3N4 is limited for CO2 reduction activity due to its poor
ability to activate the C-O bond of CO2. To improve the photocatalytic movement of CO2
conversion, different metal units have been composited with g-C3N4 for broadening the
absorption response range, and accelerating the charge separation and transfer, such as
Pt/g-C3N4 [178], Co2+/g-C3N4 [179,180], Au/g-C3N4 [181], etc. Metal nanoparticles acting
as cocatalysts could effectively improve the photocatalytic activity and selectivity of CO2
reduction. In addition, other methods, including doping, loading cocatalysts and nanocar-
bons, constructing Z-scheme, and heterojunction, have also been employed [16,182–189].
For example, Fu et al. [190] prepared hierarchical porous O-doped g-C3N4 nanotubes
(OCN-Tube) through continuing thermal oxidation exfoliation and curling condensation of
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bulk g-C3N4. Due to the higher specific surface area, better light harvesting, higher CO2
uptake capacity, and superior separation efficiency of photogenerated charge carriers, the
OCN-Tube exhibits excellent photocatalytic CO2 reduction performance into CH3OH. The
CH3OH evolution rate was as high as 0.88 µmol g−1 h−1, five times higher than the bulk
(0.17 µmol g−1 h−1). Huo et al. [191] fabricated amine-modified step-scheme (S-scheme)
porous g-C3N4/CdSe-diethylenetriamine (A-PCN/CdSe-DETA) by a one-step microwave
hydrothermal method. The modification by amine and formation of S-scheme heterojunc-
tion contributed to the remarkable photocatalytic performance of A-PCN/CdSe-DETA
composite in CO2 reduction and a CO production rate of 25.87 µmol/(h g) was achieved
under visible-light irradiation. Wang et al. [174] reviewed different modification methods
of g-C3N4-based photocatalysts for CO2 reduction. They discussed each method (including
morphology adjustment, co-catalysts, heterostructures, and doping) and compared the
theoretical calculations and experimental results. By morphology adjustment, g-C3N4
with various shapes can be fabricated, such as rods, tubes, nanosheets, hollow spheres,
and honeycomb-like structures. Due to the advantage of cocatalysts (e.g., Au, Ag, Pt, Pd,
MXene, AuCu alloy, Pd-Ag), g-C3N4 with co-catalysts can be widely applied to activate
CO2 on the surface. Heterojunction with different types is also an effective method to
improve the properties of g-C3N4-based materials. In addition, elemental doping is con-
sidered a common method to enhance photocatalytic quantum efficiency by changing the
energy band, surface electronic property, and electrical conductivity. Table 2 compares the
performance of different g-C3N4-based materials for photocatalytic CO2 reduction reported
within the last three years.

Table 2. Photocatalytic CO2 reduction over g-C3N4-based materials.

Entry Photocatalyst Experimental
Details

Productivity
/µmol·g−1·h−1

Reference
Material

/µmol·g−1·h−1

Enhancement
Relative to

Conventional
g-C3N4

Apparent
Quantum

Efficiency/%
Ref.

1 Ni/g-C3N4-0.5
catalyst

300 W Xe,
94–95 kPa,

10.0 mg, deionized
water

CO: 19.9 g-C3N4: 4.8 4.1 [192]

2
S-scheme CuWO4 @

g-C3N4 core-shell
microspheres

300 W Xe
(≥420 nm), 0.1 g

NaHCO3, 0.5 mL 4M
HCl

CO: 4.15
CH4: 0.12

g-C3N4
CO: 1.56

CH4: 0.02
2.7 [193]

3
Hydroxyl-modified
g-C3N4/flower-like

Bi2O2CO3 composites

blue LED
(4 × 3 W)

450 ± 20 nm,
40 mg, deionized water

CO: 26.69 Pristine g-C3N4
CO: 1.47 18.2 [194]

4

Z-scheme
g-C3N4/BiVO4

(CN/BVO)
heterojunction

300 W Xenon lamp,
0.05 g, 5 mL water CO: 48 Pristine BVO

CO: 2 24 [195]

5

Ultrathin
dimension-matched

S-scheme
Bi3NbO7/g-C3N4
hetero-structure

Solar simulator, 50 mg,
deionized water, 1.3 g

Na2CO3, 2.0 mL H2SO4

CH4: 37.59
Ultrathin g-C3N4

nanosheets
CH4: 2.5

15 [196]

6

Van der Waals (vdW)
heterojunction

composite combining
g-C3N4 with nitrogen

vacancies
and Tp-Tta COF

300 W Xe, 20 mg, 15 mg
bpy, 1 µmol CoCl2,
acetonitrile, water,

TEOA

CO: 11.25

Pristine g-C3N4
CO: 0.25,

g-C3N4 (NH)
CO: 3.5

Pristine g-C3N4: 45
g-C3N4 (NH): 3.2 [197]

7 C-NHx-rich
24 g-C3N4

300 W Xe (420 nm),
10 mg g-C3N4, 10 mL
deionized water, pH

at 30 °C

CO: 185.7 g-C3N4
CO: 2.5 g-C3N4: 74 [198]

8 g-C3N4/3DOM-WO3

300 W Xe (≥420), water,
0.1 g catalyst, 2 mL

deionized water

CO: 48.7
CH4: 7.5
O2: 44.5

Pure g-C3N4
nanosheets

CO: 25.2
CH4: undetected

Pure g-C3N4
nanosheets

CO: 1.9
[199]

9 g-C3N4/rGO
composites

300 W Xe, 3 mg mL−1

catalysts, 5 mL
0.2 M NaHCO3,
illuminated 12 h

CH3OH: 114 CdIn2S4/g-C3N4
CH3OH: 42.7

CdIn2S4/g-C3N4:
2.67 0.63 [200]
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Table 2. Cont.

Entry Photocatalyst Experimental
Details

Productivity
/µmol·g−1·h−1

Reference
Material

/µmol·g−1·h−1

Enhancement
Relative to

Conventional
g-C3N4

Apparent
Quantum

Efficiency/%
Ref.

10 15% LaCoO3 loaded
g-C3N4

35 W Xe (420 nm),
50 mg photocatalyst,

pressure 0.30 bar

CO: 135.2
CH4: 48.5

Pristine La-CoO3
CO: 110

CH4: 28.5
g-C3N4
CO: 114

CH4: 30.4

Pristine
LaCoO3
CO: 1.2

CH4: 1.7
g-C3N4
CO: 1.18

CH4: 1.59

[201]

11 Bi2O2(NO3)(OH)/g-
C3N4

300 W Xe, 20 mg
samples, 3 mL DI water CO: 14.84

BON
CO: 0.94
g-C3N4
CO: 3.29

pure BON:15
g-C3N4: 3.5 [202]

12 Z-scheme
SnS2/gC3N4/C

300 W Xe, 0.05 g catalyst
100 mL deionized water,

25 ◦C, 5 h
CO: 40.86 Pristine g-C3N4

CO: 7.42
Pristine g-C3N4

5.5 [203]

13 ND/g-C3N4

300 W Xe (>420 nm),
30 mg catalyst, 18 mL

acetonitrile, 6 mL water,
1 µmoL

CoCl2·6H2O

CO: 10.98 CO: 0.59 bulk g-C3N4
18.6 [204]

14
ZnIn2S4 nanosheets
modified hexagonal

g-C3N4 tubes

300 W Xe (420 nm),
4 mg, 2 mL water, 1 mL

of triethanolamine,
3 mL acetonitrile, 15 mg

2′2-bipyridine (bpy)
and 2 µmol of CoCl2

CO: 883 HCNT: 66
ZIS: 367.9

HCNT: 13
ZIS: 2.4 8.9% [205]

15
g-C3N4/covalent

triazine framework
(CN/CTF 2.5%)

300 W Xe, 5 mg catalyst
in 4 mL acetonitrile,
1 mL Co(bpy)3Cl2
triethanolamine

CO: 151.1 CTF: 5.93
CN: 60.44

CTF: 25.5
CN: 2.5 [206]

16 g-C3N4-W18O49
nanocomposite

300 W Xe, 50 mg
catalyst in 1 mL
deionized water

CH4: 1.38 g-C3N4: 0.17
W18O49: 0.12

g-C3N4: 8.12
W18O49: 11.5 [207]

17 SnS2/Au/g-C3N4
embedded structure

300 W Xe, 20 mg,
100 mL water and

TEOA, 140 kPa

CO 93.81
CH4 74.98 [208]

18 Bi3O4Cl/20%g-C3N4
300 W Xe, 0.05 g

catalyst, 5 mL H2O
CO: 6.6

CH4: 1.9

Pure g-C3N4 CO:
2.2,

CH4: 0.6 Bi3O4Cl
CO: 2.9

CH4: 0.7

g-C3N4
CO: 3

CH4: 3.17
Bi3O4Cl
CO: 2.28

CH4: 2.71

Bi3O4Cl/20%
g-C3N4 is 0.14%

under 365
[209]

19
2D/2D g-

C3N4/NaBiO32H2O
(10 CN/NBO)

300 W Xe, 25 mg,
deionized water, 1.2 g
NaHCO3, 2 mL H2SO4

(1:1 vol)

CO: 110.2
CH4: 43.8

Pure CN
CO: 65.68
CH4: 0.42

NBO
CO: 26.45
CH4: 4.81

Pure CN
CO: 1.68

CH4: 104.3
NBO

CO: 4.16
CH4: 9.1

[210]

20 Ultrathin nanosheet
g-C3N4 (NS-g-C3N4)

300 W Xe (420 nm),
0.1 g photocatalyst,

50 mL 50 g/L
KHCO3

CO: 38 µmol/L
with 6 h

Bulk g-C3N4
CO: 6.56 µmol/L CO: 5.8 [211]

21 3% CdS-g-C3N4
heterostructures

300 W Xe (420 nm),
1 g/L catalyst 100 mL

H2O, 80 °C, 125 mg
Na2CO3, 0.25 mL

HCl (4 M)

CH3OH: 192.7

CdS
CH3OH: 47.1

pristine
g-C3N4

CH3OH: 32.6

CdS: 4.1
pristine

g-C3N4: 5.9
[212]

22

Z-scheme
ZnO/Au/g-C3N4
micro-needles film

(3-ZAC)

300 W UV–vis lamp,
fiberglass sheets,

0.4 M Pa
86.2 µmol m−2 h−1

Pure ZnO
19.16 µmol m−2

h−1
Pure ZnO film: 4.5 [213]

23 rGO/R-CeO2/g-
C3N4

300 W Xe, 100 mg
catalysts, 100 mL 1 M
NaOH, 1 mmol TEOA,

0.4 MPa

CO:15.8
CH4: 8.15

CO: 3.95
CH4: 1.36

Pure g-C3N4
CO: 4

CH4: 6
[214]

24 g-C3N4/ZnO
composites

300 W Xe (λ ≥ 420 nm),
60 mg catalysts, 1.60 g
NaHCO3, H2SO4 (40%,

5.0 mL)

CH4: 19.8
CO: 0.37

g-C3N4
CH4: 0.9
CO: 4.8

g-C3N4
CH4: 22

CO: 0.078
[215]

25 K-CN-7

300 W Xe, 50 mg
catalyst, 200 µL
deionized water,

1 cm × 3 cm ITO glass;
0.5 M Na2SO4

CO: 8.7 Ordinary g-C3N4
CO: 0.348 Ordinary g-C3N4: 25 [216]
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Table 2. Cont.

Entry Photocatalyst Experimental
Details

Productivity
/µmol·g−1·h−1

Reference
Material

/µmol·g−1·h−1

Enhancement
Relative to

Conventional
g-C3N4

Apparent
Quantum

Efficiency/%
Ref.

26
g-C3N4/CdS

heterostructure
nanocomposite

150 W Xe,
20 mg catalyst,

7 mL acetone nitrile,
0.5 mL H2O, 0.5 g

TEOA, 4 µmol
[Co(bpy)3]Cl

CO: 234.6 CN-12: 58.65
CdS: 9.2

CN-12: 4.0
CdS: 25.5 [217]

27

Porous structure
g-C3N4 with nitrogen
defect photocatalysts

(DCN-P)

300 W Xe, 0.05 g
catalyst, 100 mL
deionized water

CO, 19.7
CH4: 37.1

Bulk g-C3N4
CO: 4.1

CH4: 9.6

Bulk gC3N4
CO: 4.8

CH4: 3.86
[218]

28
g-

C3N4/Bi2O2[BO2(OH)]
(CNBB-3)

300 W Xe, 20 mg
sample, 2 mL deionized

water, 1.7 g Na2CO3,
15 mL H2SO4

CO: 6.09 Pristine g-C3N4
CO: 2.19

Pristine g-C3N4
2.78 [219]

29
Type-II

heterojunction of
Zn0.2Cd0.8S/g-C3N4

300 W Xe, 80 ◦C,
0.6 MPa, 10 mg catalyst,

20 mL H2O
CH3OH: 11.5 ± 0.3

Zn0.2Cd0.8S:
CH3OH: 4.4 ± 0.2

g-C3N4:
CH3OH: 4.2 ± 0.1

Zn0.2 Cd0.8S: 2.6
g-C3N4: 2.7 [220]

30 3ZIF/1.5Au-PCN 300 W Xe, 0.1 g, 50 mL
H2O

CO: >10
CH4: >4

Pristine g-C3N4
8 [221]

31 TPVT-MOFs@g-
C3N4-10

LED light, 1 mg, 1 mL
dichloromethane CO: 56.4 Pure g-C3N4: 17.5 Pure g-C3N4

3.2 [114]

32
NH2-MIL-101(Fe)/g-

C3N4-30
wt%

300 W Xe, 2 mg CO: 132.8 g-C3N4:
19.2

g-C3N4
6.9 [222]

4.3. Degradation of Organic Pollutants

Along with rapid population growth and significant industrialization development,
large numbers of toxic, hazardous, and endless contaminants invade the environment,
threatening to human life, especially a variety of pollutants present in water that are
difficult to eliminate or degrade naturally. Photocatalytic degradation of contaminants
is a green and efficient technology for coping with sewage [128,223]. Different kinds of
g-C3N4-based materials (Table 3) have been exploited to increase the photodecomposition
efficiency of pollutants, such as the constructed heterojunction, loading O2-reduction co-
catalysts, g-C3N4/CDs-based nanocomposites, and so on [182,224–226]. Generally, under
the irradiation of visible light, the photogenerated electrons (e−) on the g-C3N4 catalyst
will be excited from VB to CB, leaving holes (h+) in the VB. The holes can oxidize pollutants
directly or react with H2O/OH− to form hydroxyl radicals [227]. When the REDOX po-
tential of g-C3N4 composites is more negative than O2/O2

−, the photogenerated electrons
in the material can react with O2 to produce O2

− with strong oxidation capacity [228]. In
addition, the resulting O2

− could be protonated to produce OH [229]. Finally, the RhB
dye is degraded to CO2 and H2O under the action of these free radicals (Figure 14). Chen
et al. [230] fabricated a BiFeO3/g-C3N4 heterostructure through mixing-calcining and com-
pared its performance with BiFeO3. Around 30% higher photocatalytic efficiency toward
RhB dye was observed for the BiFeO3/10% g-C3N4 heterostructure, which was assigned to
the contribution of a higher concentration of O2

−. Zhang et al. [231] studied the selective
reduction of molecular oxygen on g-C3N4 and probed its effect on the photocatalytic phenol
degradation process. Compared with bulk g-C3N4, the exfoliated nanosheet yielded a three
times improvement in photocatalytic phenol degradation. It has been demonstrated that
bulk g-C3N4 prefers to reduce O2 to O2

−via one-electron reduction. At the same time, the
photoexcited g-C3N4 nanosheet facilitates the two-electron reduction of O2 to yield H2O2
because of the formation of 1,4-endoperoxide species. The two-electron reduction of O2
on the nanosheet surface boosts hole generation and thus accelerates phenol oxidation
degradation [231,232]. Thus, to improve the photocatalytic performance of g-C3N4, more
effort should be devoted to strengthening the solid O2-reduction reactions. For example,
Liu et al. [83] reported a heterojunction material of K-doped g-C3N4 nanosheet -CdS and
degraded tetracycline with 94% degradation under visible light in 30 min. In addition, due
to the electronegativities, ionic radius differences, and impurity states, element doping is
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also an effective method to manipulate the electronic structure and physicochemical perfor-
mance of g-C3N4-based materials. Gao et al. [68] synthesized Fe-doped g-C3N4 nanosheets
and obtained 1.4- and 1.7-fold higher degradation rates of MB than that of pure g-C3N4
nanosheets and bulk g-C3N4, which indicated that the exploitation of efficient g-C3N4-
based photocatalysts with high stabilization and degradation under visible light irradiation
would significantly contribute to sewage disposal. Zhang et al. [117] synthesized a novel
hybrid of Zr-based metal-organic framework with g-C3N4 (UiO-66/g-C3N4) nanosheets
and applied a photodegradation of methylene blue, by which a 100% photodegradation
was achieved within 4 h under visible light. This research has provided a new insight into
the design of g-C3N4-based photocatalysts to deal with organic dyes in the environment.

Table 3. Photocatalytic degradation of pollutants over g-C3N4-based materials reported within the
last three years.

Entry Photocatalyst Pollutant Concentration Light Source Degradation
Efficiency/% Ref.

1 5% g-C3N4-TiO2 Acetaminophen: 0.033 mM 300 W Xe (>400 nm) 99.3 in 30 min [233]
2 3ZIF/1.5Au-PCN Bisphenol A 350 W Xe (>420 nm) >85% [221]
3 Cu(tmpa)/20%CN Congo red: 100 mg·L−1 150 W Xe 98.2% in 3 min [234]

4 BiO-Ag(0)/C3N4@
ZIF-67 Congo red: 12 mg·L−1 Natural sunlight 90% in 150 min [13]

5 C3N4/RGO/Bi2Fe4O9 Congo red: 10 mg·L−1 LED 30 W 87.65% in 60 min [235]

6 g-C3N4/Co-MOF Crystal violet: 4 ppm MaX 303 solar simulator
(50 mW/cm) 95% in 80 min [141]

7 Honeycomb-like
g-C3N4/CeO2-x Cr (VI): 20 mg·L−1 300 W Xe (>420 nm) 98%

in 150 min [236]

8 Sm6WO12/g-C3N4 Levofloxacin: 10 mg·L−1 150 Mw cm−2 tungsten lamp 98% in 70 min [237]
9 O-g/C3N4 Lincomycin: 100 mg·L−1 PCX50C system (>420 nm) 99% within 3 h [238]

10 ZnO-modified g-C3N4 Methylene blue: 10 ppm 200 W tungsten
lamp (>420 nm) 97% in 80 min [239]

11 Wood-like g-C3N4@WDC Methylene blue: 20 mg·L−1 300 W Xe (>400 nm) 98% in 60 min [240]

12 BiO-Ag(0)/C3N4@
ZIF-67 Methylene blue: 12 mg·L−1 Natural sunlight 96.5% in 120 min [13]

13 Cerium-based
GO/g-C3N4/Fe2O3

Methylene blue: 10 mg·L−1 Light bulb 70.61% in 45 min [14]

14 Ytterbium oxide-based
GO/g-C3N4/Fe2O3

Methylene blue: 10 mg·L−1 Light bulb 83.5% in 45 min [14]

15 Cu(tmpa)/20%CN Methylene blue: 10 mg·L−1 150W Xe 92.0% within 20 min [234]
16 C3N4x/AgOy@Co1-xBi1-yO7 Methylene blue: 25 mL 10 mM 100 W tungsten bulb 96.4% in 120 min [12]

17
Ternary composites of

Zr-MOF combined with
g-C3N4 and Ag3PO4

Methylene blue: 10 mg·L−1
85-watt tungsten lamp
outdoor/solar light in

an open air

95% within 240 93% within
105 min [241]

18 PSCN/Ag@AgI/WO3
Malachite green:

1 × 10 −4 mol dm−3 35 W LED 90% in 60 min [242]

19 Cu(tmpa)/20%CN Malachite green: 30 mg·L−1 150W Xe 92.9% in 35 min [234]
20 20% g-C3N4/Bi4O5I2 Methyl orange: 20 mg·L−1 350 W Xe 0.164 min−1 [243]
21 Cu(tmpa)/20%CN Methyl violet: 10 mg·L−1 150W Xe 92.0% in 60 min [234]
22 MnCo2O4/g-C3N4 Nitrobenzene: 40 mg L−1 CMCN2/PMS system 96.7% in 240 min [244]
23 C3N4x/AgOy@Co1-xBi1-yO7 Oxytetracycline: 25 mL 25 mM 100 W tungsten bulb 93% in 160 min [12]
24 g-C3N4/WO3/WS2 Rhodamine B: 25 mg L−1 300 W Xe (>420 nm) 96.2% in 20 min [167]

25 Flower-like
Bi12TiO20/g-C3N4

Rhodamine B: 20 mg·L−1 150 mW·cm−2 Xe (>420 nm) 100% in 30 min [245]

26 CdS/CQDs/g-C3N4 Rhodamine B: 10 mg·L−1 300 W Xe
(>420 nm) 100% in 20 min [246]

27 Ytterbium oxide-based
GO/g-C3N4/Fe2O3

Rhodamine B: 10 mg·L−1 Light bulb 67.11% in 45 min [14]

28 Cerium-based
GO/g-C3N4/Fe2O3

Rhodamine B: 10 mg·L−1 Light bulb 63.08% in 45 min [14]

29 Fish-scale g-C3N4/ZnIn2S4 Tetracycline: 10 mg·L−1 300 W Xe (>420 nm) 74% in 30 min [247]
31 Flower-like Co3O4/g-C3N4 Tetracycline: 15 mg·L−1 350 W Xe (>420 nm) 85.32% in 120 min [248]

31 10 wt% CuAl2O4/g-C3N4
Tetracycline hydrochloride:

100 mg·L−1 300 W Xe (>400 nm) 89.6% in 60 min [249]

32 CO-C3N4
Tetracycline hydrochloride:

10 mg·L−1 300 W Xe (>420 nm) 97.77% (PMS) in 40 min [250]

33 ZIF-67/g-C3N4 Venlafaxine: 10 mg·L−1 - 27.75% within 120 min [251]
34 ZIF-67/MIL-100(Fe)/g-C3N4 Venlafaxine: 10 mg·L−1 - 100% within 120 min [251]
35 ZIF-67/MOF-74(Ni)/g-C3N4 Venlafaxine: 10 mg·L−1 - 91.8% within 120 min [251]
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5. Conclusions and Future Perspective

g-C3N4-based materials are still a research hotspot in photocatalysis, especially their
application in energy and environmental sustainability. Although significant progress has
been achieved in the preparation and modification of g-C3N4, several issues remain to be
resolved in future research: (1) Some preparation methods are neither environmentally
friendly nor time-saving. Thus, it is necessary to develop green and facile synthesis
routes. For example, it should be encouraged to use plant leaves, natural halloysite,
and some natural raw materials in the preparation of g-C3N4-based materials. (2) The
absorption ability of available g-C3N4-based materials to visible and near-infrared light is
still low, which is not beneficial to improving solar energy utilization. Coupling g-C3N4
with visible and near-infrared CDs might be an effective strategy. It would efficaciously
improve the e−/h+ pair separation capability and visible light harnessing capability, thus
enhancing the related photocatalytic performance. (3) Some structures of modified g-C3N4-
base materials are complex, and the corresponding photocatalytic reaction mechanisms
is not clear yet. Introducing density functional theory could provide insights into the
photocatalytic mechanisms via disclosing the materials’ structural, electronic, optical,
and other properties. Detailed reaction processes can be performed by using in situ
monitoring techniques (e.g., in situ infrared spectroscopy and mass spectrometry) to
capture the reactive intermediates. (4) Although microscopic techniques and time-resolved
spectroscopy have achieved the study of the steady-state charge distribution and charge
transfer dynamics of photocatalysts, tracking the spatiotemporally evolving charge transfer
processes in single photocatalyst particles and elaborating their exact mechanism is still a
great challenge. Thus, it is significant to develop techniques to map holistic charge transfer
processes at the single-particle level, identify where charges go and reveal how long they
live on different sites. (5) Finally, the integration of artificial intelligence (AI) and other
interdisciplinary techniques will play a tremendous driving role in precisely designing
g-C3N4-based photocatalysts with excellent performance. For example, AI models could
be developed to correlate photocatalytic performance with experimental conditions, which
may help predict the photocatalytic performance of g-C3N4-based materials, improve the
trial-and-error paradigm, and design new composite structures.
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