Stereochemistry of Chiral 2-Substituted Chromanes: Twist of the Dihydropyran Ring and Specific Optical Rotation
Abstract
:1. Introduction
2. Results
2.1. Data Mining and Analysis
2.2. Verification of the Correlation
2.2.1. Correlation between SOR and C2 Stereochemistry
2.2.2. 2-Methylchromane
2.2.3. 2-Vinylchromane
2.2.4. (S)-6-Fluorochromane-2-carboxylic Acid
2.2.5. (S)-2-Phenylchromane
2.2.6. 1-(6-Fluorochroman-2-yl)ethane-1,2-diol
2.3. Application of the Correlation
3. Discussions
4. Materials and Methods
4.1. Optical Rotation Measurement
4.2. ECD Measurement
4.3. Computational Details
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Presley, C.C.; Valenciano, A.L.; Fernández-Murga, M.L.; Du, Y.; Shanaiah, N.; Cassera, M.B.; Goetz, M.; Clement, J.A.; Kingston, D.G.I. Antiplasmodial chromanes and chromenes from the monotypic plant species koeberlinia spinosa. J. Nat. Prod. 2018, 81, 475–483. [Google Scholar] [CrossRef] [PubMed]
- So, H.M.; Yu, J.S.; Khan, Z.; Subedi, L.; Ko, Y.-J.; Lee, I.K.; Park, W.S.; Chung, S.J.; Ahn, M.-J.; Kim, S.Y.; et al. Chemical constituents of the root bark of Ulmus davidiana var. japonica and their potential biological activities. Bioorg. Chem. 2019, 91, 103145. [Google Scholar] [CrossRef] [PubMed]
- Ranard, K.M.; Erdman, J.W., Jr. Effects of dietary RRR α-tocopherol vs all-racemic α-tocopherol on health outcomes. Nutr. Rev. 2018, 76, 141–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kline, A.; Yu, J.; Horvath, E.; Marion, D.; Dixon, C. The selective 5-HT1A receptor agonist repinotan HCl attenuates histopathology and spatial learning deficits following traumatic brain injury in rats. Neuroscience 2001, 106, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Bartoszyk, G.; Van Amsterdam, C.; Greiner, H.; Rautenberg, W.; Russ, H.; Seyfried, C. Sarizotan, a serotonin 5-HT 1A receptor agonist and dopamine receptor ligand. 1. Neurochemical profile. J. Neural. Transm. 2004, 111, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.W.; Hutson, N.J.; Krupp, M.N.; Volkmann, R.A.; Holland, G.F.; Eggler, J.F.; Clark, D.A.; McPherson, R.K.; Hall, K.L.; Danbury, B.H. Actions of novel antidiabetic agent englitazone in hyperglycemic hyperinsulinemic ob/ob mice. Diabetes 1990, 39, 1218–1227. [Google Scholar] [CrossRef]
- Mangrella, M.; Rossi, F.; Fici, F.; Rossi, F. Pharmacology of nebivolol. Pharmacol. Res. 1998, 38, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Ignarro, L.J. Different pharmacological properties of two enantiomers in a unique β-blocker, nebivolol. Cardiovasc. Ther. 2008, 26, 115–134. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Ye, J.; Liu, D.; Zhang, W. Synthesis of chiral chromanols via a RuPHOX-Ru catalyzed asymmetric hydrogenation of chromones. Chem. Commun. 2018, 54, 13571–13574. [Google Scholar] [CrossRef]
- Miyaji, R.; Asano, K.; Matsubara, S. Asymmetric chroman synthesis via an intramolecular oxy-Michael addition by bifunctional organocatalysts. Org. Biomol. Chem. 2014, 12, 119–122. [Google Scholar] [CrossRef]
- Dinda, S.K.; Das, S.K.; Panda, G. Application of phenolate ion mediated intramolecular epoxide ring opening in the enantioselective synthesis of functionalized 2,3-dihydrobenzofurans and 1-benzopyrans. Synthesis 2009, 1886–1896. [Google Scholar]
- Hodgetts, K.J. Inter- and intramolecular Mitsunobu reaction based approaches to 2-substituted chromans and chroman-4-ones. Tetrahedron 2005, 61, 6860–6870. [Google Scholar] [CrossRef]
- Magar, D.R.; Chen, K. Synthesis of substituted chiral chromans via organocatalytic kinetic resolution of racemic 3-nitro-2-aryl-2H-chromenes with ketones catalyzed by pyrrolidinyl-camphor-derived organocatalysts. Tetrahedron 2012, 68, 5810–5816. [Google Scholar] [CrossRef]
- Zaki, M.A.; Nanayakkara, N.P.D.; Hetta, M.H.; Jacob, M.R.; Khan, S.I.; Mohammed, R.; Ibrahim, M.A.; Samoylenko, V.; Coleman, C.; Fronczek, F.R.; et al. Bioactive formylated flavonoids from eugenia rigida: Isolation, synthesis, and X-ray crystallography. J. Nat. Prod. 2016, 79, 2341–2349. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Dai, W.-M. Total Synthesis of laingolide B stereoisomers and assignment of absolute configuration. Org. Lett. 2018, 20, 3358–3361. [Google Scholar] [CrossRef]
- Tanaka, S.; Seki, T.; Kitamura, M. Asymmetric dehydrative cyclization of ω-hydroxy allyl alcohols catalyzed by ruthenium complexes. Angew. Chem. Int. Ed. 2009, 48, 8948–8951. [Google Scholar] [CrossRef]
- Song, S.; Zhu, S.-F.; Pu, L.-Y.; Zhou, Q.-L. Iridium-catalyzed enantioselective hydrogenation of unsaturated heterocyclic acids. Angew. Chem. Int. Ed. 2013, 52, 6072–6075. [Google Scholar] [CrossRef]
- Mándi, A.; Kurtán, T. Applications of OR/ECD/VCD to the structure elucidation of natural products. Nat. Prod. Rep. 2019, 36, 889–918. [Google Scholar] [CrossRef]
- Migliore, M.; Bonvicini, A.; Tognetti, V.; Guilhaudis, L.; Baaden, M.; Oulyadi, H.; Joubert, L.; Ségalas-Milazzo, I. Characterization of β-turns by electronic circular dichroism spectroscopy: A coupled molecular dynamics and time-dependent density functional theory computational study. Phys. Chem. Chem. Phys. 2020, 22, 1611–1623. [Google Scholar] [CrossRef]
- Xiong, F.; Zhang, J.-Y.; Du, T.-T.; Yang, B.-B.; Chen, X.-G.; Li, L. Ultrasound-promoted specific chiroptical sensing of cysteine in aqueous solution and cells. Microchem. J. 2020, 153, 104471. [Google Scholar] [CrossRef]
- Superchi, S.; Scafato, P.; Gorecki, M.; Pescitelli, G. Absolute configuration determination by quantum mechanical calculation of chiroptical spectra: Basics and applications to fungal metabolites. Curr. Med. Chem. 2018, 25, 287–320. [Google Scholar] [CrossRef] [PubMed]
- Nakahashi, A.; C. Siddegowda, A.K.; Hammam, M.A.S.; Gowda, S.G.B.; Murai, Y.; Monde, K. Stereochemical study of sphingosine by vibrational circular dichroism. Org. Lett. 2016, 18, 2327–2330. [Google Scholar] [CrossRef] [PubMed]
- Grauso, L.; Teta, R.; Esposito, G.; Menna, M.; Mangoni, A. Computational prediction of chiroptical properties in structure elucidation of natural products. Nat. Prod. Rep. 2019, 36, 1005–1030. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J.; Devlin, F.J.; Gasparrini, F.; Ciogli, A.; Spinelli, D.; Cosimelli, B. Determination of the absolute configuration of a chiral oxadiazol-3-one calcium channel blocker, resolved using chiral chromatography, via concerted density functional theory calculations of its vibrational circular dichroism, electronic circular dichroism, and optical rotation. J. Chem. Soc. 2007, 72, 4707–4715. [Google Scholar]
- Vergura, S.; Scafato, P.; Belviso, S.; Superchi, S. Absolute configuration assignment from optical rotation data by means of biphenyl chiroptical probes. Chem. Eur. J. 2019, 25, 5682–5690. [Google Scholar] [CrossRef] [PubMed]
- Antus, S.; Snatzke, G.; Steinke, I. Circulardichroismus, LXXXI. Synthese und circulardichroismus von steroiden mit isochromanon-chromophor. Liebigs. Ann. Chem. 1983, 12, 2247–2261. [Google Scholar] [CrossRef]
- Rode, J.E.; Górecki, M.; Witkowski, S.; Frelek, J. Solvation of 2-(hydroxymethyl)-2,5,7,8-tetramethyl-chroman-6-ol revealed by circular dichroism: A case of chromane helicity rule breaking. Phys. Chem. Chem. Phys. 2018, 20, 22525–22536. [Google Scholar] [CrossRef]
- Górecki, M.; Suszczyńska, A.; Woźnica, M.; Baj, A.; Wolniak, M.; Cyrański, M.K.; Witkowski, S.; Frelek, J. Chromane helicity rule–scope and challenges based on an ECD study of various trolox derivatives. Org. Biomol. Chem. 2014, 12, 2235–2254. [Google Scholar] [CrossRef]
- Kato, Y.; Yen, D.H.; Fukudome, Y.; Hata, T.; Urabe, H. Aryl (sulfonyl) amino group: A convenient and stable yet activated modification of amino group for its intramolecular displacement. Org. Lett. 2010, 12, 4137–4139. [Google Scholar] [CrossRef]
- Garner, M.H.; Corminboeuf, C. Correlation between optical activity and the helical molecular orbitals of allene and cumulenes. Org. Lett. 2020, 22, 8028–8033. [Google Scholar] [CrossRef]
- Maeda, K.; Nozaki, M.; Hashimoto, K.; Shimomura, K.; Hirose, D.; Nishimura, T.; Watanabe, G.; Yashima, E. Helix-sense-selective synthesis of right- and left-handed helical luminescent poly(diphenylacetylene)s with memory of the macromolecular helicity and their helical structures. J. Am. Chem. Soc. 2020, 142, 7668–7682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-Y.; Liang, X.; Ni, D.-N.; Liu, D.-H.; Peng, Q.; Zhao, C.-H. 2-(dimesitylboryl)phenyl-substituted [2.2]paracyclophanes featuring intense and sign-invertible circularly polarized luminescence. Org. Lett. 2020, 23, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.M.; Yang, B.B.; Li, L. Specific optical rotation and absolute configuration of flexible molecules containing a 2-methylbutyl residue. Eur. J. Org. Chem. 2020, 30, 4768–4774. [Google Scholar] [CrossRef]
- Polavarapu, P.L. Optical rotation: Recent advances in determining the absolute configuration. Chirality 2002, 14, 768–781. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Valla, C.; Baeza, A.; Menges, F.; Pfaltz, A. Enantioselective synthesis of chromanes by Iridium-catalyzed asymmetric hydrogenation of 4H-chromenes. Synlett 2008, 20, 3167–3171. [Google Scholar]
- Urban, F.J.; Moore, B.S. Synthesis of optically active 2-benzyldihydrobenzopyrans for the hypoglycemic agent englitazone. J. Heterocycl. Chem. 1992, 29, 431–438. [Google Scholar] [CrossRef]
- Gontcharov, A.V.; Nikitenko, A.A.; Raveendranath, P.; Shaw, C.C.; Wilk, B.K.; Zhou, D.H. Chromane and chromene derivatives and uses thereof. WO2007/123941, 1 November 2007. [Google Scholar]
- Lu, Y.; Nakatsuji, H.; Okumura, Y.; Yao, L.; Ishihara, K. Enantioselective halo-oxy-and halo-azacyclizations induced by chiral amidophosphate catalysts and halo-Lewis acids. J. Am. Chem. Soc. 2018, 140, 6039–6043. [Google Scholar] [CrossRef]
- Guan, Y.; Attard, J.W.; Mattson, A.E. Copper bis (oxazoline)-catalyzed enantioselective alkynylation of benzopyrylium ions. Chem. Eur. J. 2020, 26, 1742–1747. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.A.; Schroeder, J.M.; Liu, J.; Tang, W. Organocatalyst-mediated dynamic kinetic enantioselective acylation of 2-chromanols. Adv. Synth. Catal. 2018, 360, 4646–4649. [Google Scholar] [CrossRef]
- Hu, N.; Li, K.; Wang, Z.; Tang, W. Synthesis of chiral 1,4-benzodioxanes and chromans by enantioselective Palladium-catalyzed alkene aryloxyarylation reactions. Angew. Chem. Int. Ed. 2016, 55, 5044–5048. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. A dual arylboronic acid–aminothiourea catalytic system for the asymmetric intramolecular hetero-Michael reaction of α,β-unsaturated carboxylic acids. Org. Lett. 2014, 16, 4256–4259. [Google Scholar] [CrossRef] [PubMed]
- Aponick, A.; Biannic, B. Chirality transfer in Au-catalyzed cyclization reactions of monoallylic diols: Selective access to specific enantiomers based on olefin geometry. Org. Lett. 2011, 13, 1330–1333. [Google Scholar] [CrossRef]
- He, H.; Ye, K.Y.; Wu, Q.F.; Dai, L.X.; You, S.L. Iridium-catalyzed asymmetric allylic etherification and ring-closing metathesis reaction for enantioselective synthesis of Chromene and 2,5-dihydrobenzo[b]oxepine derivatives. Adv. Synth. Catal. 2012, 354, 1084–1094. [Google Scholar] [CrossRef]
- Carreño, M.C.; Hernández-Torres, G.; Urbano, A.; Colobert, F. Sulfoxide-directed stereocontrolled access to 2H-chromans: Total synthesis of the (S,R,R,R)-enantiomer of the antihypertensive drug Nebivolol. Eur. J. Org. Chem. 2008, 2008, 2035–2038. [Google Scholar] [CrossRef]
- Trost, B.M.; Shen, H.C.; Dong, L.; Surivet, J.-P.; Sylvain, C. Synthesis of chiral chromans by the Pd-catalyzed asymmetric allylic alkylation (AAA): Scope, mechanism, and applications. J. Am. Chem. Soc. 2004, 126, 11966–11983. [Google Scholar] [CrossRef]
- Xia, G.; Zhuang, Z.; Liu, L.Y.; Schreiber, S.L.; Melillo, B.; Yu, J.Q. Ligand-enabled β-Methylene C(sp3)-H arylation of masked aliphatic alcohols. Angew. Chem. Int. Ed. 2020, 59, 7783–7787. [Google Scholar] [CrossRef]
- Labrosse, J.-R.; Poncet, C.; Lhoste, P.; Sinou, D. Asymmetric Palladium(0)-mediated synthesis of 2-vinylchroman. Tetrahedron Asymmetry 1999, 10, 1069–1078. [Google Scholar] [CrossRef]
- Trost, B.M.; Shen, H.C.; Dong, L.; Surivet, J.-P. Unusual effects in the Pd-catalyzed asymmetric allylic alkylations: Synthesis of chiral chromans. J. Am. Chem. Soc. 2003, 125, 9276–9277. [Google Scholar] [CrossRef] [PubMed]
- Schafroth, M.A.; Rummelt, S.M.; Sarlah, D.; Carreira, E.M. Enantioselective Iridium-catalyzed allylic cyclizations. Org. Lett. 2017, 19, 3235–3238. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.S.; Olson, A.C.; Overman, L.E.; Solomon, N.S. Palladium(II)-catalyzed enantioselective synthesis of 2-vinyl oxygen heterocycles. J. Org. Chem. 2012, 77, 1961–1973. [Google Scholar] [CrossRef] [Green Version]
- Saito, N.; Ryoda, A.; Nakanishi, W.; Kumamoto, T.; Ishikawa, T. Guanidine-catalyzed asymmetric synthesis of 2,2-disubstituted chromane skeletons by intramolecular Oxa-Michael addition. Eur. J. Org. Chem. 2008, 16, 2759–2766. [Google Scholar] [CrossRef]
- Wang, P.-S.; Liu, P.; Zhai, Y.-J.; Lin, H.-C.; Han, Z.-Y.; Gong, L.-Z. Asymmetric allylic C–H oxidation for the synthesis of Chromans. J. Am. Chem. Soc. 2015, 137, 12732–12735. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Maqusood Alam, M.; Lee, Y.H.; Khan, M.N.A.; Zhang, Y.; Lee, Y.S. An efficient and practical enantiospecific synthesis of methyl chromanone- and chroman-2-carboxylates. Tetrahedron Asymmetry 2015, 26, 912–917. [Google Scholar] [CrossRef]
- Dolle, R.E.; Chu, G.-H. Fused bicyclic carboxamide derivatives and methods of their use. U.S. Patent 7,034,051, 25 April 2006. [Google Scholar]
- Song, X.G.; Zhu, S.F.; Xie, X.L.; Zhou, Q.L. Enantioselective copper-catalyzed intramolecular phenolic O-H Bond Insertion: Synthesis of chiral 2-carboxy dihydrobenzofurans, dihydrobenzopyrans, and tetrahydrobenzooxepines. Angew. Chem. Int. Ed. 2013, 52, 2555–2558. [Google Scholar] [CrossRef]
- Loiodice, F.; Longo, A.; Bianco, P.; Tortorella, V. 6-Chloro-2,3-dihydro-4H-1-benzopyran carboxylic acids: Synthesis, optical resolution and absolute configuration. Tetrahedron Asymmetry 1995, 6, 1001–1011. [Google Scholar] [CrossRef]
- Marco, I.; Valhondo, M.; Martín-Fontecha, M.; Vázquez-Villa, H.; Del Río, J.N.; Planas, A.; Sagredo, O.; Ramos, J.A.; Torrecillas, I.R.; Pardo, L.; et al. New serotonin 5-HT1A receptor agonists with neuroprotective effect against ischemic cell damage. J. Med. Chem. 2011, 54, 7986–7999. [Google Scholar] [CrossRef] [Green Version]
- Wipf, P.; Huryn, D.M.; Laporte, M.G.; Terrab, L.; Houghton, M.J.; Topacio, A.; Maskrey, T.S.; Kristufek, T.; Sozer, U.; Crocker, D.L.; et al. HDAC inhibitors. WO2022/120048, 9 June 2022. [Google Scholar]
- Morimura, K.; Yamazaki, C.; Hattori, Y.; Makabe, H.; Kamo, T.; Hirota, M. A Tyrosinase inhibitor, Daedalin A, from mycelial culture of Daedalea dickinsii. Biosci. Biotech. Biochem. 2007, 71, 2837–2840. [Google Scholar] [CrossRef] [Green Version]
- Koyama, H.; Miller, D.J.; Boueres, J.K.; Desai, R.C.; Jones, A.B.; Berger, J.P.; MacNaul, K.L.; Kelly, L.J.; Doebber, T.W.; Wu, M.S. (2R)-2-Ethylchromane-2-carboxylic acids: Discovery of novel PPARα/γ dual agonists as antihyperglycemic and hypolipidemic agents. J. Med. Chem. 2004, 47, 3255–3263. [Google Scholar] [CrossRef] [PubMed]
- Yoda, H.; Takabe, K. Novel synthesis of (S)-(−)-chroman-2-carboxylic acid, vitamin E precursor. Chem. Lett. 1989, 1, 465–466. [Google Scholar] [CrossRef]
- Lei, H.S.; Atkinson, J. Synthesis of phytyl- and chroman-derivatized photoaffinity labels based on α-tocopherol. J. Org. Chem. 2000, 65, 2560–2567. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Nishimura, T. Iridium-catalyzed asymmetric hydroarylation of chromene derivatives with aromatic ketones: Enantioselective synthesis of 2-arylchromanes. Adv. Synth. Catal. 2019, 361, 2124–2128. [Google Scholar] [CrossRef]
- Wang, Y.; Franzen, R. Synthesis of 2-aryl-substituted chromans by intramolecular C-O bond formation. Synlett 2012, 23, 925–929. [Google Scholar]
- Choi, E.T.; Lee, M.H.; Kim, Y.; Park, Y.S. Asymmetric dehydration of β-hydroxy esters and application to the syntheses of flavane derivatives. Tetrahedron 2008, 64, 1515–1522. [Google Scholar] [CrossRef]
- Keßberg, A.; Metz, P. Enantioselective synthesis of 2’- and 3’-substituted natural flavans by Domino asymmetric transfer hydrogenation/ deoxygenation. Org. Lett. 2016, 18, 6500–6503. [Google Scholar] [CrossRef]
- Nakashima, K.; Abe, N.; Kamiya, F.; Ito, T.; Oyama, M.; Iinuma, M. Novel flavonoids in dragon’s blood of Daemonorops draco. Helv. Chim. Acta. 2009, 92, 1999–2008. [Google Scholar] [CrossRef]
- Zheng, Z. Nebivolol synthesis method and intermediate compound thereof. U.S. Patent 10,526,304, 23 January 2007. [Google Scholar]
- Devi, R.; Das, S.K. Studies directed toward the exploitation of vicinal diols in the synthesis of (+)-nebivolol intermediates Beilstein, J. Org. Chem. 2017, 571–578. [Google Scholar]
- Wang, N.-X.; Yu, A.-G.; Wang, G.-X.; Zhang, X.-H.; Li, Q.-S.; Li, Z. Synthesis of (S,R,R,R)-α,α′-Iminobis(methylene) bis(6-fluoro-3H,4H-dihydro-2H-1-benzopyran-2-methanol). Synthesis 2007, 8, 1154–1158. [Google Scholar] [CrossRef]
- Khandavalli, P.C.; Spiess, O.; Böhm, O.M.; Freifeld, I.; Kesseler, K.; Jas, G.; Schinzer, D. Synthesis of desfluorinated Nebivolol isomers. J. Org. Chem. 2015, 80, 3965–3973. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Panda, G. β-Hydroxy-α-tosyloxy esters as chiral building blocks for the enantioselective synthesis of benzo-annulated oxa-heterocycles: Scope and limitations. Tetrahedron 2008, 64, 4162–4173. [Google Scholar] [CrossRef]
- Das, S.K.; Dinda, S.K.; Panda, G. Enantioselective synthesis of functionalized 1-benzoxepines by phenoxide ion mediated 7-endo-tet carbocyclization of cyclic sulfates. Eur. J. Org. Chem. 2009, 2, 204–207. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Venkat Reddy, M. Enantioselective total synthesis of the antihypertensive agent (S,R,R,R)-Nebivolol. Tetrahedron 2000, 56, 6339–6344. [Google Scholar] [CrossRef]
- Di Bari, L.; Pescitelli, G.; Pratelli, C.; Pini, D.; Salvadori, P. Determination of absolute configuration of acyclic 1, 2-diols with Mo2(OAc)4. 1. Snatzke’s method revisited. J. Org. Chem. 2001, 66, 4819–4825. [Google Scholar] [CrossRef]
- Goórecki, M.; Frelek, J. A critical appraisal of dimolybdenum tetraacetate application in stereochemical studies of vic-diols by circular dichroism. J. Nat. Prod. 2020, 83, 955–964. [Google Scholar] [CrossRef]
- Yang, B.B.; Li, L. Chiroptical study of the key intermediate of dexnebivolol. Huaxue Shiji 2022, 44, 1665–1669. [Google Scholar]
- Gavin, D.P.; Foley, A.; Moody, T.S.; Khandavilli, U.R.; Lawrence, S.E.; O’Neill, P.; Maguire, A.R. Hydrolase-mediated resolution of the hemiacetal in 2-chromanols: The impact of remote substitution. Tetrahedron Asymmetry 2017, 28, 577–585. [Google Scholar] [CrossRef]
- Takasugi, M.; Niino, N.; Nagao, S.; Anetai, M.; Masamune, T.; Shirata, A.; Takahashi, K. Eight minor phytoalexins from diseased paper mulberry. Chem. Lett. 1984, 13, 689–692. [Google Scholar] [CrossRef]
- Mewshaw, R.E.; Kavanagh, J.; Stack, G.; Marquis, K.L.; Shi, X.; Kagan, M.Z.; Webb, M.B.; Katz, A.H.; Park, A.; Kang, Y.H. New generation dopaminergic agents. 1. Discovery of a novel scaffold which embraces the D2 agonist pharmacophore. Structure-activity relationships of a series of 2-(aminomethyl) chromans. J. Med. Chem. 1997, 40, 4235–4256. [Google Scholar] [CrossRef]
- O’Donnell, G.; Bucar, F.; Gibbons, S. Phytochemistry and antimycobacterial activity of Chlorophytum inornatum. Phytochemistry 2006, 67, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Polavarapu, P.L. Why is it important to simultaneously use more than one chiroptical spectroscopic method for determining the structures of chiral molecules? Chirality 2008, 20, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Krohn, K.; Floerke, U.; Schulz, B.; Draeger, S.; Pescitelli, G.; Antus, S.; Kurtán, T. Absolute configurations of Globosuxanthone A and secondary metabolites from Microdiplodia sp.—A novel solid-state CD/TDDFT approach. Eur. J. Org. Chem. 2007, 2007, 292–295. [Google Scholar] [CrossRef]
- Pescitelli, G.; Bruhn, T. Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality 2016, 28, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Joyce, L.A.; Nawrat, C.C.; Sherer, E.C.; Biba, M.; Brunskill, A.; Martin, G.E.; Cohena, R.D.; Davies, I.W. Beyond optical rotation: What’s left is not always right in total synthesis. Chem. Sci. 2018, 9, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Covington, C.L.; Polavarapu, P.L. Specific Optical Rotations and the Horeau Effect. Chirality 2016, 28, 181–185. [Google Scholar] [CrossRef]
- Batista, J.M., Jr.; López, S.N.; Da Silva Mota, J.; Vanzolini, K.L.; Cass, Q.B.; Rinaldo, D.; Vilegas, W.; Bolzani, V.S.; Kato, M.J.; Furlan, M. Resolution and absolute configuration assignment of a natural racemic chromane from Peperomia obtusifolia (Piperaceae). Chirality 2009, 21, 799–801. [Google Scholar] [CrossRef]
- Batista, J.M., Jr.; Batista, A.N.; Rinaldo, D.; Vilegas, W.; Cass, Q.B.; Bolzani, V.S.; Kato, M.J.; López, S.N.; Furlan, M.; Nafie, L.A. Absolute configuration reassignment of two chromanes from Peperomia obtusifolia (Piperaceae) using VCD and DFT calculations. Tetrahedron Asymmetry 2010, 21, 2402–2407. [Google Scholar] [CrossRef]
- MOE2009.10, Chemical Computing Group Inc. Available online: https://www.macinchem.org/reviews/moe-review2.php (accessed on 16 November 2020).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision, B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- SpecDis, Version 1.71; SpecDis Manual: Berlin, Germany, 2017.
Comp. | Conf. | Vinyl Arrangement [a] | Helicity | B3LYP/6-311G(d,p) | M06-2X/TZVP |
---|---|---|---|---|---|
P (%) | P (%) | ||||
24 | C1 | e | M- | 48.23 | 24.42 |
C2 | e | M- | 34.15 | 32.16 | |
C3 | a | P- | 6.41 | 30.05 | |
C4 | e | M- | 5.68 | 5.85 | |
C5 | a | P- | 4.52 | 5.30 | |
C6 | a | P- | 1.02 | 2.22 | |
28 | C1 | a | P- | 60.06 | 73.10 |
C2 | e | M- | 19.07 | 10.24 | |
C3 | a | P- | 7.66 | 6.88 | |
C4 | a | P- | 5.28 | 3.80 | |
C5 | e | M- | 4.77 | 3.56 | |
C6 | e | M- | 3.16 | 2.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.-B.; Gao, F.; Yang, Y.-D.; Wang, R.; Li, X.; Li, L. Stereochemistry of Chiral 2-Substituted Chromanes: Twist of the Dihydropyran Ring and Specific Optical Rotation. Molecules 2023, 28, 439. https://doi.org/10.3390/molecules28010439
Yang B-B, Gao F, Yang Y-D, Wang R, Li X, Li L. Stereochemistry of Chiral 2-Substituted Chromanes: Twist of the Dihydropyran Ring and Specific Optical Rotation. Molecules. 2023; 28(1):439. https://doi.org/10.3390/molecules28010439
Chicago/Turabian StyleYang, Bei-Bei, Fan Gao, Ya-Dong Yang, Ru Wang, Xin Li, and Li Li. 2023. "Stereochemistry of Chiral 2-Substituted Chromanes: Twist of the Dihydropyran Ring and Specific Optical Rotation" Molecules 28, no. 1: 439. https://doi.org/10.3390/molecules28010439
APA StyleYang, B. -B., Gao, F., Yang, Y. -D., Wang, R., Li, X., & Li, L. (2023). Stereochemistry of Chiral 2-Substituted Chromanes: Twist of the Dihydropyran Ring and Specific Optical Rotation. Molecules, 28(1), 439. https://doi.org/10.3390/molecules28010439