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Abstract: Naphthyl groups are widely used as building blocks for the self-assembly of supramolecular
crystal networks. Host–guest complexation of cucurbit[8]uril (Q[8]) with two guests NapA and Nap1
in both aqueous solution and solid state has been fully investigated. Experimental data indicated
that double guests resided within the cavity of Q[8], generating highly stable homoternary complexes
NapA2@Q[8] and Nap12@Q[8]. Meanwhile, the strong hydrogen-bonding and π···π interaction play
critical roles in the formation of 1D supramolecular chain, as well as 2D and 3D networks in solid state.
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1. Introduction

Supramolecular self-assembly is a spontaneous process in which basic structural units
form ordered structures driven by non-covalent interactions (including electrostatic interac-
tions, van der Waals forces, hydrogen bond, π–π stacking, hydrophobic effects, etc.) [1–6].
Based on self-assembly, various supramolecular network structures have been widely de-
veloped. Reversible non-covalent bonds endow supramolecular networks with traditional
polymer properties, as well as dynamic properties, which can achieve high response to
stimuli and self-healing functions [7–10]. These supramolecular network systems have
been constructed to synthesize different functional materials and widely used in drug
carriers, nano containers, molecular devices, sensors, adsorption and separation materials,
catalysts, and environmental pollutant treatment [11–15]. Although the supramolecular
polymerization process has been deeply understood, it is still a huge challenge to design
controllable supramolecular polymerization systems and provide supramolecular polymers
with controllable structures [16].

The macrocyclic host cucurbit[n]urils (Q[n]s, CB[n]s, n = number of glycoluril units)
are spherical macrocyclic compounds adopting a stable rigid structure and composed of
n glycoluril units bridged by 2n methylene groups with a hydrophobic cavity [17–20]. As a
kind of rigid macrocyclic host, cucurbit[n]urils have three main structural characteristics,
namely, the neutral cavity, the negative electrostatic potential carbonyl portals and the
positive electrostatic potential of the outer surface [21,22]. Based on the above three charac-
teristics, the Q[n]s related host-guest chemistry, coordination chemistry and outer surface
interaction chemistry have been widely used [23–25]. The cavity of the Q[n]s can selectively
bind a part of or whole guest molecules to form host–guest complexes [26–29]. According
to the Q[n]’s cavity size, Q[8] exhibits unique molecular recognition characteristics enabling
dimerization of specific guest molecules inside the cavity of Q[8] in a controlled manner.
The larger cavity of Q[8] can bind two aromatic group, such as phenyl, naphthyl, indole,
quinoline, and larger aromatic rings, thus allowing for the formation of homoternary inclu-
sion complexes [30–32]. Therefore, Q[8] has been vigorously studied as basic units for the
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construction of supramolecular networks [33–35]. For example, Zhang’s team constructed
a variety of supramolecular hyperbranched networks by self-assembly of dendrimers
and Q[8] [36,37]. Liu’s team constructed a variety of two-dimensional supramolecular
network structures based on triphenylamine and Q[8] [38,39], which have good effects
in many fields such as cell imaging, near-infrared lysosome targeted imaging. Li’s team
prepared a tetrahedral molecule which was used to co-assemble with Q[8] to afford a new
water soluble 3D diamondoid system [40]. Moreover, the hexa-armed [Ru(bpy)3]2+-based
derivatives and Q[8] were used to afford another 3D cubelike system, which could be
used as heterogeneous catalyst for hydrogen production and organic reaction [41]. In
previous work, we used the antiparallel encapsulation of styrene pyridine dimer in Q[8] to
construct a variety of supramolecular polymer systems [42,43]. For example, we generated
an irreversible covalent component for the construction of the first highly watersoluble
3D supramolecular-covalent organic framework, which was used to highly promote the
electron transfer of protons to H2 when loaded on POM catalysts and Ru2+-complex photo-
sensitizers [42]. Having said that, we believe that Q[n]s are ideal as basic building blocks
for the construction of Q[n]-based networks.

Herein, we introduced two guests containing naphthyl groups, 4-(4-carboxyphenyl)-1-
(naphthalen-2-ylmethyl)pyridin-1-ium bromide (NapA) and 1-(naphthalen-2-ylmethyl)-
[4,4′-bipyridin]-1-ium bromide (Nap1) for the formation of supramolecular networks. The
Q[8]-induced supramolecular networks were investigated by 1H nuclear magnetic reso-
nance (1H NMR) spectrum, UV-vis absorption spectrum, isothermal titration calorimetry
(ITC), dynamic light scattering (DLS), and single-crystal X-ray crystallography. Experimen-
tal data indicated that double guests resided within the cavity of Q[8] in both aqueous
solution and solid state, generating highly stable homoternary complexes NapA2@Q[8]
and Nap12@Q[8]. The strong hydrogen-bonding and π···π interaction played critical roles
in the formation of supramolecular networks.

2. Results
2.1. Molecular Binding Behavior and Thermodynamic between Cucurbit[8]uril and
NapA or Nap1

It has been established that Q[8] encapsulation for the dimers of naphthyl unit in
water can remarkably promote the π–π interaction. Thus, two guests containing naphthyl
unit (NapA and Nap1) were designed and synthesized (Scheme 1). Two guests, NapA
and Nap1, were prepared in a one-step sequence. Compound NapA was prepared from
the reaction of 4-(4-pyridyl)benzoic acid and 2-bromomethyl naphthalene in MeCN in
90% yield and characterized using 1H NMR, 13C NMR, 1H-1H COSY spectra and high-
resolution mass spectra (HR-MS). 4,4′-bipyridine and 2-bromomethyl naphthalene were
used to synthesize Nap1 in acetone in 85% yield. We then studied their coassembly with
Q[8] in water for the formation of two new homoternary supramolecular complexes.
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The naphthyl units of two guests can combine to form supramolecular dimers under
the action of Q[8]-driven self-assembly. Two examples of homoternary supramolecular
complexes were constructed under the coordination of supramolecular interactions such as
Q[n]s’ outer surface interaction, hydrogen bond interaction, strong π–π interaction, host-
guest interaction, etc. Simply mixing Q[8] and Nap1 or NapA in aqueous solution resulted
in the formation of the supramolecular networks depending on the corresponding host–
guest interaction between the two species of molecules, which was further characterized
by 1H NMR spectroscopy, X-ray single crystal diffraction, and dynamic light scattering
analysis (DLS).

The 1H NMR spectroscopy measurements indicated that both Nap1 and NapA form
host-guest inclusion complexes with Q[8] host. In the presence of small amount of the
Q[8] hosts (Figure 1), the signals of both free and complexed guests were simultaneously
observed and were very broad, indicating slow exchange of free and complexed guests
on the NMR time scale. On the one hand, the protons of bipyridine (H1-H4) and one of
the CH2 protons (H5) of Nap1 moved downfield slightly, which indicated that they were
located outside the cavity. On the other hand, at a 2:1 ratio of Nap1 to Q[8], the naphthyl
peaks (H6-H12) were completely shifted upfield. These observations suggested that the
naphthyl moiety of the Nap1 guest was encapsulated into the cavity of the Q[8] host.
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Figure 1. 1H NMR spectrum (400 MHz) of the mixtures of Nap1 (1.0 mM) and Q[8] (0 to 0.6 equiv) in
D2O at 25 ◦C.

The corresponding 1H NMR titration spectra of the Q[8] with NapA were showed in
Figure S1. Due to the low solubility of NapA, the NMR signals became wide peak after
adding Q[8]. In the presence of 0.5 equiv of Q[8], the signals corresponding to the naphthyl
(H6-H12) protons of the NapA shifted upfield, while those corresponding to the pyridinyl
(H3 and H4), phenyl (H1 and H2) protons did not move significantly. This clearly indicated
that the naphthyl protons of the guest NapA were buried inside the hydrophobic cavity of
Q[8], while the 4-(4-pyridyl)benzoic acid moiety resided outside of the Q[8] portals, forming
homoternary supramolecular complexes with 1:2 host-guest binding ratio NapA2@Q[8]. By
comparing the NMR titration data of the two self-assemblies, we found that the naphthyl
group of the guest molecule was encapsulated in the hydrophobic cavity of Q[8].

Isothermal titration calorimetry (ITC) was also employed to afford the thermody-
namic parameters of Q[8] with both Nap1 and NapA. ITC experimental data further
confirmed that the binding stoichiometry of Q[8] to both Nap1 and NapA is 1:2 (Figure 2).
From the ∆H and T∆S values in Table S1, it was clear that the formation of both ho-
moternary complexes were enthalpically driven. The observed negative enthalpy change
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(∆H =−36.17± 2.59 kJ·mol−1 for NapA2@Q[8]; ∆H =−22.71± 1.37 kJ·mol−1 for Nap12@Q[8])
were probably due to the cooperativity of above mentioned four kinds of weak interactions.
On the basis of the corresponding experimental results, we also obtained the association
constants of Ka = (2.14 ± 0.62) × 1010 M−2 and (1.48 ± 0.45) × 1010 M−2 for Q[8] with
NapA and Nap1, respectively, which was much larger than that of Q[8] with tripeptides
reported by Urbach [44] and closer to Q[8] with tripeptides reported by us [30]. Such a high
binding constant suggested the relatively strong host–guest interaction between Q[8] and
NapA or Nap1, indicating the construction of stable homoternary complexes NapA2@Q[8]
and Nap12@Q[8] in aqueous solution.
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Figure 3. UV-vis spectra of NapA and Nap1 (10 μM) with the addition of Q[8] (0–2.0 equiv.) in water 
at 25 °C (Inset: Absorbance at 224 nm vs. [Q[8]]/[NapA], and [Q[8]]/[Nap1]). 
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Figure 2. (a,b) Nap1 (1.0 mM) and (c,d) NapA (1.0 mM) titration of the Q[8] (0.1 mM) isothermal
titration heat curve and nonlinear fitting result of molar ratios at 25 ◦C.

To better understand the host-guest interaction between Q[8] and both Nap1 and
NapA in aqueous solution, we also carried out UV-vis titration experiments. According to
the UV-vis absorption spectroscopic results, as shown in Figure 3, the compound Nap1 and
NapA displayed an absorption band at 224 nm belonging to naphthyl unit, which decreased
markedly in its intensity upon addition of Q[8], due to the strong interaction between Q[8]
and naphthyl moiety of guest molecules Nap1 and NapA. When 0.5 equivalent Q[8] was
added, the UV−vis absorption spectra intensity did not change significantly. Their Job
plots (based on the continuous variation method) clearly showed that UV−vis spectra
data of both Nap1 and NapA fitted well to 1:2 stoichiometry of the host-guest inclusion
complexes (Figure 3, inset). The binding stoichiometry was also determined by the Job plot
analysis at a fixed total concentration of host and guest molecules. The absorption intensity
changes (∆A) were plotted against the molar fraction of Nap1 and NapA to give a peak
at a molar fraction of 0.66, indicating a 1:2 stoichiometry for the Q[8]:Nap1 or Q[8]:NapA
inclusion complex (Figures S2 and S3), which was consistent with the NMR titration results.
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Figure 3. UV-vis spectra of NapA and Nap1 (10 µM) with the addition of Q[8] (0–2.0 equiv.) in water
at 25 ◦C (Inset: Absorbance at 224 nm vs. [Q[8]]/[NapA], and [Q[8]]/[Nap1]).

DLS experiments in dilute solutions can be used to monitor the formation of supramolec-
ular networks. DLS results revealed that NapA, Nap1 and Q[8] formed nanoscaled
assemblies in water. As can be found, the hydrodynamic diameter (DH) of NapA
monomer (1.0 mM) was determined to be 0.6 nm. In Figure 4a, mixing Q[8] and NapA
(1:2, [NapA] = 0.1 mM) observed one hydrodynamic diameter distribution centered at
140 nm. It showed that aggregates of this size were formed in the aqueous solution. The DH
value decreased with the dilution of the solution. However, even at [NapA] = 25 µM, DH
was still as high as 43 nm. These observations supported that NapA and Q[8] coassembled
into the nanoscaled supramolecular networks in water. At the same concentration, the
hydrated particle size of assembly NapA2@Q[8] is obviously higher than that of assembly
Nap12@Q[8], which indicates that the polymerization ability of assembly NapA2@Q[8] is
higher than that of assembly Nap12@Q[8] in the aqueous phase. DLS experiment showed
that the self-assembly had a certain stability in the solution even at low concentration. The
result was consistent with the results of crystal structure description. The DLS experiment
of Nap12@Q[8] (Figure 4b) was similar to that of NapA2@Q[8].
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Figure 4. DLS profile of (a) NapA2@Q[8] and (b) Nap12@Q[8] in water at 25 ◦C. The concentration
represents that of NapA or Nap1 of homoternary complexes.

2.2. Single-Crystal X-ray Crystallography

X-ray structure analysis provided unequivocal proof of the formation of homoternary
complexes between Q[8] and both Nap1 and NapA. Crystal of NapA2@Q[8] was grown by
slow evaporation of a solution containing the host Q[8] and the guest NapA under 3.0 M
aqueous hydrochloric acid solution. X-ray structural analysis previously established that
the NapA2@Q[8] crystallized in the orthorhombic crystal system, space group Pbca. As can
be seen in Figure 5a, the naphthyl moiety of the NapA guest located inside the cavity of
the Q[8] host, which was in agreement with what we had observed in the aqueous solution
by 1H NMR spectroscopy. Furthermore, the π···π interactions between two encapsulated
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NapA molecules played a critical role in the formation of this host-guest inclusion complex.
Obviously, the van der Waals contacted between the naphthyl groups and the inner wall of
the Q[8] cavity, and strong hydrogen-bonding, such as C(32)-H···O(6) 2.701 Å (between
carbonyl oxygen of host and H on benzene ring of guest), contributed to the formation
of the inclusion complex NapA2@Q[8]. As shown in Figure 5b, two adjacent complexes
formed a two dimensional assembled host–guest supramolecular network via hydrogen-
bonding interactions between the portal carbonyl oxygen atom O6 of Q[8] and between
the carboxyl oxygen atom O9, O10 of NapA. It is should be noted that the hydrogen
bonds between the carboxyl oxygen atom of the guest NapA and the hydrogen atom
on methylene of Q[8] (Figure 5b): C(14)-H···O(9) 2.571 Å, C(16)-H···O(10) 2.430 Å, and
between the carbonyl oxygens at the portals of the Q[8] host and the hydrogen atom on
the methylene of the adjacent Q[8] (Figure S4): C(11)-H···O(8) 2.696 Å may be largely
responsible for the construction of a one-dimensional supramolecular chain (Figure S5) and
supramolecular networks (Figure 5c).
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Single crystals of complex Nap12@Q[8] were fortunately obtained from hydrochloride
acid solution by slow evaporation in the presence of CdCl2. The complex crystallized
in the triclinic crystal system, space group P-1, the compounds consists of one Q[8] host
and two Nap1 guests. As shown in Figure 6a, X-ray structural analysis revealed that the
naphthyl moiety of the guest Nap1 adopted reverse parallel in the Q[8] cavity, the bipyridyl
moiety remained outside of its portal, which could be attributed to π···π interactions
in the cavity of Q[8]. Outside of the inclusion complexes, neighboring Nap1 molecules
contacted with each other through not only π···π interaction, but also C-H···π interactions
(Figure 6b), which may serve to stabilize this structure for building a one-dimensional
supramolecular chain of the complexes. In the latter, the encapsulated guests were electron
donor and acceptor pair, and the major driving force for the ternary complex formation
appears to be strong charge-transfer interaction between the guests [45]. Furthermore, the
strong hydrogen-bonding played a critical role in the formation of this host-guest inclusion
complex, e.g., between H on methylene of Nap1 and the carbonyl oxygens at the portals
of the Q[8] host C(59)–H···O(6) 2.691 Å, between H on pyridine ring and the carbonyl
oxygens at the portals of the adjacent Q[8] host C(70)–H···O(10) 2.660 Å. Meanwhile, the
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hydrogen-bonding between two adjacent Q[8]: C(58)–H···O(16) 2.311 Å (Figure S6) and
between [CdCl4]2− and Nap1: C(23)–H···Cl(9) 2.692 Å, between [CdCl4]2− and Q[8] C(53)–
H···Cl(11) 2.836 Å (Figure S7) cannot be ignored in the construction of one-dimensional
supramolecular chains (Figure 6c).
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supramolecular chain constructed of the Nap1 and Q[8].

3. Materials and Methods

All reagents were obtained from commercial suppliers and used without further
purification unless otherwise noted. All reactions were carried out under a dry nitrogen
atmosphere. All solvents were dried before use following standard procedures. 1H and
13C NMR spectra were recorded on 400 MHz spectrometers in the indicated solvents at
room temperature (298 K). Dynamic light scattering (DLS) measurement was conducted
on Malvern Zetasizer Nano ZS90 using a monochromatic coherent He–Ne laser (633 nm)
as the light source and a detector that detected the scattered light at an angle of 90◦.
An isothermal titration calorimetry (ITC) experiment was carried out using a MicroCal
PEAQ-ITC (Malven Panalytical, Worcestershire, UK) instrument. Association constants
and associated thermodynamic parameters were obtained through computer simulations
(curve fitting) using Micro-Cal ITC analyze software (MicroCal Origin 4.1). UV–vis spectra
were detected on a PerkinElmer 750s instrument from 200 to 800 nm at the scan rate of
3 nm/internal.

Single crystals of NapA2@Q[8] and Nap12@Q[8] were grown from hydrochloride acid
solution by slow evaporation. The crystal culture conditions showed that the self-assembly
NapA2@Q[8] and Nap12@Q[8] had good stability in strong acid solution. Diffraction
data of both complexes were collected at 273(2) K with a Bruker SMART Apex-II CCD
diffractometer using graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). Empirical
absorption corrections were performed by using the multi-scan program SADABS. Struc-
tural solution and full-matrix least-squares refinement based on F2 were performed with
the SHELXS-97 and SHELXL-97 program packages, respectively. Non-hydrogen atoms
were treated anisotropically in all cases. All hydrogen atoms were introduced as riding
atoms with an isotropic displacement parameter equal to 1.2 times that of the parent atom.
Hydrogen atoms were given for all isolated water molecules.

CCDC 2223335 (Nap12@Q[8]) and 2223329 (NapA2@Q[8]) contain the supplementary
crystallographic data for this paper. These data can be obtained free of charge from The
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Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif, which
accessed on 3 December 2022.

4. Conclusions

In summary, we investigated the host–guest complexation of Q[8] with two enan-
tiomers, NapA and Nap1, in both aqueous solution and solid state by using NMR, UV-vis
spectrum, ITC, DLS, and single-crystal X-ray crystallography. Driven by the cooperativity of
electrostatic interactions, multiple C–H···π interactions, and hydrogen-bonding, both NapA
and Nap1 can be encapsulated into the cavity of Q[8] to form stable homoternary complexes
NapA2@Q[8] and Nap12@Q [8]. Structure analysis shows that hydrogen-bonding interac-
tions and π···π interactions play a critical role not only in the formation of 1D extended
chains, but also in the construction of 2D and 3D networks. This study shows that Q[8]
host and molecules containing naphthalene units can be used as building units to build a
diverse supramolecular network structure.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28010063/s1, Figure S1: 1H NMR spectrum (400 MHz) of
the mixtures of NapA (1.0 mM) and Q[8] (1:0.5) in D2O at 25 ◦C; Figures S2 and S3: Job’s plot obtained
from the absorption spectra of the mixtures of NapA or Nap1 and Q[8] ([NapA or Nap1] + Q[8] = 50 µM)
in water at 25 ◦C; Figures S4 and S5: Details of NapA2@Q[8] crystal structure; Figures S6 and S7:
Details of Nap12@Q[8] crystal structure; Figures S8–S11: Characterization of NapA; Figures S12–S15:
Characterization of Nap1; Table S1. ITC measurements of the thermodynamics of NapA2@Q[8] and
Nap12@Q[8] interactions in aqueous solution at 298.15 K.
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