Enrichment of Cookies with Fruits and Their By-Products: Chemical Composition, Antioxidant Properties, and Sensory Changes
Abstract
:1. Introduction
2. Changes in Chemical Composition and Antioxidant Activity
2.1. Cookies with Powdered Fruit Additives
2.2. Cookies with the Addition of Fruit By-Products
3. Sensory Properties
3.1. Cookies Enriched with Powdered Fruits
3.2. Cookies with FBP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Baumgartner, B.; Özkaya, B.; Saka, I.; Özkaya, H. Functional and physical properties of cookies enriched with dephytinized oat bran. J. Cereal Sci. 2018, 80, 24–30. [Google Scholar] [CrossRef]
- Cao, W.; Chen, J.; Li, L.; Ren, G.; Duan, X.; Zhou, Q.; Zhang, M.; Gao, D.; Zhang, S.; Liu, X. Cookies fortified with lonicera japonica thunb. extracts: Impact on phenolic acid content, antioxidant activity and physical properties. Molecules 2022, 27, 5033. [Google Scholar] [CrossRef] [PubMed]
- Hematian Sourki, A.; Ghani, A.; Kiani, F.; Alipour, A. Phytochemical profiles of lemon verbena (Lippia citriodora H.B.K.) and its potential application to cookie enrichment. Food Sci. Nutr. 2021, 9, 3100–3113. [Google Scholar] [CrossRef]
- Sayago-Ayerdi, S.; García-Martínez, D.L.; Ramírez-Castillo, A.C.; Ramírez-Concepción, H.R.; Viuda-Martos, M. Tropical fruits and their co-products as bioactive compounds and their health effects: A review. Foods 2021, 10, 1952. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Bernatoniene, J. Antioxidant effects of Schisandra chinensis fruits and their active constituents. Antioxidants 2021, 10, 620. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. Food Sci. Technol. 2017, 78, 114–121. [Google Scholar] [CrossRef]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.S. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef]
- Kowalska, K. Lingonberry (Vaccinium vitisidaea L.) fruit as a source of bioactive compounds with health-promoting effects—A review. Int. J. Mol. Sci. 2021, 22, 5126. [Google Scholar] [CrossRef] [PubMed]
- Kitic, D.; Miladinovic, B.; Randjelovic, M.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Seidel, V. Anticancer potential and other pharmacological properties of Prunus armeniaca L.: An updated overview. Plants 2022, 11, 1885. [Google Scholar] [CrossRef]
- Neri-Numa, I.A.; Soriano Sancho, R.A.; Pereira, A.P.A.; Pastore, G.M. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res. Int. 2018, 103, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Żołnierczyk, A.K.; Ciałek, S.; Styczyńska, M.; Oziembłowski, M. Functional properties of fruits of common medlar (Mespilus germanica L.) Extract. Appl. Sci. 2021, 11, 7528. [Google Scholar] [CrossRef]
- Khalid, M.; Alqarni, M.H.; Alsayari, A.; Foudah, A.I.; Aljarba, T.M.; Mukim, M.; Alamri, M.A.; Abullais, S.S.; Wahab, S. Anti-diabetic activity of bioactive compound extracted from spondias mangifera fruit: In-vitro and molecular docking approaches. Plants 2022, 11, 562. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Kłębukowska, L. Antioxidant and antimicrobial properties of selected fruit juices. Plant Foods Hum. Nutr. 2022, 77, 427–435. [Google Scholar] [CrossRef]
- Szymański, M.; Szymański, A. Study on relationships between the content of chemical elements and polyphenols and antioxidant activity in Sambucus nigra. J. Elem. 2022, 27, 739–753. [Google Scholar] [CrossRef]
- Gugliandolo, E.; Fusco, R.; D’Amico, R.; Peditto, M.; Oteri, G.; Di Paola, R.; Cuzzocrea, S.; Navarra, M. Treatment with a flavonoid-rich fraction of bergamot juice improved lipopolysaccharide-induced periodontitis in rats. Front. Pharmacol. 2019, 9, 1563. [Google Scholar] [CrossRef]
- Baradaran Rahimi, V.; Ghadiri, M.; Ramezani, M.; Askari, V.R. Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies. Phyther. Res. 2020, 34, 685–720. [Google Scholar] [CrossRef]
- Tian, Z.H.; Liu, F.; Peng, F.; He, Y.L.; Shu, H.Z.; Lin, S.; Chen, J.F.; Peng, C.; Xiong, L. New lignans from the fruits of leonurus japonicus and their hepatoprotective activities. Bioorg. Chem. 2021, 115, 105252. [Google Scholar] [CrossRef]
- Tabeshpour, J.; Hosseinzadeh, H.; Hashemzaei, M.; Karimi, G. A Review of the hepatoprotective effects of hesperidin, a flavanon glycoside in citrus fruits, against natural and chemical toxicities. DARU J. Pharm. Sci. 2020, 28, 305–317. [Google Scholar] [CrossRef] [PubMed]
- de Mello e Silva, G.N.; Batista Rodrigues, E.S.; Lopes de Macêdo, I.Y.; Vicente Gil, H.P.; Campos, H.M.; Ghedini, P.C.; Cardozo da Silva, L.; Batista, E.A.; Lopes de Araújo, G.; Vaz, B.G.; et al. Blackberry jam fruit (Randia formosa (Jacq.) K. Schum): An Amazon superfruit with in vitro neuroprotective properties. Food Biosci. 2022, 50, 102084. [Google Scholar] [CrossRef]
- das Chagas, E.G.L.; Vanin, F.M.; dos Santos Garcia, V.A.; Yoshida, C.M.P.; de Carvalho, R.A. Enrichment of antioxidants compounds in cookies produced with camu-camu (Myrciaria dubia) coproducts powders. Food Sci. Technol. 2021, 137, 110472. [Google Scholar] [CrossRef]
- Borczak, B.; Sikora, M.; Kapusta-Duch, J.; Fołta, M.; Szewczyk, A.; Zięć, G.; Doskočil, I.; Leszczyńska, T. Antioxidative properties and acrylamide content of functional wheat-flour cookies enriched with wild-grown fruits. Molecules 2022, 27, 5531. [Google Scholar] [CrossRef] [PubMed]
- Ramashia, S.E.; Mamadisa, F.M.; Mashau, M.E. Effect of Parinari curatellifolia peel flour on the nutritional, physical and antioxidant properties of biscuits. Processes 2021, 9, 1262. [Google Scholar] [CrossRef]
- Kuchtová, V.; Kohajdová, Z.; Karovičová, J.; Lauková, M. Physical, textural and sensory properties of cookies incorporated with grape skin and seed preparations. Pol. J. Food Nutr. Sci. 2018, 68, 309–317. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Starowicz, M.; Achrem-Achremowicz, B.; Piskuła, M.; Zieliński, H. Phenolic compounds from apples: Reviewing their occurrence, absorption, bioavailability, processing, and antioxidant activity—A review. Pol. J. Food Nutr. Sci. 2020, 70, 321–336. [Google Scholar] [CrossRef]
- Pascariu, O.-E.; Israel-Roming, F. Bioactive compounds from elderberry: Extraction, health benefits, and food applications. Processes 2022, 10, 2288. [Google Scholar] [CrossRef]
- Sallustio, V.; Chiocchio, I.; Mandrone, M.; Cirrincione, M.; Protti, M.; Farruggia, G.; Abruzzo, A.; Luppi, B.; Bigucci, F.; Mercolini, L.; et al. Extraction, encapsulation into lipid vesicular systems, and biological activity of Rosa canina L. bioactive compounds for dermocosmetic use. Molecules 2022, 27, 3025. [Google Scholar] [CrossRef]
- Cristea, E.; Ghendov-Mosanu, A.; Patras, A.; Socaciu, C.; Pintea, A.; Tudor, C.; Sturza, R. Parameters of rowan berry extracts. Molecules 2021, 26, 3786. [Google Scholar] [CrossRef]
- Ning, X.; Wu, J.; Luo, Z.; Chen, Y.; Mo, Z.; Luo, R.; Bai, C.; Du, W.; Wang, L. Cookies fortified with purple passion fruit epicarp flour: Impact on physical properties, nutrition, in vitro starch digestibility, and antioxidant activity. Cereal Chem. 2021, 98, 328–336. [Google Scholar] [CrossRef]
- Alirezalu, A.; Ahmadi, N.; Salehi, P.; Sonboli, A.; Alirezalu, K.; Lorenzo, J.M. Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods 2020, 9, 436. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Pérez-Nevado, F.; Cabrera-Bañegil, M.; Repilado, E.; Martillanes, S.; Martín-Vertedor, D. Effect of different baking treatments on the acrylamide formation and phenolic compounds in californian-style black olives. Food Control 2018, 94, 22–29. [Google Scholar] [CrossRef]
- Eliášová, M.; Kotíková, Z.; Lachman, J.; Orsák, M.; Martinek, P. Influence of baking on anthocyanin content in coloured-grain wheat bread. Plant Soil Environ. 2020, 66, 381–386. [Google Scholar] [CrossRef]
- Francavilla, A.; Joye, I.J. Anthocyanin content of crackers and bread made with purple and blue wheat varieties. Molecules 2022, 27, 7180. [Google Scholar] [CrossRef] [PubMed]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A Review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef] [PubMed]
- Różyło, R.; Wójcik, M.; Dziki, D.; Biernacka, B.; Cacak-Pietrzak, G.; Gawłowski, S.; Zdybel, A. freeze-dried elderberry and chokeberry as natural colorants for gluten-free wafer sheets. Int. Agrophys. 2019, 33, 217–225. [Google Scholar] [CrossRef]
- Rifai, L.; Saleh, F.A. A review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. Int. J. Toxicol. 2020, 39, 93–102. [Google Scholar] [CrossRef]
- Sady, S.; Sielicka-Rózyńska, M. Quality assessment of experimental cookies enriched with freeze-dried black chokeberry. Acta Sci. Pol. Technol. Aliment. 2019, 18, 463–471. [Google Scholar] [CrossRef]
- Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of aronia powders obtained by different drying processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Extrusion processing of pure chokeberry (Aronia melanocarpa) pomace: Impact on dietary fiber profile and bioactive compounds. Foods 2021, 10, 518. [Google Scholar] [CrossRef]
- Antoniewska, A.; Rutkowska, J.; Pineda, M.M. Antioxidative, sensory and volatile profiles of cookies enriched with freeze-dried Japanese quince (Chaenomeles japonica) fruits. Food Chem. 2019, 286, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Urbanavičiūtė, I.; Viškelis, P.; Urbanavičiūtė, I.; Viškelis, P. Biochemical composition of Japanese quince (Chaenomeles japonica) and its promising value for food, cosmetic, and pharmaceutical industries. In Fruit Industry; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- Turkiewicz, I.P.; Tkacz, K.; Nowicka, P.; Michalska-Ciechanowska, A.; Lech, K.; Wojdyło, A. Physicochemical characterization and biological potential of Japanese quince polyphenol extract treated by different drying techniques. Food Sci. Technol. 2021, 152, 112247. [Google Scholar] [CrossRef]
- Zarroug, Y.; Sriti, J.; Sfayhi, D.; Slimi, B.; Allouch, W.; Zayani, K.; Hammami, K.; Sowalhia, M.; Kharrat, M. Effect of addition of Tunisian Zizyphus lotus L. fruits on nutritional and sensory qualities of cookies. Ital. J. Food Sci. 2021, 33, 84–97. [Google Scholar] [CrossRef]
- El Cadi, H.; El Bouzidi, H.; Selama, G.; El Cadi, A.; Ramdan, B.; El Majdoub, Y.O.; Alibrando, F.; Dugo, P.; Mondello, L.; Lanjri, A.F.; et al. Physico-chemical and phytochemical characterization of Moroccan wild jujube “Zizyphus lotus (L.)” fruit crude extract and fractions. Molecules 2020, 25, 5237. [Google Scholar] [CrossRef]
- Jug, U.; Naumoska, K.; Vovk, I. (−)-Epicatechin—An important contributor to the antioxidant activity of Japanese knotweed rhizome bark extract as determined by antioxidant activity-guided fractionation. Antioxidants 2021, 10, 133. [Google Scholar] [CrossRef]
- Pratami, D.K.; Mun’im, A.; Sundowo, A.; Sahlan, M. Phytochemical profile and antioxidant activity of propolis ethanolic extract from tetragonula bee. Pharmacogn. J. 2018, 10, 128–135. [Google Scholar] [CrossRef]
- Belinda, N.S.; Swaleh, S.; Mwonjoria, K.J.; Wilson, M.N. Antioxidant activity, total phenolic and flavonoid content of selected Kenyan medicinal plants, sea algae and medicinal wild mushrooms. Afr. J. Pure Appl. Chem. 2019, 13, 43–48. [Google Scholar] [CrossRef]
- Pawde, S.; Talib, M.I.; Parate, V.R. Development of fiber-rich biscuit by incorporating dragon fruit powder. Int. J. Fruit Sci. 2020, 20, S1620–S1628. [Google Scholar] [CrossRef]
- Lin, X.; Gao, H.; Ding, Z.; Zhan, R.; Zhou, Z.; Ming, J. Comparative metabolic profiling in pulp and peel of green and red pitayas (Hylocereus polyrhizus and Hylocereus undatus) reveals potential valorization in the pharmaceutical and food industries. Biomed. Res. Int. 2021, 2021, 6546170. [Google Scholar] [CrossRef]
- Arivalagan, M.; Karunakaran, G.; Roy, T.K.; Dinsha, M.; Sindhu, B.C.; Shilpashree, V.M.; Satisha, G.C.; Shivashankara, K.S. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chem. 2021, 353, 129426. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef]
- Pathak, R.; Thakur, V.; Gupta, R.K.; Rajinder, C.; Gupta, K.; Kumar Gupta, R. Formulation & analysis of papaya fortified biscuits. J. Pharmacogn. Phytochem. 2018, 7, 1542–1545. [Google Scholar]
- Santana, L.F.; Inada, A.C.; do Santo, B.L.S.; Filiú, W.F.O.; Pott, A.; Alves, F.M.; de Guimarães, R.C.A.; de Freitas, K.C.; Hiane, P.A. Nutraceutical potential of carica papaya in metabolic syndrome. Nutrients 2019, 11, 3390. [Google Scholar] [CrossRef] [PubMed]
- Peter, I.A.; Okafor, D.C.; Kabuo, N.O.; Ibeabuchi, J.; Odimegwu, E.N.; Alagbaoso, S.O.; Njideka, N.; Mbah, R.N. Production and evaluation of cookies from whole wheat and date palm fruit pulp as sugar substitute. Int. J. Adv. Eng. Technol. Manag. Appl. Sci. 2017, 4, 1–31. [Google Scholar]
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.)—A review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- Nadeem, M.; Qureshi, T.M.; Ugulu, I.; Riaz, M.N.; Ulain, Q.; Khan, Z.I.; Ahmad, K.; Ashfaq, A.; Bashir, H.; Dogan, Y. Mineral, vitamin and phenolic contents and sugar profiles of some prominent date palm (Phoenix dactylifera) varieties of Pakistan. Pak. J. Bot. 2019, 51, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Aljaloud, S.; Colleran, H.L.; Ibrahim, S.A. Nutritional Value of date fruits and potential use in nutritional bars for athletes. Food Nutr. Sci. 2020, 11, 463–480. [Google Scholar] [CrossRef]
- Zlatanović, S.; Kalušević, A.; Micić, D.; Laličić-Petronijević, J.; Tomić, N.; Ostojić, S.; Gorjanović, S. Functionality and storability of cookies fortified at the industrial scale with up to 75% of apple pomace flour produced by dehydration. Foods 2019, 8, 561. [Google Scholar] [CrossRef] [PubMed]
- Curutchet, A.; Trias, J.; Tárrega, A.; Arcia, P. Consumer response to cake with apple pomace as a sustainable source of fibre. Foods 2021, 10, 499. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Jukić, M.; Komlenić, D.K.; Lukinac, J. Influence of apple peel powder addition on the physico-chemical characteristics and nutritional quality of bread wheat cookies. Food Sci. Technol. Int. 2020, 26, 574–582. [Google Scholar] [CrossRef]
- Williams, B.A.; Mikkelsen, D.; Flanagan, B.M.; Gidley, M.J. “Dietary fibre”: Moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J. Anim. Sci. Biotechnol. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Karaman, E.; Yılmaz, E.; Tuncel, N.B. Physicochemical, microstructural and functional characterization of dietary fibers extracted from lemon, orange and grapefruit seeds press meals. Bioact. Carbohydr. Diet. Fibre 2017, 11, 9–17. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Jukniūtė, K.; Šlepetienė, A.; Paulauskienė, A. Qualitative properties of cookies enriched with berries pomace. Food Sci. Technol. 2021, 41, 474–481. [Google Scholar] [CrossRef]
- Vázquez-González, M.; Fernández-Prior, Á.; Bermúdez Oria, A.; Rodríguez-Juan, E.M.; Pérez-Rubio, A.G.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. Food Sci. Technol. 2020, 130, 109645. [Google Scholar] [CrossRef]
- Frum, A.; Georgescu, C.; Gligor, F.G.; Dobrea, C.; Tița, O. Identification and quantification of phenolic compounds from red currant (Ribes rubrum L.) and raspberries (Rubus idaeus L.). Int. J. Pharmacol. Phytochem. Ethnomed. 2017, 6, 30–37. [Google Scholar] [CrossRef]
- Panfilova, O.; Tsoy, M.; Golyaeva, O.; Knyazev, S.; Karpukhin, M. Agrometeorological and morpho-physiological studies of the response of red currant to abiotic stresses. Agron 2021, 11, 1522. [Google Scholar] [CrossRef]
- Warner, R.; Wu, B.S.; MacPherson, S.; Lefsrud, M. A Review of strawberry photobiology and fruit flavonoids in controlled environments. Front. Plant Sci. 2021, 12, 33. [Google Scholar] [CrossRef]
- Tagliani, C.; Perez, C.; Curutchet, A.; Arcia, P.; Cozzano, S. Blueberry pomace, valorization of an industry by-product source of fibre with antioxidant capacity. Food Sci. Technol. 2019, 39, 644–651. [Google Scholar] [CrossRef]
- Miller, K.; Feucht, W.; Schmid, M. Bioactive compounds of strawberry and blueberry and their potential health effects based on human intervention studies: A brief overview. Nutrients 2019, 11, 1510. [Google Scholar] [CrossRef]
- Rani, V.; Sangwan, V.; Rani, V.; Malik, P. Orange peel powder: A potent source of fiber and antioxidants for functional biscuits. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1319–1325. [Google Scholar] [CrossRef]
- Liew, S.S.; Ho, W.Y.; Yeap, S.K.; Bin Sharifudin, S.A. Phytochemical composition and in vitro antioxidant activities of Citrus Sinensis Peel Extracts. PeerJ 2018, 2018, e5331. [Google Scholar] [CrossRef]
- Imeneo, V.; Romeo, R.; Gattuso, A.; De Bruno, A.; Piscopo, A. Functionalized biscuits with bioactive ingredients obtained by citrus lemon pomace. Foods 2021, 10, 2460. [Google Scholar] [CrossRef]
- Alasalvar, H.; Kaya, M.; Berktas, S.; Basyigit, B.; Cam, M. Pressurised hot water extraction of phenolic compounds with a focus on eriocitrin and hesperidin from lemon peel. Int. J. Food Sci. Technol. 2022, 58, 2060–2066. [Google Scholar] [CrossRef]
- Multari, S.; Carlin, S.; Sicari, V.; Martens, S. Differences in the composition of phenolic compounds, carotenoids, and volatiles between juice and pomace of four citrus fruits from southern Italy. Eur. Food Res. Technol. 2020, 246, 1991–2005. [Google Scholar] [CrossRef]
- Caruso, M.C.; Galgano, F.; Colangelo, M.A.; Condelli, N.; Scarpa, T.; Tolve, R.; Favati, F. Evaluation of the oxidative stability of bakery products by oxitest method and sensory analysis. Eur. Food Res. Technol. 2017, 243, 1183–1191. [Google Scholar] [CrossRef]
- Azman, N.F.I.N.; Azlan, A.; Khoo, H.E.; Razman, M.R. Antioxidant properties of fresh and frozen peels of citrus species. Curr. Res. Nutr. Food Sci. 2019, 7, 331–339. [Google Scholar] [CrossRef]
- Laganà, V.; Giuffrè, A.M.; De Bruno, A.; Poiana, M. Formulation of biscuits fortified with a flour obtained from bergamot by-products (Citrus bergamia, Risso). Foods 2022, 11, 1137. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Dehsahraei, H.; Esmaeili Gouvarchin Ghaleh, H.; Mirnejad, R.; Parastouei, K. The effect of bergamot (KoksalGarry) Supplementation on lipid profiles: A systematic review and meta-analysis of randomized controlled trials. Phyther. Res. 2022, 36, 4409–4424. [Google Scholar] [CrossRef] [PubMed]
- Spina, A.; Brighina, S.; Muccilli, S.; Mazzaglia, A.; Fabroni, S.; Fallico, B.; Rapisarda, P.; Arena, E. Wholegrain durum wheat bread fortified with citrus fibers: Evaluation of quality parameters during long storage. Front. Nutr. 2019, 6, 13. [Google Scholar] [CrossRef]
- Shafi, A.; Ahmad, F.; Mohammad, Z.H. Effect of the addition of banana peel flour on the shelf life and antioxidant properties of cookies. ACS Food Sci. Technol. 2022, 2, 1355–1363. [Google Scholar] [CrossRef]
- Abou-Arab, A.A.; Abu-Salem, F.M. Nutritional and anti-nutritional composition of banana peels as influenced by microwave drying methods. Int. J. Nutr. Food Eng. 2018, 11, 845–852. [Google Scholar] [CrossRef]
- Šeremet, D.; Durgo, K.; Jokić, S.; Hudek, A.; Cebin, A.V.; Mandura, A.; Jurasović, J.; Komes, D. Valorization of banana and red beetroot peels: Determination of basic macrocomponent composition, application of novel extraction methodology and assessment of biological activity in vitro. Sustainability 2020, 12, 4539. [Google Scholar] [CrossRef]
- do Santos, J.T.C.; Petry, F.C.; de Tobaruela, E.C.; Mercadante, A.Z.; Gloria, M.B.A.; Costa, A.M.; Lajolo, F.M.; Hassimotto, N.M.A. Brazilian native passion fruit (Passiflora tenuifila Killip) is a rich source of proanthocyanidins, carotenoids, and dietary fiber. Food Res. Int. 2021, 147, 110521. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.V.; Milani, M.S.; Ries, E.F. Production optimization of passion fruit peel flour and its incorporation into dietary food. Food Sci. Technol. Int. 2020, 26, 132–139. [Google Scholar] [CrossRef] [PubMed]
- de Toledo, N.M.V.; Brigide, P.; López-Nicolás, R.; Frontela, C.; Ros, G.; Canniatti-Brazaca, S.G. Higher inositol phosphates and total oxalate of cookies containing fruit by-products and their influence on calcium, iron, and zinc bioavailability by caco-2 cells. Cereal Chem. 2019, 96, 456–464. [Google Scholar] [CrossRef]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res. Int. 2020, 137, 109675. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Oliveira, A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. A chemical valorisation of melon peels towards functional food ingredients: Bioactives profile and antioxidant properties. Food Chem. 2021, 335, 127579. [Google Scholar] [CrossRef]
- Mawire, P.; Mozirandi, W.; Heydenreich, M.; Chi, G.F.; Mukanganyama, S. Isolation and antimicrobial activities of phytochemicals from Parinari curatellifolia (Chrysobalanaceae). Adv. Pharmacol. Pharm. Sci. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Verardo, V.; Glicerina, V.; Cocci, E.; Frenich, A.G.; Romani, S.; Caboni, M.F. Determination of free and bound phenolic compounds and their antioxidant activity in buckwheat bread loaf, crust and crumb. Food Sci. Technol. 2018, 87, 217–224. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity—A review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef] [PubMed]
- Balli, D.; Cecchi, L.; Innocenti, M.; Bellumori, M.; Mulinacci, N. Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem. 2021, 355, 129642. [Google Scholar] [CrossRef]
- Theagarajan, R.; Malur Narayanaswamy, L.; Dutta, S.; Moses, J.A.; Chinnaswamy, A. Valorisation of grape pomace (cv. Muscat) for development of functional cookies. Int. J. Food Sci. Technol. 2019, 54, 1299–1305. [Google Scholar] [CrossRef]
- Fontana, M.; Murowaniecki Otero, D.; Pereira, A.M.; Santos, R.B.; Gularte, M.A. Grape pomace flour for incorporation into cookies: Evaluation of nutritional, sensory and technological characteristics. J. Culin. Sci. Technol. 2022, 1–20. [Google Scholar] [CrossRef]
- Pedras, B.; Salema-Oom, M.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Valorization of white wine grape pomace through application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. J. Supercrit. Fluids 2017, 128, 138–144. [Google Scholar] [CrossRef]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape pomace as a promising antimicrobial alternative in feed: A critical review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef]
- Kato-Schwartz, C.G.; Corrêa, R.C.G.; de Souza Lima, D.; de Sá-Nakanishi, A.B.; de Almeida Gonçalves, G.; Seixas, F.A.V.; Haminiuk, C.W.I.; Barros, L.; Ferreira, I.C.F.R.; Bracht, A.; et al. Potential anti-diabetic properties of merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Food Res. Int. 2020, 137, 109462. [Google Scholar] [CrossRef]
- Asadi, S.Z.; Khan, M.A.; Chamarthy, R.V. Development and quality evaluation of cookies supplemented with concentrated fiber powder from chiku (Manilkara zapota L.). J. Food Sci. Technol. 2021, 58, 1839–1847. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Sharma, N.; Kaur, H.; Kaur, M.; Sandhu, K.S.; Maqsood, S.; Ozogul, F. A review of sapodilla (Manilkara zapota) in human nutrition, health, and industrial applications. Trends Food Sci. Technol. 2022, 127, 319–334. [Google Scholar] [CrossRef]
- Arivazhagan, E.; Kandasamy, R.; Ramadoss, N. Variability and correlation analysis in sapota (Manilkara sapota) under coastal ecosystem. Plant Arch. 2019, 19, 652–654. [Google Scholar]
- Conidi, C.; Drioli, E.; Cassano, A. Coupling ultrafiltration-based processes to concentrate phenolic compounds from aqueous goji berry extracts. Molecules 2020, 25, 3761. [Google Scholar] [CrossRef] [PubMed]
- Conidi, C.; Cassano, A.; Drioli, E. Membrane diafiltration for enhanced purification of biologically active compounds from goji berries extracts. Sep. Purif. Technol. 2022, 282, 119991. [Google Scholar] [CrossRef]
- Bora, P.; Ragaee, S.; Abdel-Aal, E.S.M. Effect of incorporation of goji berry by-product on biochemical, physical and sensory properties of selected bakery products. Food Sci. Technol. 2019, 112, 108225. [Google Scholar] [CrossRef]
- Satpal, D.; Kaur, J.; Bhadariya, V.; Sharma, K. Actinidia deliciosa (kiwi fruit): A comprehensive review on the nutritional composition, health benefits, traditional utilization, and commercialization. J. Food Process. Preserv. 2021, 45, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Liu, H.; Zhao, T.; Meng, C.; Liu, Z.; Liu, X. bioactive compounds and in vitro antioxidant activities of peel, flesh and seed powder of kiwi fruit. Int. J. Food Sci. Technol. 2018, 53, 2239–2245. [Google Scholar] [CrossRef]
- Mohamed, Z.E.-O.M. Physicochemical and sensory characteristics of cookies amended with kiwi fruit powder. Egypt. J. Agric. Res. 2017, 95, 1681–1694. [Google Scholar] [CrossRef]
- Sh El-Shahat, M.; Ragab, M.; Siliha, H.; Rabie, M. Physicochemical characteristics of biscuits fortified with cactus pear peel powder. ZJAR 2017, 44, 1073–1084. [Google Scholar] [CrossRef]
- Mahmoud, K.F.; Ali, H.S.; Amin, A.A. Nanoencapsulation of bioactive compounds extracted from Egyptian prickly pears peel fruit: Antioxidant and their application in guava juice. Asian J. Sci. Res. 2018, 11, 574–586. [Google Scholar] [CrossRef]
- Namir, M.; Elzahar, K.; Ramadan, M.F.; Allaf, K. Cactus pear peel snacks prepared by instant pressure drop texturing: Effect of process variables on bioactive compounds and functional properties. J. Food Meas. Charact. 2017, 11, 388–400. [Google Scholar] [CrossRef]
- de Wit, M.; du Toit, A.; Osthoff, G.; Hugo, A. Cactus pear antioxidants: A comparison between fruit pulp, fruit peel, fruit seeds and cladodes of eight different cactus pear cultivars (Opuntia ficus-indica and Opuntia robusta). J. Food Meas. Charact. 2019, 13, 2347–2356. [Google Scholar] [CrossRef]
- Grigio, M.L.; Moura, E.A.; Carvalho, G.F.; Zanchetta, J.J.; Chagas, P.C.; Chagas, E.A.; Durigan, M.F.B. Nutraceutical potential, quality and sensory evaluation of camu-camu pure and mixed jelly. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.; Farid, M. Effect of temperatures on polyphenols during extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J. Korean consumers’ acceptability of commercial food products and usage of the 9-point hedonic scale. J. Sens. Stud. 2018, 33, e12467. [Google Scholar] [CrossRef]
- Rocha Parra, A.F.; Sahagún, M.; Ribotta, P.D.; Ferrero, C.; Gómez, M. Particle size and hydration properties of dried apple pomace: Effect on dough viscoelasticity and quality of sugar-snap cookies. Food Bioprocess Technol. 2019, 12, 1083–1092. [Google Scholar] [CrossRef]
- Usman, M.; Ahmed, S.; Mehmood, A.; Bilal, M.; Patil, P.J.; Akram, K.; Farooq, U. Effect of apple pomace on nutrition, rheology of dough and cookies quality. J. Food Sci. Technol. 2020, 57, 3244–3251. [Google Scholar] [CrossRef]
- Yaqoob, M.; Aggarwal, P.; Rasool, N.; Baba, W.N.; Ahluwalia, P.; Abdelrahman, R. Enhanced functional properties and shelf stability of cookies by fortification of kinnow derived phytochemicals and residues. J. Food Meas. Charact. 2021, 15, 2369–2376. [Google Scholar] [CrossRef]
- de Toledo, N.M.V.; Nunes, L.P.; da Silva, P.P.M.; Spoto, M.H.F.; Canniatti-Brazaca, S.G. Influence of pineapple, apple and melon by-products on cookies: Physicochemical and sensory aspects. Int. J. Food Sci. Technol. 2017, 52, 1185–1192. [Google Scholar] [CrossRef]
- Janotková, L.; Potočňáková, M.; Kreps, F.; Krepsová, Z.; Ácsová, A.; Ház, A.; Jablonský, M. Effect of sea buckthorn biomass on oxidation stability and sensory attractiveness of cereal biscuits. BioResources 2021, 16, 5097–5105. [Google Scholar] [CrossRef]
- Ali, A.; Ali, A.; Naz, S.; Ali, R.; Mastoi, Z.A.; Ali, M.; Bashir, N.; Nighat, D.; Salman, A. Physico-chemical and organoleptic characteristics of biscuits enriched with date powder. Pak. J. Biotechnol. 2021, 18, 31–36. [Google Scholar] [CrossRef]
Main Ingredients and Level of WF Replacement | Cookies Production Method | BTT | Main Enrichment Effect | RAL | Refs. |
---|---|---|---|---|---|
Wheat flour and camu-camu powder (5, 10, 15, 20%) | The dough was divided into approximately 16 g portions, then formed into circles 6 mm thick and with a diameter of 50 mm. | 165 °C, 7 min | TPC and AA increasing. | 5–20% | [20] |
Wheat flour and Parinari curatellifolia peel flour (5, 10, 15, 20%) | Dough with 55–60% moisture content was rolled out to appropriate thickness and transferred to greased baking pan. | 150 °C, 20 min | Growth of AA, TFC and TPC. Beneficial effect on thermal properties, crude fiber and ash content. Increase in hardness, decrease in brightness. | - | [22] |
Fine wheat flour and grape skin and grape seed powder (5, 10, 15%) | After kneading, the dough was shaped into sheets 2 mm thick, and then cut into pieces (round) 40 mm in diameter. | 180 °C, 8 min | Increase in total fiber content (TFC), decrease in hardness. | 5% | [23] |
Wheat flour and ground chokeberry, hawthorn, sea buckthorn, elderberry, rosehip and rowan (1%). | The dough was stored for 30 min at 4 °C, rolled out to a 3.5 mm thickness and cut into round shapes of the 3.5 cm diameter. | 200 °C, 8 min | Increased AA, reduced acrylamide content. | - | [21] |
Wheat flour and passion fruit flour (3, 6, 9%) | The dough was prepared using the creaming method, then formed into sheets 3 mm thick and cut into round pieces 45 ± 2 mm in diameter. | 170 °C, 15 min | Improvement in AA, TPC and fiber content, with an increase in acrylamide content. Reduction in starch digestion rate (in vitro). Darker color, increase in hardness. | Up to 6% | [29] |
Wheat flour and chokeberry powder (5, 10, 15% of the dough) | After dough preparation, replaced 5, 10, 15% of the weight with additive. | 180 °C, 10 min | Increase in total polyphenols (TPC), AA, water, ash, reducing sugars. Reduction in fat content. | 10% | [38] |
Wheat flour and Zizyphus lotus powder (15, 30, 45, 100%) | The dough was rolled out to a thickness of 2 mm and sliced into round pieces 5 cm in diameter. | 175 °C, 15 min | Improved AA, TPC and TFC. | 15% | [45] |
Refined wheat flour and pitaya powder (30%, 40%, 50%, and 60%) | After kneading, the dough was left to rest for 10 min, then shaped into balls and cut at roughly 10 g per biscuit. | 160 °C, 25 min | Fivefold improvement in fiber content, increase in spread ratio. | 50% | [50] |
Whole wheat flour and date fruit pulp flour (90:10; 80:20; 70:30; 60:40, 50:50) | Creaming sugar and margarine. The dough was rolled and flattened to a thickness of 3.5 mm, then cut using a hand-cutter. | 150 °C, 30 min | Increase in ash, crude fiber and fat content. Decrease in protein content. | 30% | [56] |
Wheat flour and apple pomace powder (25, 50, 75%) | Wheat flour and apple pomace powder (25, 50, 75%) The dough was cut into cookies 40 mm in diameter and 5–6 mm thick. | 175 °C, 10 min | Multi-fold improvements in AA, TPC and TFC. | Up to 50% | [60] |
Blueberry powder (37.14% of the dough) and wheat flour | After mixing the components, the dough was rolled to a thickness of 0.5 cm. Next, it was cut into pieces with a diameter of 4 cm. | - | Unmet consumer expectations. | - | [61] |
Bread wheat flour and apple peel powder (4, 8, 16, 24, and 32%) | The dough was chilled at 8 °C for 30 min and rolled out to a thickness of 18 mm. Then it was cut into 44 mm diameter cookies. | 205 °C, 10 min | Higher AA, TPC, fiber, ash and fat content. Beneficial effect in terms of sensory properties. | 24% | [62] |
Wheat flour and flour from pomace of strawberries, redcurrants and raspberries (10, 15, 20%) | The dough was rolled out to a thickness of 0.5 cm and cut into rectangles (2 cm wide, 7 cm long). | 180 °C, 10 min | Increase in fiber content and hardness. | - | [65] |
Wheat flour and blueberry pomace powder (3, 6, 9%) | The dough was cut into round pieces 4 cm in diameter and 0.50, 0.75 and 1.0 cm thick. | 160, 170, 180 °C, 12 min | Increase in AA, TPC, fiber content. | 9% | [70] |
Refined wheat flour and orange peel powder (5, 10, 15 and 20%) | The cake was made using the creaming method. | - | Increase in AA, TPC, total fiber, soluble and insoluble dietary fiber. | Up to 20% | [72] |
Wheat flour and fresh lemon peel (10 g, replacing wheat flour) and lemon pomace extract (50 mL, replacing skimmed milk) | The dough was rolled out to a thickness of 3.5 mm and cut into pieces. | 180 °C, 7 min | Enhanced AA, TPC and longer induction period. | - | [74] |
Wheat flour and Pastazzo bergamot pulp flour (2.5, 5, 10, 15%) | Dough was rolled into 3 mm thick pieces with a diameter of 6 cm. Increase in AA, TPC, TFC and water activity. Decrease in pH value. Reduction in baking time. | 180 °C, 8 min (FC), 12 min (C) | Increase in AA, TPC, TFC and water activity. Decrease in pH value. Baking time reduction. | 2.5% | [79] |
Superfine wheat flour and banana peel flour (7.5, 10, 12.5, 15%) | Ingredients mixed. | 160 °C, 10–15 min | AA and TPC improvement. Increase in hardness, moisture content and ash. Decrease in the amount of protein and fat. Decrease in brightness and yellowness. | - | [82] |
Whole wheat flour and passion fruit peel powder (10, 20, 30%) | Dough was frozen for 1 h, then cut into pieces approximately 50 mm in diameter and 7 mm thick. | 180 °C, ±20 min (until fully baked) | Increase medium crude fiber and ash content. | 30% | [86] |
Refined wheat flour and grape pomace powder (2, 4, 6, 8%) | No information available. | - | Increase in fiber and protein content. Significantly better preservation of texture properties during storage. | 4, and 6% | [96] |
Wheat flour and grape pomace flour blend (19.8%) | Creaming. Homogenization of ingredients. The dough was opened to a thickness of 6 mm with a dough opener, and then cut into 47.85 mm diameter portions. | 150 °C, 10 min | High protein content (75%) and appropriate microbiological quality. Adequate product acceptability and consumer willingness to buy. | 19.8% | [97] |
Refined wheat flour and chiku pomace (4.5, 7, 9.5, 12%) | After kneading, the dough was rested for 5 min and rolled out to a thickness of 0.44 ± 0.05 cm. Then round 5 cm diameter shapes were formed. | 168 °C, 20 min | Increase in AA, crude fiber and dietary fiber. Decrease in hardness and protein content. | 7% | [101] |
Soft wheat flour folded and ground goji berry pomace (10, 20, 30 and 40%) | Macro wire-cut method. The dough was rolled out and then cut with a cookie cutter. | 205 °C, 11 min | Increase in fiber content (soluble and insoluble fraction), free polyphenolic compounds and protein. | 10% | [106] |
Wheat flour and powder of the edible part and kiwi peels (5, 10, 15, 20%) | Creaming. After mixing the ingredients, the dough was formed into cookies. | 170–180 °C, 20 min | Increase in fiber and ash content. | 10, and 15% | [109] |
Wheat flour (Elsafa) and cactus pear peel powder (2.5, 5, 7.5, 10%) | The dry ingredients were stirred together and blended with fat until achieving a biscuit-like consistency. Subsequently, the egg was folded in, followed by water to create uniform dough that was shaped by cutting. | 200 °C, 15 min | Increase in dietary fiber content and antioxidant activity. | 7.5% | [110] |
Wheat flour and apple pomace powder (15, 30%) | After mixing the ingredients, the dough was left for 30 min. Afterwards, it was laminated and cut into round pieces measuring 40 mm in diameter. | 185 °C, 14 min | Reduction in brightness levels, positive impact on taste. | 15% | [118] |
Straight grade wheat flour and apple pomace powder (5, 10, 15, 20, 25%) | Creaming. The dough was rolled 10 times and then cut into round forms. | 185 °C, 20–25 min | Increase in fiber and spread factor. | 10% | [119] |
Refined wheat flour and pomace powder, kinnow peels (5, 10, 15, 20%) and supercritical liquid kinnow peel extract (1, 2, 3 and 4%) | The dough was cut into round pieces 5 mm in diameter. | 190 °C, 15 min | Increase in brightness, crude fiber and ash content. Increase in AA, TPC, TFC and carotenoids. Improved oxidative stability after storage. | 10% (PE), 5% (PO), 4% (EX). | [120] |
Wheat flour with 10% protein and powder of pineapple central axis, apple endocarp and melon peel (5, 10, 15%) | Dough was rolled out and cut into round pieces. | 180 °C, 10 min | Improved nutritional value (fiber content), highest for melon. Decrease in brightness. Positive effect of pineapple powder on acceptance rate and purchase intention. | 15% | [121] |
Wheat flour and sea buckthorn fruit biomass (pomace) powder (5, 10, 15, 20%) | The dough was rolled out to a thickness of about 3 mm. | 180 °C, 8 min | Positive impact on sensory attraction. | 15, 20% | [122] |
Refined wheat flour and Haenomeles japonica quince fruit powder (0.5, 1, 1.5, 3, 6, 9%) | The dough was stored at 4 °C for 24 h. Afterwards, slices 5 mm thick were obtained and round pieces 50 mm wide were cut. | 170 °C, 17 min | Increase in AA. Decrease in AA after 16 weeks of storage. Less emission of secondary lipid oxidation products than the control. | 1/1.5% | [41] |
Refined wheat flour (Maida) and date powder (50, 100%) | After the dough was kneaded, cookies were formed. | 160 °C, 30 min | Improve in overall acceptability, quality and physicochemical parameters (moisture, ash, total soluble solids, pH, vitamin C, fat, crude fiber, protein and carbohydrates). Enhancement of overall acceptability. | 100% | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewska, A.; Dziki, D. Enrichment of Cookies with Fruits and Their By-Products: Chemical Composition, Antioxidant Properties, and Sensory Changes. Molecules 2023, 28, 4005. https://doi.org/10.3390/molecules28104005
Krajewska A, Dziki D. Enrichment of Cookies with Fruits and Their By-Products: Chemical Composition, Antioxidant Properties, and Sensory Changes. Molecules. 2023; 28(10):4005. https://doi.org/10.3390/molecules28104005
Chicago/Turabian StyleKrajewska, Anna, and Dariusz Dziki. 2023. "Enrichment of Cookies with Fruits and Their By-Products: Chemical Composition, Antioxidant Properties, and Sensory Changes" Molecules 28, no. 10: 4005. https://doi.org/10.3390/molecules28104005
APA StyleKrajewska, A., & Dziki, D. (2023). Enrichment of Cookies with Fruits and Their By-Products: Chemical Composition, Antioxidant Properties, and Sensory Changes. Molecules, 28(10), 4005. https://doi.org/10.3390/molecules28104005