Differentiation of Medicinal Plants According to Solvents, Processing, Origin, and Season by Means of Multivariate Analysis of Spectroscopic and Liquid Chromatography Data
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Extraction Solvents on Characteristics of Frozen and Dried Medicinal Plants
2.2. Effect of Post-Harvest Treatment, Geographical Origin, and Production Year on Characteristics of Frozen and Dried Medicinal Plants
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Herbal Material
3.3. Preparation of Herbal Extracts
3.4. Determination of Total Phenolic Compounds Content, Total Flavonoid Content, and Color Characteristics
3.5. Determination of Total Antioxidant Activity
3.6. Determination of Individual Phenolic Compounds
3.7. Determination of Macro- and Microelements
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butorová, L.; Polovka, M.; Pořízka, J.; Vítová, E. Multi-experimental characterization of selected medical plants growing in the Czech Republic. Chem. Pap. 2017, 71, 1605–1621. [Google Scholar] [CrossRef]
- Rajan, M.; Rajkimar, G.; Guedes, T.J.F.L.; Barros, R.G.C.; Narain, N. Performance of different solvents on extraction of bioactive compounds, antioxidant and cytotoxic activities in Phoenix loureiroi Kunth leaves. J. Appl. Res. Med. Aromat. Plants 2020, 17, 100247. [Google Scholar] [CrossRef]
- Lim, Y.P.; Pang, S.F.; Yusoff, M.M.; Mudalip, S.K.A.; Gimbum, J. Correlation between the extraction yield of mangiferin to the antioxidant activity, total phenolic and total flavonoid content of Phaleria macrocarpa fruits. J. Appl. Res. Med. Aromat. Plants 2019, 14, 100224. [Google Scholar] [CrossRef]
- Patonay, K.; Szalontai, H.; Scsugány, J.; Szabó-Hudák, O.; Pénzes-Kónya, E.; Neméth, É.Z. Comparison of extraction methods for the assessment of total polyphenol content and in vitro antioxidant capacity of horsemint (Mentha longifolia (L.) L.). J. Appl. Res. Med. Aromat. Plants 2019, 15, 100220. [Google Scholar] [CrossRef]
- Dailey, A.; Vuong, Q.V. Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food Agric. 2015, 1, 1115646. [Google Scholar] [CrossRef]
- Złotek, U.; Mikulska, S.; Nagajek, M.; Świeca, M. The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J. Biol. Sci. 2016, 23, 628–633. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L.; Cronje, P.J.R.; Landahl, S.; Ortiz, J.O.; Terry, L.A. Rapid methods for extracting and quantifying phenolic compounds in citrus rinds. Food Sci. Nutr. 2016, 4, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Tasioula-Margari, M.; Tsabolatidou, E. Extraction, separation, and identification of phenolic compounds in virgin olive oil by HPLC-DAD and HPLC-MS. Antioxidants 2015, 4, 548–562. [Google Scholar] [CrossRef]
- Thoo, Y.Y.; Ng, S.Y.; Khoo, M.Z.; Wan Aida, W.M.; Ho, C.W. A binary solvent extraction system for phenolic antioxidants and its application to the estimation of antioxidant capacity in Andrographis paniculata extracts. Int. Food Res. J. 2013, 20, 1103–1111. [Google Scholar]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Dent, M.; Dragović-Uzelac, V.; Penić, M.; Brnčić, M.; Bosiljkov, T.; Levaj, B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Rocha, R.P.; Melo, E.C.; Radünz, L.L. Influence of drying process on the quality of medicinal plants: A review. J. Med. Plant Res. 2011, 5, 7076–7084. [Google Scholar] [CrossRef]
- Orphanides, A.; Goulas, V.; Gekas, V. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J. Food Sci. 2013, 31, 509–513. [Google Scholar] [CrossRef]
- Nozad, M.; Khojastehpour, M.; Tabasizadeh, M.; Azizi, M.; Ashtiani, S.H.M.; Salarikia, A. Characterization of hot-air drying and infrared drying of spearmint (Mentha spicata L.) leaves. J. Food Meas. Charact. 2016, 10, 466–473. [Google Scholar] [CrossRef]
- Kouřimská, L.; Ešlerová, K.; Khatri, Y. The effect of storage on quality of herbs genus Origanum. Potravin. Slovak J. Food Sci. 2016, 10, 207–214. [Google Scholar] [CrossRef]
- Di Vittori, L.; Mazzoni, L.; Battino, M.; Mezzetti, B. Pre-harvest factors influencing the quality of berries. Sci. Hortic. 2018, 233, 310–322. [Google Scholar] [CrossRef]
- Liu, W.; Yin, D.; Li, N.; Hou, X.; Wang, D.; Li, D.; Liu, J. Influence of Environmental Factors on the Active Substance Production and Antioxidant Activity in Potentilla fruticosa L. and Its Quality Assessment. Sci. Rep. 2016, 6, 28591. [Google Scholar] [CrossRef]
- Pico, Y. Chemical Analysis of Food—Techniques and Application, 2nd ed.; Academic Press: London, UK, 2020; pp. 33–76. [Google Scholar]
- Iloki-Assanga, S.B.; Lewis-Luján, L.M.; Lara-Espinoza, C.L.; Gil-Salido, A.A.; Fernandez-Angulo, D.; Rubio-Pino, J.L.; Haines, D.D. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res. Notes 2015, 8, 396. [Google Scholar] [CrossRef] [PubMed]
- Burdejova, L.; Tobolkova, B.; Polovka, M. Effects of Different Factors on Concentration of Functional Components of Aronia and Saskatoon Berries. Plant Foods Hum. Nutr. 2020, 75, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 4, 63–69. [Google Scholar]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.V.; Scarlett, C.J.; Bowyer, M.C.; Ngo, P.D.; Vuong, Q.V. Impact of Different Extraction Solvents on Bioactive Compounds and Antioxidant Capacity from the Root of Salacia chinensis L. J. Food Qual. 2017, 2017, 9305047. [Google Scholar] [CrossRef]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. [Google Scholar] [CrossRef]
- Kostić, D.; Mitić, S.; Zarubica, A.; Mitić, M.; Veličković, J.; Ranđelović, S. Content of trace metals in medicinal plants and their extracts. Hem. Ind. 2011, 65, 165–170. [Google Scholar] [CrossRef]
- Pereira, C.G.; Barreira, L.; Bijttebier, S.; Pieters, L.; Marques, C.; Santos, T.F.; Rodrigues, M.J.; Varela, J.; Custódio, L. Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp. maritima: From traditional remedies to prospective products. Sci. Rep. 2018, 8, 4689. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Roshanak, S.; Rahimmalek, M.; Goli, S.A.H. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 2016, 53, 721–729. [Google Scholar] [CrossRef]
- Semenov, G.V.; Krasnova, I.S.; Suvorov, O.A.; Shuvalova, I.D.; Posokhov, N.D. Influence of freezing and drying on phytochemical properties of various fruit. Biosci. Biotechnol. Res. Asia 2015, 12, 1311–1320. [Google Scholar] [CrossRef]
- Singha, P.; Muthukumarappan, K. Quality changes and freezing time prediction during freezing and thawing of ginger. Food Sci. Nutr. 2016, 4, 521–533. [Google Scholar] [CrossRef]
- Cuervo-Andrade, S.P.; Hensel, O. Stepwise drying of medicinal plants as alternative to reduce time and energy processing. IOP Conf. Ser. Mater. Sci. Eng. 2016, 138, 012014. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, H.; Lu, C.; Gao, B.; Gu, W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ 2016, 4, e2554. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Yin, D.; Zhao, X. Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle) T.S. Ying. PLoS ONE 2015, 10, e0122981. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, A.; Jayasinghe, L.; Kuhnert, N. Differentiation of black tea infusions according to origin, processing and botanical varieties using multivariate statistical analysis of LC-MS data. Food Res. Int. 2018, 109, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Gautam, V.K.; Datta, M.; Baldi, A. Effect of Geographical and Seasonal Variations on Phenolic Contents and Antioxidant Activity of Aerial Parts of Urtica diocia L. Curr. Tradit. Med. 2019, 5, 159–167. [Google Scholar] [CrossRef]
- Butorová, L.; Polovka, M.; Tobolková, B.; Vítová, E.; Křemenovská, G. Assessment of antioxidant properties of different types of herbs by EPR and UV-VIS spectroscopy. Czech Chem. Soc. Symp. Ser. 2015, 13, 56–58. [Google Scholar]
- Jiang, P.; Burczynski, F.; Campbell, C.; Pierce, G.; Austria, J.A.; Briggs, C.J. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Res. Int. 2007, 40, 356–364. [Google Scholar] [CrossRef]
Parameter | Comparisons * | Difference | Standard Error | Q Stat | Probability | Parameter |
---|---|---|---|---|---|---|
TPC | D–W | 25.2 | 5.0 | 7.1 | 0.0000 | D > E = W |
D–E | 17.5 | 5.0 | 4.9 | 0.0020 | ||
TFC | D–W | 28.2 | 4.6 | 8.8 | 0.0000 | D > E >W |
E–W | 11.1 | 4.6 | 3.5 | 0.0428 | ||
D–E | 17.1 | 4.6 | 5.3 | 0.0009 | ||
L* | E–D | 0.9 | 0.1 | 8.6 | 0.0000 | E = W > D |
W–D | 0.6 | 0.1 | 5.5 | 0.0006 | ||
a* | W–D | 1.8 | 0.2 | 10.4 | 0.0000 | W = E > D |
E–D | 1.6 | 0.2 | 8.9 | 0.0000 | ||
b* | D–E | 5.3 | 0.6 | 11.7 | 0.0000 | D > E = W |
D–W | 0.3 | 0.6 | 0.6 | 0.0000 | ||
C* | D–E | 5.4 | 0.7 | 11.5 | 0.0000 | D > E = W |
D–W | 0.2 | 0.7 | 0.5 | 0.0000 | ||
h° | D–W | 17.7 | 1.9 | 13.1 | 0.0000 | D > E > W |
E–W | 11.3 | 1.9 | 8.3 | 0.0000 | ||
D–E | 6.4 | 1.9 | 4.8 | 0.0000 | ||
BI | D–E | 4.5 | 0.6 | 10.5 | 0.0000 | D > E = W |
D–W | 4.0 | 0.6 | 9.3 | 0.0000 | ||
TAA | D–W | 133.5 | 27.3 | 6.9 | 0.0000 | D > E = W |
D–E | 91.2 | 27.3 | 4.7 | 0.0033 | ||
%RS | W–E | 44.3 | 11.7 | 5.4 | 0.0007 | W > E = D |
Ca | W–D | 4302.2 | 541.2 | 11.2 | 0.0000 | W > E = D |
W–E | 4013.3 | 541.2 | 10.5 | 0.0000 | ||
Cu | W–E | 8.4 | 2.0 | 6.0 | 0.0001 | W > E = D |
W–D | 8.2 | 2.0 | 5.8 | 0.0002 | ||
Fe | W–E | 4.3 | 0.8 | 8.0 | 0.0000 | W > E = D |
W–D | 3.6 | 0.8 | 6.7 | 0.0000 | ||
K | W–D | 5250.5 | 1002.4 | 7.4 | 0.0000 | W > E = D |
W–E | 5008.9 | 1002.4 | 7.1 | 0.0000 | ||
Mg | W–D | 1421.7 | 195.0 | 10.3 | 0.0000 | W > E > D |
E–D | 526.1 | 195.0 | 3.8 | 0.0220 | ||
W–E | 895.5 | 195.0 | 6.5 | 0.0000 | ||
Mn | W–D | 7.1 | 1.0 | 9.9 | 0.0000 | W > E = D |
W–E | 6.1 | 1.0 | 8.5 | 0.0000 | ||
Na | W–D | 736.4 | 163.3 | 6.4 | 0.0001 | W > E = D |
W–E | 690.0 | 163.3 | 6.0 | 0.0002 | ||
P | W–D | 1237.4 | 184.7 | 9.5 | 0.0000 | W = E > D |
E–D | 916.1 | 184.7 | 7.0 | 0.0000 | ||
Zn | E–D | 14.8 | 2.2 | 9.6 | 0.0000 | D > W > E |
W–E | 7.3 | 2.2 | 4.7 | 0.0033 | ||
D–W | 7.5 | 2.2 | 4.9 | 0.0023 | ||
hesperidin | D–W | 10,420.0 | 4159.9 | 3.5 | 0.0368 | D > E = W |
D–E | 10,123.6 | 4159.9 | 3.4 | 0.0436 | ||
quercetin | D–W | 257.8 | 105.2 | 3.5 | 0.0419 | D ≥ E = W |
Parameter | Comparisons * | Difference | Standard Error | Q Stat | Probability | Parameter |
---|---|---|---|---|---|---|
TFC | E–W | 15.9 | 5.1 | 4.5 | 0.0058 | E ≥ D = W |
L* | E–D | 0.8 | 0.1 | 4.4 | 0.0066 | E > W = D |
E–W | 0.7 | 0.1 | 4.2 | 0.0101 | ||
a* | W–D | 2.2 | 0.3 | 11.6 | 0.0000 | W = E > D |
E–D | 1.8 | 0.3 | 9.5 | 0.0000 | ||
b* | D–E | 4.5 | 0.8 | 8.3 | 0.0000 | D > E = W |
D–W | 3.4 | 0.8 | 6.1 | 0.0001 | ||
C* | D–E | 4.8 | 0.8 | 8.4 | 0.0000 | D > E = W |
D–W | 3.7 | 0.8 | 6.5 | 0.0000 | ||
h° | D–W | 12.2 | 2.3 | 7.5 | 0.0000 | D > E = W |
D–E | 8.0 | 2.3 | 4.9 | 0.0022 | ||
BI | D–E | 3.6 | 0.7 | 7.1 | 0.0000 | D > E = W |
D–W | 2.0 | 0.7 | 4.0 | 0.0145 | ||
%RS | W–D | 46.0 | 8.7 | 7.5 | 0.0000 | W = E > D |
E–D | 45.0 | 8.7 | 7.3 | 0.0000 | ||
Al | E–D | 5.8 | 1.0 | 8.5 | 0.0000 | W = E > D |
W–D | 5.6 | 1.0 | 8.2 | 0.0000 | ||
Ca | W–D | 5933.5 | 666.8 | 12.6 | 0.0000 | W > E = D |
W–E | 4712.3 | 666.8 | 10.0 | 0.0000 | ||
Cu | E–D | 2.7 | 0.7 | 5.5 | 0.0004 | E = W ≥ D |
Fe | W–D | 3.3 | 0.7 | 6.9 | 0.0000 | W > E = D |
W–E | 1.9 | 0.7 | 3.9 | 0.0191 | ||
K | E–D | 11,877.3 | 1278.0 | 13.1 | 0.0000 | E = W > D |
W–D | 11,540.7 | 1278.0 | 12.8 | 0.0000 | ||
Mg | W–D | 1996.3 | 210.0 | 13.4 | 0.0000 | W = E > D |
E–D | 1532.0 | 210.0 | 10.3 | 0.0000 | ||
Mn | W–D | 14.3 | 2.0 | 10.1 | 0.0000 | W > E ≥ D |
W–E | 10.3 | 2.0 | 7.3 | 0.0000 | ||
Na | W–D | 546.3 | 147.0 | 5.3 | 0.0009 | W > E ≥ D |
E–D | 390.3 | 147.0 | 3.8 | 0.0243 | ||
P | W–D | 2028.9 | 169.0 | 17.0 | 0.0000 | W > E > D |
E–D | 857.6 | 169.0 | 7.2 | 0.0000 | ||
W–E | 1171.3 | 169.0 | 9.8 | 0.0000 | ||
Zn | W–D | 7.7 | 1.9 | 5.8 | 0.0002 | W = E > D |
E–D | 2.8 | 1.9 | 3.7 | 0.0275 | ||
caffeic acid | W–D | 185.8 | 45.4 | 5.8 | 0.0002 | W = E > D |
E–D | 110.3 | 45.4 | 3.4 | 0.0436 |
Parameter | Water Extracts | 50% (v/v) Ethanol Extracts | DMSO Extracts | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Comparison * | Difference | Standard Error | Probability | Comparison * | Difference | Standard Error | Probability | Comparison * | Difference | Standard Error | Probability | |
Post-harvest treatment | ||||||||||||
TPC | D–F | 12.8 | 4.3 | 0.0038 | D–F | 11.6 | 5.4 | 0.0333 | F–D | 16.2 | 6.4 | 0.0139 |
TFC | D–F | 8.2 | 2.8 | 0.0038 | D–F | 13.0 | 5.1 | 0.0132 | - | - | - | - |
L* | F–D | 0.9 | 0.2 | 0.0002 | F–D | 0.5 | 0.1 | 0.0001 | - | - | - | - |
a* | - | - | - | - | F–D | 0.2 | 0.1 | 0.0252 | - | - | - | - |
b* | D–F | 2.0 | 0.4 | 0.0001 | D–F | 1.1 | 0.3 | 0.0003 | - | - | - | - |
C* | D–F | 2.0 | 0.4 | 0.0000 | D–F | 1.1 | 0.3 | 0.0003 | - | - | - | - |
h° | D–F | 4.2 | 1.5 | 0.0064 | - | - | - | - | - | - | - | - |
BI | D–F | 2.0 | 0.5 | 0.0001 | D–F | 1.0 | 0.3 | 0.0008 | - | - | - | - |
TAA | D–F | 89.5 | 23.3 | 0.0003 | D–F | 87.7 | 31.7 | 0.0072 | - | - | - | - |
%RS | - | - | - | - | - | - | - | - | - | - | - | - |
Al | - | - | - | - | - | - | - | - | F–D | 3.2 | 0.6 | 0.0000 |
Fe | D–F | 1.8 | 0.6 | 0.0410 | - | - | - | - | F–D | 1.5 | 0.6 | 0.0154 |
Mn | D–F | 7.0 | 2.7 | 0.0108 | D–F | 671.6 | 203.7 | 0.0015 | - | - | - | - |
Na | D–F | 452.8 | 222.2 | 0.0452 | - | - | - | - | F–D | 262.7 | 70.9 | 0.0004 |
P | D–F | 536.8 | 207.6 | 0.0117 | - | - | - | - | F–D | 254.7 | 30.0 | 0.0000 |
Cu | - | - | - | - | D–F | 1.9 | 0.6 | 0.0013 | F–D | 9.2 | 2.3 | 0.0001 |
K | - | - | - | - | D–F | 6001.7 | 1337.5 | 0.0000 | F–D | 5634.0 | 765.0 | 0.0000 |
Mg | - | - | - | - | D–F | 671.6 | 203.7 | 0.0015 | F–D | 334.3 | 71.0 | 0.0000 |
Zn | - | - | - | - | D–F | 6.0 | 2.3 | 0.0093 | F–D | 13.7 | 1.5 | 0.0000 |
gallic acid | - | - | - | - | - | - | - | - | F–D | 61.2 | 30.0 | 0.0450 |
chlorogenic acid | D–F | 146.1 | 60.8 | 0.0188 | D–F | 175.5 | 71.1 | 0.0160 | - | - | - | - |
caffeic acid | D–F | 166.4 | 53.8 | 0.0028 | D–F | 75.7 | 32.6 | 0.0228 | F–D | 61.2 | 30.0 | 0.0020 |
ferulic acid | - | - | - | - | - | - | - | - | F–D | 159.2 | 67.3 | 0.0020 |
quercetin | D–F | 168.3 | 70.5 | 0.0196 | - | - | - | - | F–D | 77.0 | 24.0 | 0.0207 |
hesperidin | - | - | - | - | D–F | 4260.5 | 1885.5 | 0.0268 | - | - | - | - |
Geographical origin | ||||||||||||
K | L–B | 3065.1 | 1257.1 | 0.0172 | L–B | 3363.7 | 1454.8 | 0.0236 | L–B | 3259.5 | 1455.8 | 0.0305 |
Na | L–B | 646.5 | 215.3 | 0.0037 | L–B | 351.9 | 126.3 | 0.0068 | L–B | 156.7 | 74.9 | 0.0399 |
Year of production | ||||||||||||
%RS | - | - | - | - | 15–16 | 73.3 | 11.5 | 0.0000 | 15–16 | 43.8 | 8.2 | 0.0000 |
Al | - | - | - | - | 15–16 | 14.3 | 1.2 | 0.0000 | 15–16 | 1.8 | 0.7 | 0:0085 |
Cu | 15–16 | 1.7 | 0.8 | 0.0391 | 15–16 | 1.2 | 0.6 | 0.0406 | 15–16 | 12.6 | 2.0 | 0.0000 |
Fe | 15–16 | 2.3 | 0.8 | 0.0087 | 15–16 | 3.5 | 0.5 | 0.0000 | - | - | - | |
Na | 15–16 | 531.0 | 219.6 | 0.0180 | 15–16 | 519.5 | 216.7 | 0.0191 | 15–16 | 224.6 | 72.5 | 0.0028 |
caffeic acid | - | - | - | - | 15–16 | 73.7 | 32.6 | 0.0267 | 15–16 | 52.2 | 24.9 | 0.0392 |
p-coumaric acid | - | - | - | - | 15–16 | 1.7 | 0.8 | 0.0445 | - | - | - |
Discriminant Method | Solvent | Processing | Origin | Year | |
---|---|---|---|---|---|
CDA | Water | 97.4% | 84.2% | 96.1% | |
50% (v/v) ethanol | 98.7% | 85.5% | 100% | ||
Dimethyl sulfoxide | 100% | 82.9% | 96.1% | ||
kth neighbor | k = 1 | Water | 100% | 100% | 100% |
50% (v/v) ethanol | 100% | 100% | 100% | ||
Dimethyl sulfoxide | 100% | 100% | 100% | ||
k = 2 | Water | 81.6% | 65.8% | 80.3% | |
50% (v/v) ethanol | 89.5% | 75.0% | 84.2% | ||
Dimethyl sulfoxide | 96.1% | 61.8% | 86.8% |
Botanical Name | Part Used | Processing | Locality | Production Year |
---|---|---|---|---|
Lavandula angustifolia | Flower | Freezing/drying | Brno/Lednice | 2015, 2016 |
Salvia sclarea | Flower | Freezing/drying | Brno/Lednice | 2015, 2016 |
Salvia officinalis | Leaf | Freezing/drying | Brno/Lednice | 2015, 2016 |
Melissa officinalis | Leaf | Freezing/drying | Brno/Lednice | 2015, 2016 |
Hyssopus officinalis | Flower | Freezing/drying | Brno/Lednice | 2015, 2016 |
Mentha piperita | Leaf | Freezing/drying | Brno/Lednice | 2015, 2016 |
Hypericum perforatum | Flower | Freezing/drying | Brno/Lednice | 2015, 2016 |
Galega officinalis | Flower | Freezing/drying | Brno/Lednice | 2015, 2016 |
Calendula officinalis | Flower | Freezing/drying | Brno/Lednice | 2015, 2016 |
Silybum marianum | Seed | Drying | Brno/Lednice | 2015, 2016 |
Element | Wavelength [nm] | Input Slot [µm] | Output Slot [µm] |
---|---|---|---|
Al | 396.152 | 20 | 15 |
Ca | 422.673 | 20 | 15 |
Cu | 327.396 | 20 | 15 |
Fe | 259.940 | 20 | 15 |
K | 766.490 | 20 | 15 |
Mg | 285.213 | 20 | 15 |
Mn | 257.610 | 20 | 15 |
Na | 588.995 | 20 | 15 |
P | 213.618 | 20 | 15 |
Zn | 206.191 | 20 | 15 |
Parameter | Water | 50% (v/v) ethanol | DMSO |
RF power | 1350 W | 1400 W | 1350 W |
Plasma gas | 13 L/min | 12.5 L/min | 12.5 L/min |
Auxiliary gas | 0.1 L/min | 0.1 L/min | 0.1 L/min |
Nebulizer gas | 0.85 L/min | 0.85 L/min | 0.85 L/min |
Heath gas | 0.2 L/min | 0.5 L/min | 0.5 L/min |
Nebulizer pressure | 3 bar | 3 bar | 3 bar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burdejova, L.; Tobolkova, B.; Polovka, M.; Neugebauerova, J. Differentiation of Medicinal Plants According to Solvents, Processing, Origin, and Season by Means of Multivariate Analysis of Spectroscopic and Liquid Chromatography Data. Molecules 2023, 28, 4075. https://doi.org/10.3390/molecules28104075
Burdejova L, Tobolkova B, Polovka M, Neugebauerova J. Differentiation of Medicinal Plants According to Solvents, Processing, Origin, and Season by Means of Multivariate Analysis of Spectroscopic and Liquid Chromatography Data. Molecules. 2023; 28(10):4075. https://doi.org/10.3390/molecules28104075
Chicago/Turabian StyleBurdejova, Lenka, Blanka Tobolkova, Martin Polovka, and Jarmila Neugebauerova. 2023. "Differentiation of Medicinal Plants According to Solvents, Processing, Origin, and Season by Means of Multivariate Analysis of Spectroscopic and Liquid Chromatography Data" Molecules 28, no. 10: 4075. https://doi.org/10.3390/molecules28104075
APA StyleBurdejova, L., Tobolkova, B., Polovka, M., & Neugebauerova, J. (2023). Differentiation of Medicinal Plants According to Solvents, Processing, Origin, and Season by Means of Multivariate Analysis of Spectroscopic and Liquid Chromatography Data. Molecules, 28(10), 4075. https://doi.org/10.3390/molecules28104075