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Abstract: To improve the flame retardancy of bamboo scrimber, flame-retardant CaAl-PO4-LDHs
were synthesized via the coprecipitation method using PO4

3− as the anion of an intercalated calcium–
aluminum hydrotalcite in this work. The fine CaAl-PO4-LDHs were characterized via X-ray diffrac-
tion (XRD), Fourier-transform infrared spectroscopy (FTIR), cold field scanning electron microscopy
(SEM), energy-dispersive X-ray (EDX) and thermogravimetry (TG). Different concentrations (1%
and 2%) of CaAl-PO4-LDHs were used as flame retardants for the bamboo scrimber, and the flame
retardancy of the bamboo scrimber was characterized via cone calorimetry. The results showed
that CaAl-PO4-LDHs with excellent structures were successfully synthesized via the coprecipitation
method in 6 h and at 120 ◦C. Compared with the bamboo scrimber without the flame retardant
treatment, the peak heat release rate (HRR) of the bamboo scrimber treated with 1% and 2% concen-
trations of flame-retardant CaAl-PO4-LDHs decreased by 16.62% and 34.46%, the time taken to reach
the exothermic peak was delayed by 103 s and 204 s and the Time to Ignition (TTI) was increased
by 30% and 40%, respectively. Furthermore, the residual carbon of the bamboo scrimber did not
change significantly, increasing by 0.8% and 2.08%, respectively. CO production decreased by 18.87%
and 26.42%, respectively, and CO2 production decreased by 11.11% and 14.46%, respectively. The
combined results show that the CaAl-PO4-LDHs synthesized in this work significantly improved the
flame retardancy of bamboo scrimber. This work exhibited the great potential of the CaAl-PO4-LDHs,
which were successfully synthesized via the coprecipitation method and applied as a flame retardant
to improve the fire safety of bamboo scrimber.

Keywords: bamboo scrimber; coprecipitation method; calcium–aluminum hydrotalcite; flame
retardants; phosphate ion

1. Introduction

Bamboo scrimber is a new type of composite bamboo lumber, which is made from
bamboo culms crushed into loose reticular fibrous bundles [1,2]. In recent years, bamboo
scrimber has been widely used in construction and decoration materials due to its excellent
mechanical properties and environmental friendliness [3]. However, bamboo scrimber
is a flammable material with significant fire hazards due to the raw material’s nature,
which greatly limits its industrial application [4,5]. Therefore, conducting flame retardancy
research on bamboo scrimber is of great significance.

In recent years, layered double hydroxides (LDHs) have been emerging as a new
generation of environmentally friendly flame-retardant material, which is a new type
of layered inorganic functional material made of a positively charged main layer and
interlayer region containing charge-compensating anions [6,7]. Its general formula is[

M2+
1−x M3+

x (OH)2

]x+

1
[An−] x

n
· mH2O, where M2+ and M3+ denote divalent and trivalent
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cations located on the main layer, e.g., Mg2+, Fe2+, Zn2+, Al3+, Cr3+, Fe3+, etc. An− denotes
n valent interlayer anions, e.g., NO3

−, SiO3
2−, BO3

3−, etc., and x denotes the molar ratio
of M3+

M3++M2+ . The most common M2+ : M3+ ratios are 2:1 and 3:1 [8–10]. LDHs can be
prepared via coprecipitation at an adjusted pH followed by the hydrothermal aging of the
precipitate [11]. LDHs have been shown to offer excellent flame retardancy and smoke
suppression properties due to their unique chemical composition and layered structure.
Furthermore, the layer surface of flame-retardant LDHs is abundant in hydroxyl groups,
which can form hydrogen bonds with the numerous hydroxyl groups in bamboo, enabling
LDHs to stably bind to the bamboo and preventing leaching [12]. Therefore, flame-retardant
LDHs can be a useful solution to the current problem of easy leaching in flame retardants.

More importantly, numerous studies have demonstrated that the introduction of
new organic anions or functional flame-retardant anions in the interlayer can effectively
improve the flame-retardant efficiency of LDHs. For example, Liu et al. [13] investigated the
synthesis of sodium dodecylbenzene sulfonate (SDBS)-intercalated aluminum hydroxide
via coprecipitation and ion exchange. Xu et al. [14] prepared the triazine-sulphonate pillared
layered double hydroxides (LDH-NS). The research results indicate that the thermal stability
of LDHs prepared via intercalation is significantly improved. Currently, phosphorus-
based flame retardants are non-toxic and low-smoke and are an important part of bamboo
flame-retardant research [15,16]. PO4

3− containing flame retardants will produce PO• free
radicals during the combustion process, which can bind H• or HO• in the flame and air,
so as to achieve a flame-retardant effect [17]. However, the significant disadvantages of
phosphorus-based flame retardants are the complex preparation process, easy leaching
and low compatibility. Thus, based on the anion-exchangeable characteristics of LDHs [18],
PO4

3− with flame-retardant effects can be intercalated into the interlayer of LDHs to
enhance the flame retardancy.

In addition, the cations on the LDH layer can be replaced by other cations; for example,
Damindarova et al. [19] prepared tin–aluminum hydrotalcites and Zhang [20] prepared
zinc–aluminum hydrotalcites. There are abundant and inexpensive reserves of calcium and
phosphorus in the world, and among available works, one can rarely find a comprehensive
report on the flame retardancy of calcium–aluminum hydrotalcites. Thus, Ca2+ with flame
retardancy can be chosen as a substitute for divalent cations on the LDH layer to prepare
flame-retardant calcium–aluminum hydrotalcites with high thermal stability.

In this work, PO4
3− was selected for the intercalation modification of LDHs containing

Ca and Al on the layer. CaAl-PO4-LDHs were synthesized via the coprecipitation method
under alkaline conditions and applied to bamboo scrimber as flame retardants. The effects
of different crystallization temperatures and times on the structure and properties of the
synthesized CaAl-PO4-LDHs were investigated. Finally, bamboo scrimber was treated with
different concentrations of CaAl-PO4-LDHs to further investigate the flame-retardant effect
of CaAl-PO4-LDHs on bamboo scrimber. This work provided a certain theoretical basis for
the application of flame-retardant PO4

3−-intercalated calcium–aluminum hydrotalcites to
bamboo scrimber.

2. Results and Discussion
2.1. XRD Analysis of CaAl-PO4-LDHs Synthesized via Different Processes

To explore the optimal processes for the preparation of CaAl-PO4-LDHs via copre-
cipitation, the CaAl-PO4-LDHs samples were synthesized and characterized at different
crystallization temperatures (80 ◦C, 100 ◦C and 120 ◦C) and times (4 h, 6 h and 8 h). The
effects of different crystallization temperatures and times on the structure and properties of
CaAl-PO4-LDHs were investigated.

The XRD patterns of CaAl-PO4-LDHs synthesized after crystallization reactions are
shown in Figure 1. The main characteristic peaks of CaAl-PO4-LDHs display sharp and
intense (003), (006), (110) and (203) reflections corresponding to PDF#50-0652, which indi-
cates that the prepared samples had a typical hydrotalcite lamellar structure [21]. The shifts
in the diffraction peaks towards lower angles indicate that PO4

3− was successfully inter-
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calated into the interlayer spacing of calcium–aluminum hydrotalcites [14]. Furthermore,
as shown in Table 1, by Bragg’s law (2dsinθ = nλ), the interlayer spacing (d003, d006 and
d110) of CaAl-PO4-LDHs and PDF#50-0652 were calculated. The characteristic peaks of the
samples synthesized at different crystallization temperatures and times were varied. The
XRD spectrum shows that the characteristic peak of the sample (S120-6) had the sharpest
peak shape and the highest intensity. It has been concluded that a synthesis temperature of
120 ◦C and a duration of 6 h for crystallization are the optimal process parameters for the
preparation of CaAl-PO4-LDHs.
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Figure 1. XRD patterns of CaAl-PO4-LDHs prepared at different crystallization temperatures and times.

Table 1. Layer spacing parameters for CaAl-PO4-LDHs samples and PDF#50-0652.

Sample d003 (Å) d006 (Å) d110 (Å)

S80-4 8.54 4.30 2.78
S80-6 8.56 4.30 2.77
S80-8 8.63 4.32 2.87
S100-4 8.61 4.32 2.87
S100-6 8.80 4.42 2.87
S100-8 8.73 4.35 2.87
S120-4 8.71 4.34 2.89
S120-6 8.68 4.30 2.87
S120-8 8.64 4.31 2.85

PDF#50-0652 8.60 4.31 2.87

2.2. Effects of Crystallisation Temperature on CaAl-PO4-LDHs

According to the XRD results, the effects of crystallization temperature (80 ◦C, 100 ◦C
and 120 ◦C) at the optimum crystallization time (6 h) on hydrotalcite samples was inves-
tigated. The structure of CaAl-PO4-LDHs samples synthesized via the co-precipitation
method was characterized via FTIR, SEM, EDX and TG.

Figure 2 shows that the positions of the absorption peaks of FTIR spectra of CaAl-PO4-
LDHs synthesized at different crystallization temperatures are similar. The signals near
3470 cm−1 are related to the stretching vibration of the water molecules in the interlayer [22,23].
The absorption signal at 1628 cm−1 corresponds to the H-O-H bending vibration [14].
The characteristic absorption signals of the CO3

2− group were observed at 1377 cm−1

and 792 cm−1, which were caused by the adsorption of CO2 by CaAl-PO4-LDHs after
exposure to air at the end of synthesis [24]. The signals below 670 cm−1 were attributed to
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O-M-O bonds and M-O (where M is Ca or Al) bonds [25]. A telescopic vibrational signal
of P-OH appeared at 1028 cm−1, indicating that PO4

3− was successfully inserted into the
calcium–aluminum hydrotalcites [26].
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The method of EDX analysis enabled the indirect analysis of the successful insertion
of PO4

3− anions into the interlayer [27], and the results are shown in Figure 3. The
ratios of the relative contents of Ca and Al of the CaAl-PO4-LDHs samples were close to
the theoretical value of 2.0, which indicated the successful synthesis of a typical layered
hydrotalcite structure [28]. The content of elemental C in the samples synthesized at 100 ◦C
was significantly higher due to the higher doping of carbonate in the samples. The C
element was almost absent in S120-6, indicating the oxidation of this sample was less likely
to produce CO3

2−. With the increase in the crystallization temperature, the P content first
decreased and then increased. The highest elemental P content in the samples was reached
at 120 ◦C. The results indicate the successful synthesis of CaAl-PO4-LDHs [29].
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The microstructures of the CaAl-PO4-LDHs were revealed via SEM. As shown in
Figure 4, the samples synthesized at different crystallization temperatures had correspond-
ing lamellar structures. The sample with a crystallization temperature of 80 ◦C had an
excellent lamellar structure, but the sample had poor layer order and a large size. Via
crystallization at 100 ◦C, the resulting samples exhibited small particle sizes but with poor
lamellar structures. The samples synthesized at a crystallization temperature of 120 ◦C had
a uniform shape, uniform particle size and excellent lamellar structure. Therefore, 120 ◦C is
a better crystallization temperature for CaAl-PO4-LDH samples.
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The CaAl-PO4-LDH samples were investigated via TG-DTG in N2 atmosphere, where
the TG-DTG curves showed some differences. Figure 5 shows that the CaAl-PO4-LDH
samples prepared at different crystallization temperatures all exhibited three thermal
weight loss stages [30]. The first thermal weight loss stage (35–174 ◦C) is the loss of
interlayer water molecules [31]. The S120-6 showed the highest thermal weight loss (9.18%)
compared to S80-6 (6.66%) and S100-6 (6.23%), indicating that the sample had the highest
number of water molecules in the interlayer. In addition, small amounts of anions may
be released in the first stage [32]. The second stage (181–342 ◦C) of thermal weight loss
is the detachment of -OH from the surface of CaAl-PO4-LDHs [33]. The weight loss of
the S120-6 (11.75%) was lower than the other two samples (13.43% and 11.40%), which
indicated that the layered structure was stable and numerous hydroxyl groups were not
lost. The third thermal weight loss stage (450–629 ◦C) is a pyrolysis reaction via the anions
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in the interlayer [34]. In the third thermal weight loss phase, the S120-6 showed the highest
thermal weight loss (8.63%), showing the sample contains the most interlayer anions.
Furthermore, the thermal weight loss temperature of the S120-6 was slightly higher than
that of the other two samples. Combined with the analysis of previous works, 120 ◦C is a
better crystallization temperature for the preparation of CaAl-PO4-LDH samples via the
coprecipitation method.
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2.3. Effect of the Crystallisation Time on CaAl-PO4-LDHs

Based on the above analysis, the optimal crystallization temperature of 120 ◦C was
determined, and then, the effects of different crystallization reaction times (4 h, 6 h and 8 h)
on LDHs were investigated. The structures of CaAl-PO4-LDHs were investigated via FTIR,
SEM, EDX and TG.

The FTIR spectra of the CaAl-PO4-LDHs samples synthesized at different crystalliza-
tion times had similar positions of signals (Figure 6). The signals near 3468 cm−1 were
related to the hydroxyl stretching vibration in hydrotalcites. The signal at 1628 cm−1 was
related to the bending vibration of the H-O-H [14]. The characteristic signals of CO3

2−

corresponded to 1380 cm−1 and 790 cm−1 [24]. The S120-6 had almost no characteristic ab-
sorption band of CO3

2−, indicating the sample was less oxidized. The signals at 1028 cm−1

were caused by the vibration of the PO4
3−, showing PO4

3− was successfully embedded
in the calcium–aluminum hydrotalcites [26]. The signals below 670 cm−1 were caused by
O-M-O bonds and M-O (where M is Ca or Al) bonds [25].

Figure 7 shows the EDX spectra of CaAl-PO4-LDHs samples prepared at different
crystallization times. The values of the relative contents of Ca and Al elements of all
CaAl-PO4-LDHs samples were close to the theoretical value of 2.0, indicating the successful
synthesis of hydrotalcite structures [28]. With the increase in the crystallization time, the
relative content of Ca and Al elements increased and then decreased, which revealed that
the most LDHs were successfully synthesized when the crystallization time was 6 h. The
high content of P elements in the samples synthesized at 6 h contributed to the higher
content of PO4

3− being successfully inserted into the interlayer of LDHs [29].
The microstructures of the CaAl-PO4-LDH samples prepared at different crystal-

lization times were determined via SEM, and the results are shown in Figure 8. All the
CaAl-PO4-LDH samples indicated layered structures, which confirmed that the samples
had typical structures of hydrotalcites. At the crystallization temperature of 120 ◦C, the
morphological changes in the samples were not obvious with the increase in the crystalliza-
tion time. However, the samples with crystallization times of 8 h exhibited some tendency
toward lamellar structures to aggregate.

Figure 9 shows that the thermal weight loss pattern of the synthesized samples was
consistent with the three stage thermal weight loss pattern of hydrotalcites [30,35]. The
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sample synthesized at 6 h (S120-6) exhibited greater thermal weight loss (8.63%) than the
others, S120-4 (8.20%) and S120-8 (7.78%), which indicates that the relative contents of -OH
and PO4

3− in these samples were higher than those in the other samples. In addition, the
initial pyrolysis temperature of the sample prepared via crystallization for 6 h was slightly
higher than the other samples. All the results were compared and analyzed to conclude
that the better crystallization time for the synthesis of CaAl-PO4-LDHs via coprecipitation
was 6 h.
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2.4. Effect of Different Concentrations of Flame-Retardant CaAl-PO4-LDHs on Bamboo Scrimber

From conclusions from the previous work, CaAl-PO4-LDHs were prepared at the opti-
mum crystallization temperature (120 ◦C) and time (6 h) to be used as flame retardants for
bamboo scrimber. The heat release rate (HRR), Time to Ignition (TTI) and Mass of Residue
(Mass) of the bamboo scrimber treated with different concentrations of impregnated flame
retardant were investigated.

The heat release rate (HRR) can reflect the speed and magnitude of heat released from
a fire source during the combustion process of a material [36]. As can be seen from Figure 10,
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the intensity of exothermic peaks of the bamboo scrimber treated with the S120-6-1 and the
bamboo scrimber treated with the S120-6-2 were smaller than the non-flame-retardant-treated
bamboo scrimber. The first exothermic peak started at 30 s, and it corresponded to a short
flaming combustion process when the sample was ignited. The second exothermic peak
corresponded to the combustion process at the second appearance of the higher flame [37].
The second exothermic peak intensities of the bamboo scrimber treated with the S120-6-1 and
the bamboo scrimber treated with the S120-6-2 were 17.58% and 34.46% lower than that of
the non-flame-retardant-treated bamboo scrimber, respectively. Secondly, the arrival time
of the exothermic peak was delayed by 103 s and 204 s for the bamboo scrimber treated
with the S120-6-1 and the bamboo scrimber treated with the S120-6-2, respectively. The results
indicate that the strong fire arrival time during combustion was delayed for the bamboo
scrimber treated with the flame-retardant CaAl-PO4-LDHs, so the flame retardancy of
bamboo scrimber was enhanced. The Time to Ignition (TTI) is the time required to produce
continuous combustion on the surface of a sample due to thermal radiation [38]. A smaller
TTI suggests higher combustibility. The TTIs of the control group and bamboo scrimber
treated with different concentrations of impregnated flame-retardant CaAl-PO4-LDHs are
shown in Table 2. Compared to the non-flame-retardant-treated bamboo scrimber, the TTIs
of the bamboo scrimber treated with the S120-6-1 and the bamboo scrimber treated with
the S120-6-2 were delayed by 30% and 40%, respectively, suggesting the heat resistance of
the bamboo scrimber was improved. Furthermore, the bamboo scrimber treated with the
S120-6-2 exhibited a higher deferral rate of TTI, showing better flame retardancy.
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The Mass of Residue (Mass) allows for the visual analysis of the stability of a material at
high temperatures. The Mass of Residues of the control group and bamboo scrimber treated
with different concentrations of flame retardants are shown in Figure 11. The residual
carbon rate indicated the final residual mass of the bamboo scrimber as a percentage of
the initial mass. The residual carbon rates of the non-flame-retardant-treated bamboo
scrimber, the bamboo scrimber treated with the S120-6-1 and the bamboo scrimber treated
with the S120-6-2 were 22.24%, 23.12% and 24.32%, respectively. The results showed that
CaAl-PO4-LDHs did not have a significant effect on the residual carbon rate of the bamboo
scrimber and only slightly increased its residual carbon rate.



Molecules 2023, 28, 4093 10 of 15

Table 2. Mean parameter values of the samples.

Sample

Mean

HRR (kW/m2)
pHRR

(kW/m2)
TTI
(s)

Mass Reduction
(%)

Non-flame-retardant-treated bamboo scrimber 122.95 ± 3.65 359.99 ± 12.40 20 ± 0 22.63 ± 0.01
Bamboo scrimber treated with the S120-6-1 117.41 ± 1.44 310.71 ± 8.23 26 ± 6 21.12 ± 0.73
Bamboo scrimber treated with the S120-6-2 115.74 ± 0.62 324.21 ± 11.61 28 ± 1 24.32 ± 0.71

Molecules 2023, 28, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 10. HRR of mass of non-flame-retardant-treated bamboo scrimber and flame-retardant bam-
boo scrimber. 

 
Figure 11. Mass of non-flame-retardant bamboo scrimber and flame-retardant bamboo scrimber. 

Materials produce many toxic gases during combustion, and the control of these 
gases is essential. As shown in Table 3, compared with non-flame-retardant-treated bam-
boo scrimber, the average CO production of bamboo scrimber treated with the S120-6-1 and 
bamboo scrimber treated with the S120-6-2 decreased by 18.87% and 26.42%, respectively, 
and the average arrival time of the maximum CO peak was delayed by 297 s and 253 s, 
respectively. In addition, the average CO2 production decreased by 11.11% and 14.46%, 
respectively, and the average arrival time of the maximum CO2 peak was delayed by 213 
s and 268 s, respectively. These results indicate that CaAl-PO4-LDHs can suppress the 

Figure 11. Mass of non-flame-retardant bamboo scrimber and flame-retardant bamboo scrimber.

Materials produce many toxic gases during combustion, and the control of these gases
is essential. As shown in Table 3, compared with non-flame-retardant-treated bamboo
scrimber, the average CO production of bamboo scrimber treated with the S120-6-1 and
bamboo scrimber treated with the S120-6-2 decreased by 18.87% and 26.42%, respectively,
and the average arrival time of the maximum CO peak was delayed by 297 s and 253 s,
respectively. In addition, the average CO2 production decreased by 11.11% and 14.46%,
respectively, and the average arrival time of the maximum CO2 peak was delayed by
213 s and 268 s, respectively. These results indicate that CaAl-PO4-LDHs can suppress the
amount of CO and CO2 production during bamboo combustion, and the delayed maximum
peak arrival time can buy rescue time when a fire occurs.

Table 3. The samples’ released parameters of CO and CO2.

Sample

CO Yield CO2 Yield

Mean (kg/kg) Peak
(kg/kg) Time to Peak (s) Mean

(kg/kg)
Peak

(kg/kg) Time to Peak (s)

Non-flame-retardant-treated
bamboo scrimber 3.10 ± 0.08 49.54 ± 1.36 1116 ± 116 4.46 ± 0.10 90.06 ± 10.47 854 ± 14

Bamboo scrimber treated with
the S120-6-1

2.51 ± 0.03 46.5 ± 3.34 1413 ± 156 3.96 ± 0.01 90.18 ± 8.66 1067 ± 6

Bamboo scrimber treated with
the S120-6-2

2.281 ± 0.13 46.81 ± 0.13 1369 ± 134 3.81 ± 0.25 93.92 ± 5.19 1122 ± 45
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As shown in Figure 12, LDHs make bamboo produce char residue more easily, which
can isolate O2 and heat transfer between burning areas and the bottom of the carbon layer.
During the combustion of CaAl-PO4-LDHs, hydroxyl groups on layers and interlaminar
anions are released in the form of H2O and CO2, which can adsorb a lot of heat and reduce
the concentration of combustion gas [39,40]. Thus, the heat release rate can be slowed
down, and the ignition time of reconstituted bamboo can be delayed. Additionally, the
final pyrolysis residue of CaAl-PO4-LDHs can also catalyze the formation of a more stable
carbon layer and cover the surface of bamboo. The physical process of the char residue acts
as a protective barrier, resulting in improved flame retardancy for bamboo [41]. So, the
flame resistance of recombinant bamboo scrimber can be improved in this way.
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3. Materials and Methods
3.1. Materials

Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O), aluminum nitrate tetrahydrate
(Al(NO3)3·9H2O), sodium hydroxide (NaOH) and sodium phosphate (Na3PO4) were pur-
chased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. All chemicals were of
analytical grade. All solutions in the experiment were prepared with deionized water.

3.2. Preparation of CaAl-PO4-LDHs via Coprecipitation

In this study, CaAl-PO4-LDHs were prepared via the coprecipitation method at 80 ◦C,
100 ◦C and 120 ◦C, and the crystallization times were 4 h, 6 h and 8 h. The pH value was
kept at 10.0–11.00. In detail, we mixed Ca(NO3)2·4H2O and Al(NO3)3·9H2O with a M2+

M3+

molar cationic ratio of 2.0/1.0 (solution A) and prepared the solution of a strong base which
was 1.5 mol/L NaOH. Then, solution A and NaOH solution were added into constant
pressure funnels. A total of 41 g of Na3PO4 was dispersed in 500 mL of deionized water in
a 1000 mL three-necked flask before being stirred with a magnetic stirrer. After that, the
reaction solution was put in 25 ◦C conditions for 16 h. Finally, the reaction solution was
prepared via extraction, washing and drying to obtain CaAl-PO4-LDHs. Each group of
experiments was repeated three times.

3.3. CaAl-PO4-LDH Flame-Retardant-Treated Bamboo Scrimber

The CaAl-PO4-LDH flame retardant was ultrasonically dispersed in an aqueous so-
lution at 25 ◦C and prepared to suspensions of 1% and 2%. Then, the bamboo scrimber
was dipped in the CaAl-PO4-LDH suspension and impregnated for 2 h at atmospheric
pressure with simultaneous stirring [12]. After the impregnation, the suspended matter
was removed from the surface of the bamboo scrimber samples with deionized water, and
the bamboo scrimber samples were dried in an oven.
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A summary of the CaAl-PO4-LDH experimental samples is shown in Table 4. Figure 13
illustrates the process of synthesizing CaAl-PO4-LDHs and preparing flame-retardant
bamboo scrimber.

Table 4. CaAl-PO4-LDH experimental samples.

Sample
Number Crystallization Temperatures Crystallization Times Mass Percentage Concentration

S80-4 80 ◦C 4 h -
S80-6 80 ◦C 6 h -
S80-6 80 ◦C 8 h -
S100-4 100 ◦C 4 h -
S100-6 100 ◦C 6 h -
S100-8 100 ◦C 8 h -
S120-4 120 ◦C 4 h -
S120-6 120 ◦C 6 h -
S120-8 120 ◦C 8 h -

S120-6-1 120 ◦C 6 h 1%
S120-6-2 120 ◦C 6 h 2%
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3.4. Characterization

X-ray diffraction (XRD) was carried out on an XRD-D2 produced by the German
Brooke Company (Bremen, Germany). The scanning range was 5–70◦ (2θ) and the scan-
ning speed was 6◦/min. The samples were analyzed via FTIR spectroscopy using a
Prestige-21 instument (Shimadzu Corporation, Shimane, Japan) with a scanning range of
400–4000 cm−1. The potassium–bromide pellet method was used to determine the chemical
composition of the samples prepared under different conditions (the samples were dried
in an oven at 80 ◦C, and the dried samples were mixed with potassium bromide in a
1:100 ratio for grinding). The morphology and dispersion of samples prepared under
different conditions were observed via the SU8010-type cold field emission SEM produced
by Hitachi, Japan. The sample elements were investigated in combination with SEM to
detect the relative content of Ca, Al and P elements in the sample. The thermogravimetric
analysis (TGA) was measured using TA Q6000 (Naichi Instrument Manufacturing GmbH,
Selb, Germany) at the heating rate of 20 ◦C/min under N2 conditions with a tempera-
ture range of 35–800 ◦C and the flow rate of 40 mL/min. We determined the amount of
charcoal residue in a sample by heating the sample to measure the weight change of the
sample. Finally, the flame retardancy of the samples was tested using a conical calorimeter
(CONE) manufactured by Nechi Instruments GmbH, Selb, Germany. According to the
standard ISO 5660, the heat radiation power was 50 kW/m2 and the sample size was
100 mm × 100 mm × 3 mm3. The results were obtained from the average of three repli-
cates. All samples were wrapped in aluminum foil with no cover on the upper surface. The
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samples were then placed in a holder and exposed horizontally to reduce heat spillage to
the outside during combustion.

4. Conclusions

In this work, PO4
3−-anion-intercalated calcium–aluminum hydrotalcites were success-

fully synthesized via the coprecipitation method. The microstructure and thermal stability
were confirmed using XRD, FT-IR, SEM, EDX and TG, and the optimal crystallization
temperature and time for the synthesis of CaAl-PO4-LDHs were investigated. The results
indicated that the optimal crystallization temperature for the synthesis of CaAl-PO4-LDHs
via coprecipitation was 120 ◦C and the optimal crystallization time was 6 h, and the PO4

3−

anion was also successfully intercalated into the interlayer of calcium–aluminum hydrotalcites.
Different concentrations (1% and 2%) of CaAl-PO4-LDHs were used as flame retar-

dants for the bamboo scrimber, and the flame retardancy of the bamboo scrimber was
evaluated via HRR, TTI and Mass. The results show that the presence of CaAl-PO4-LDHs
improved the fire resistance of the bamboo scrimber. Compared with bamboo scrimber
without CaAl-PO4-LDHs, the HRR peaks of bamboo scrimber treated with 1% and 2%
concentrations of CaAl-PO4-LDHs were reduced by 16.62% and 34.46%, respectively, and
the time taken to reach the exothermic peak was delayed by 103 s and 204 s, respectively.
The TTI increased by 6 s and 8 s, respectively. The residual carbon rate of the bamboo
scrimber did not change significantly. The average CO production decreased by 18.87%
and 26.42%, respectively, and the average CO2 production decreased by 11.11% and 14.46%,
respectively. This work shows the possibility of PO4

3− ions being successfully intercalated
into the interlayer of calcium-aluminum hydroxides and the potential of CaAl-PO4-LDHs
for flame retardant applications in bamboo scrimber.
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