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Abstract: A dispersive micro-solid phase extraction (Dµ-SPE) method for the preconcentration of
trace metal ions (Pb, Cd, Cr, Mn, Fe, Co, Ni, Cu, Zn) on graphene oxide with the complexing reagents
neocuproine or batocuproine is presented here. Metal ions form cationic complexes with neocuproine
and batocuproine. These compounds are adsorbed on the GO surface via electrostatic interactions.
The factors affecting the separation and preconcentration of analytes such as pH, eluent (concentration,
type, volume), amount of neocuproine, batocuproine and GO, mixing time, and sample volume were
optimized. The optimal sorption pH was 8. The adsorbed ions were effectively eluted with 5 mL
0.5 mol L−1 HNO3 solution and determined by the ICP-OES technique. The preconcentration factor
for the GO/neocuproine and GO/batocuproine in the range 10–100 and 40–200 was obtained for
the analytes, with detection limits of 0.035–0.84 ng mL−1 and 0.047–0.54 ng mL−1, respectively. The
method was validated by the analysis of the three certified reference materials: M-3 HerTis, M-4
CormTis, and M-5 CodTis. The procedure was applied to determine metal levels in food samples.

Keywords: graphene oxide; metal ions; neocuproine; batocuproine; dispersive micro-solid phase
extraction; preconcentration; ICP-OES

1. Introduction

Modern industrial development has brought significant benefits to people; on the
other hand, it also produces large amounts of waste. Most of this waste is made up
of harmful substances—especially heavy metals; these are the cause of water, soil, and
atmospheric pollution. Environmental pollution with heavy metals is a severe problem
due to their toxicity to humans, animals, and the natural environment [1]. Heavy metal
ions do not decompose in the environment, but they can accumulate in living organisms,
causing many diseases, e.g., of the brain, lungs, kidneys, liver, and reproductive organs.
Ultimately, they can cause death [2]. Lead, cadmium, nickel, and mercury are the most
dangerous heavy metals. Copper and zinc in trace amounts are necessary because they are
important in biological processes; however, their higher concentrations can be harmful and
hazardous to health [3]. Therefore, it is important to monitor the content of heavy metals in
environmental samples and foodstuffs.

Modern analytical chemistry offers various spectroscopic techniques enabling the
determination of analytes at trace or ultra-trace levels. Nevertheless, the direct determi-
nation of such small amounts of analytes with the use of spectroscopic techniques, i.e.,
atomic absorption spectrometry (FAAS, ETAAS), inductively coupled plasma optical emis-
sion spectrometry (ICP-OES) or inductively coupled plasma mass spectrometry (ICP-MS)
can be problematic. Although the abovementioned techniques can be considered sensi-
tive, reproducible, and precise, the complexity of biological and environmental matrices
and low concentrations of analytes lead to the application of additional isolation and/or
preconcentration procedures [4].

Considering contemporary trends in modern chemistry, i.e., the reduction of toxic
organic reagents and solvents, decreases in costs and the time of analysis, environmental
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friendliness, and the simplicity of analytical procedures, solid phase extraction (SPE) seems
to be the most applicable method [5]. Moreover, the main aim of solid phase extraction is
analyte isolation and preconcentration; this technique achieves high preconcentration factor
values, reflecting decreases in detection limit values. In addition to classic SPE, its variants
are also used—dispersive solid phase extraction (DSPE) [6] and dispersive micro-solid
phase extraction (Dµ-SPE) [7].

To ensure the quantitative determination of analytes, the proper choice of adsorbent
material plays an important role in SPE. In recent years, carbon sorbents have been very
popular and used often, such as graphene [8–10], graphene oxide (GO) [11–13], reduced
graphene oxide (rGO) [14–16], magnetic graphene oxide (MGO) [17–19], carbon nan-
otubes (CNT) [20–22], fullerenes [23–25], carbon nanohorns (CNHs) [26], carbon nanofibers
(CNFs) [27,28], and activated carbon (AC) [29–31].

The disadvantage of most of these carbon materials is their hydrophobic character,
which makes the adsorption of metal species impossible. In order to make the adsorption
of metal ions possible, the formation of hydrophobic complexes—usually inner chelate
complexes with analytes—is required. In that case, hydrophobic complexes are adsorbed
on the sorbent surface by van der Waals forces or hydrophobic interactions. The adsorbents
can be modified, i.e., by impregnation with a chelating agent. This modification can be
performed by passing the chelating agent through a column packed with adsorbents [12]
or, more frequently, by mixing the adsorbent with a chelating agent for a specific period
of time, i.e., AC with rhodamine 6G [32] or PAN [33], or CNTs with PAN [22,34]. It
should be underscored here that carbon-based adsorbents with surfaces subjected to a
modification that changes their character from hydrophobic to hydrophilic are used more
frequently in analytical chemistry—this is the case for graphene oxide. Oxidized adsorbents
can be also modified by the formation of amide or ester bonds; this type of chemical
modification is called functionalization [35–40]. Moreover, composites of carbonaceous
materials with metal oxides, e.g., MnO2 [41] or magnetic composites [42], are applied in
SPE procedures. The methods used for the modification of carbon-based adsorbents are
presented in Figure 1.
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A less-frequently used method of modifying the oxidized surface of carbon materials,
e.g., GO, is the sorption of cationic chelates. Cationic complexing compounds include
1,10-phenanthroline and its derivatives. These contain nitrogen atoms possessing a lone
pair of electrons, thanks to which they can effectively bind metal ions, forming a cationic
metal complex. These cationic complexes can be adsorbed onto the negatively charged
surface of the adsorbent. Metal ions complexed with 1,10-phenanthroline derivatives are
adsorbed onto the GO via electrostatic interactions and van der Waals forces—particularly
π-electron interactions. Earlier studies developed a method based on batophenanthroline
(4,7-diphenyl-1,10-phenanthroline) to selectively improve the determination of heavy metal
ions [43]. This work used two other 1,10-phenanthroline derivative compounds containing
methyl groups: 2,9-dimethyl-1,10-phenanthroline (neocuproine) and 2,9-dimethyl-4,7-
diphenyl-1,10-phenanthroline (batocuproine) as well as the carbon adsorbent graphene
oxide. The study aimed to investigate the effect of the 1,10-phenanthroline derivatives on
the preconcentration of trace amounts of heavy metal ions on GO.

2. Results and Discussion

Dispersive micro-solid phase extraction (Dµ-SPE) was used in the analytical procedure
presented. To determine the optimal conditions for the sorption of the cationic complexes
of neocuproine and batocuproine with metal ions on graphene oxide, the following param-
eters were tested: pH, type and concentration of eluent, amount of sorbent, complexing
agent mixing time, and sample volume. Finally, the influence of the inorganic matrix
on the sorption performance was also investigated. All experiments were carried out in
four replicates.

2.1. Influence of the Analytical Conditions on the Sorption Process
2.1.1. Effect of pH

The pH of the solution is a critical parameter as it significantly influences the ad-
sorption of metal ions. The effect of pH on the sorption of cationic metal complexes with
(i) neocuproine and (ii) batocuproine was tested in 2–11. The results are shown in Figure 2a
for the system with neocuproine and Figure 2b for the system with batocuproine. When
neocuproine was used, the sorption of cationic metal complexes was almost absent in
the pH range 1–4. Only at pH 4 was an increase in the sorption of metal ion complexes
observed—except for Cr and Ni. In the pH range of 7–9, they absorbed almost all metal ions
with more than 90% recovery. The exception was the Cu complex, whose sorption reached
a maximum value of no more than 80%. Above pH 9, a decrease in the sorption of metal
complexes was observed, except for the Mn, Fe, and Pb complexes. When batocuproine
was used as a chelating agent, the sorption of all ions above pH two was observed, with at
least 60% recovery. In the pH range of 7–10, all cationic complexes of batocuproine with
metal ions sorbed on GO with more than 90% recovery. At a pH above 10, a slight decrease
in sorption was observed. Therefore, a pH value of 8 was used as the optimum pH for
further investigations of neocuproine and batocuproine.

2.1.2. Study of Desorption Conditions

The type and concentration of the acids required for the elution of the metal chelates
adsorbed on the GO were investigated to optimise the elution conditions. The effect of
nitric acid and hydrochloric acid was tested with the concentrations in Figure 2c,d. In
the elution of metal ion complexes with neocuproine, the desorption efficiency for Cr, Cu,
Co, and Ni was 40–80%, regardless of the eluent used. Nitric acid at a concentration of
0.5 mol L−1 was the most effective for eluting the remaining analytes. Further studies on
the sorption of metal ions using neocuproine focused on determining Pb, Cd, Zn, Fe, and
Mn. Using complexes with batocuproine, all adsorbed ions could be eluted from the GO
with more than 90% recovery using 0.5 mol L−1 nitric acid. The least effective eluent in
each case was nitric acid at a concentration of 4 mol L−1. The effect of the 0.5 mol L−1

nitric acid volume on the desorption efficiency was also investigated; 5 mL or 10 mL of
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the eluent was used for the tests. No difference in elution efficiency was found. Therefore,
5 mL of nitric acid was used in further studies. This amount was sufficient to determine
the analytes in the samples using the ICP-OES technique.
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2.1.3. Effect of the Amount of Adsorbent and Chelating Agent

To optimize the amount of sorbent, the effect of the amount of GO was tested in the
range of 1–4 mg. Using 1 mg GO, slightly poorer recoveries of the analytes were obtained
in each case, i.e., below 90. In the range of 2–4 mg GO, the recoveries were above 90% and
comparable. Therefore, 2 mg of GO was used for further tests.

In order to optimize the amount of the chelating agent, the effect of different volumes
of the solution of (i) neocuproine with a concentration of 0.01 mol L−1 (in ethanol) in the
range of 0.5–2 mL and (ii) batocuproine with a concentration of 0.1% (in ethanol), in the
range of 0.2–2 mL, was studied. The amount of neocuproine had no significant effect on the
recovery of metal ions. Using only 0.5 mL of this compound reduced the recovery of Mn
ions to 80%. It was assumed that 1 mL was the optimal amount. When batocuproine was
used as a chelating agent, more than 90% of all ions were recovered with 0.2 mL. Therefore,
this amount was considered sufficient for further studies.

The concentration experiments were also carried out without a chelating agent. In
this case, the results were significantly less reproducible, and the recoveries were some-
what lower.

2.1.4. Effect of the Time of Contact and Sample Volume

Two critical parameters affecting sorption are the mixing time and sample volume.
Too short a time can be the cause of ineffective sorption. On the other hand, too long a
mixing time not only prolongs the duration of the analytical procedure but can also lead
to the desorption of metal ions, reducing recovery. The influence of mixing time on the
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sorption efficiency of metal chelates on GO was investigated in a range of 15–120 min. The
results for neocuproine and batocuproine are shown in Figure 3a,b, respectively. It can be
concluded that when using both neocuproine and batocuproine, mixing the samples for
30 min was sufficient to achieve recoveries above 90%.
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The influence of sample volume on the adsorption efficiency of the cationic metal
chelates on GO was tested in the 50–500 mL range. Increasing the sample volume will
result in higher preconcentration factors (PF) and, thus, lower detection limits (DL). The
results obtained are shown in Figure 3c,d. The sample volume had no significant effect
on the recovery of Pb and Zn in the case of both neocuproine and batocuproine. When
batocuproine was used as a chelating agent for all the other analytes, the recovery was
above 90% at a volume of 200 mL. Worse results were obtained with neocuproine as a
chelating agent. In the case of Cd, Mn, and Fe, the recovery of the analytes decreased
significantly with increases in sample volume. The obtained preconcentration factors for
the analytes are listed in Table 1.

2.1.5. Interferences Study

The influence of coexisting and potential interfering ions on the sorption efficiency
of cationic complexes of analytes with neocuproine and batocuproine on GO was also
investigated. Coexisting ions are present in addition to the analytes in the actual samples
and can interfere with the separation and determination of the analytes. The influence
of these ions was tested for each of the analytes individually. The interferent to analyte
ratio and the results are shown in Table 2. The results show that the coexisting ions did
not significantly influence the determined metal ions after their sorption on GO. Analyte
recoveries were greater than 90% in each case.
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Table 1. Analytical performance characteristics of the Dµ-SPE/ICP-OES method for metal ion deter-
mination.

Analyte/
R2 PF

Linear Range,
ng mL−1

DL (3σ),
ng mL−1

QL (3σ),
ng mL−1

Determined, ng mL−1, n = 8
RSD, %

5 ng mL−1 10 ng mL−1 20 ng mL−1

Neocuproine/GO
Cd

0.9995 10 1–1000 0.24 0.79 4.56 ± 0.12
2.71

9.37 ± 0.24
2.71

18.49 ± 0.31
1.67

Pb
0.9998 100 1–1000 0.22 0.73 4.76 ± 0.15

3.15
9.27 ± 0.22

2.43
18.40 ± 0.72

3.89
Zn

0.9997 100 0.5–1000 0.035 0.12 4.74 ± 0.10
2.19

9.18 ± 0.33
3.59

18.86 ± 0.69
3.65

Fe
0.9989 10 3–1000 0.84 2.80 4.89 ± 0.17

3.48
9.38 ± 0.35

3.73
18.34 ± 0.57

3.11
Mn

0.9984 20 1–1000 0.17 0.57 4.83 ± 0.14
2.90

9.42 ± 0.35
3.71

18.21 ± 0.39
2.14

Batocuproine/GO
Cd

0.9995 40 0.5–1000 0.047 0.16 4.83 ± 0.22
1.72

9.68 ± 0.19
1.83

18.83 ± 0.09
1.75

Pb
0.9998 100 0.5–1000 0.089 0.30 4.84 ± 0.36

1.72
9.80 ± 0.17

1.69
19.13 ± 0.07

1.28
Zn

0.9997 100 0.5–1000 0.083 0.27 4.78 ± 0.49
2.34

9.48 ± 0.34
3.21

18.65 ± 0.08
1.43

Fe
0.9989 40 0.5–1000 0.12 0.40 4.76 ± 0.29

1.38
9.45 ± 0.25

2.37
93.06 ± 0.02

1.63
Mn

0.9984 40 0.5–1000 0.13 0.43 4.69 ± 0.42
1.98

9.48 ± 0.29
2.78

18.71 ± 0.12
2.33

Cr
0.9987 40 0.5–1000 0.077 0.25 4.70 ± 0.45

2.10
9.62 ± 0.23

2.20
18.98 ± 0.14

2.60
Cu

0.9985 40 2–1000 0.54 1.78 4.65 ± 0.52
2.41

9.28 ± 0.30
2.79

18.32 ± 0.12
2.11

Co
0.9995 40 0.5–1000 0.071 0.23 4.61 ± 0.51

2.36
9.29 ± 0.29

2.67
18.51 ± 0.17

3.20
Ni

0.9991 40 1–1000 0.15 0.50 4.60 ± 0.43
1.97

9.19 ± 0.25
2.26

18.39 ± 0.08
1.53

Table 2. Influence of coexisting ions on the recovery analytes. The concentration of analytes was
10 ng mL−1, n = 4.

Interferent Ions Al Ba Sr Mg Ca K Na

Interferent to
analyte ratio 1:500 1:1000 1:1000 1:10,000 1:20,000 1:20,000 1:20,000

Recovery,% Neocuproine/Go
Cd 92.5 ± 2.6 98.1 ± 3.7 90.2 ± 1.8 95.6 ± 4.0 96.9 ± 2.3 92.2 ± 1.9 90.2 ± 2.1
Pb 93.7 ± 2.7 95.6 ± 3.3 96.7 ± 4.2 91.1 ± 3.5 91.4 ± 2.1 90.9 ± 2.3 99.0 ± 1.5
Zn 100 ± 3 92.1 ± 1.5 100 ± 3 92.8 ± 3.9 97.1 ± 2.6 99.1 ± 1.7 100 ± 3
Fe 99.7 ± 1.4 92.6 ± 1.7 92.6 ± 3.7 97.3 ± 2.3 99.2 ± 2.8 97.3 ± 3.2 98.4 ± 3.3
Mn 100 ± 2 93.6 ± 1.8 94.9 ± 3.4 92.5 ± 2.7 92.4 ± 1.3 100 ± 3 98.2 ± 1.8

Batocuproine/GO
Cd 94.6 ± 1.1 94.1 ± 2.4 90.8 ± 2.9 92.5 ± 1.9 93.2 ± 2.2 93.2 ± 3.1 91.5 ± 3.5
Pb 98.5 ± 2.4 91.4 ± 2.8 92.0 ± 2.8 95.2 ± 1.9 101 ± 3 96.2 ± 2.9 94.7 ± 3.5
Zn 97.0 ± 1.7 93.8 ± 2.9 92.9 ± 2.1 99.7 ± 2.3 102 ± 3 103 ± 3 93.8 ± 3.2
Fe 93.2 ± 2.8 93.3 ± 2.6 103 ± 3 95.8 ± 2.6 101 ± 3 97.5 ± 1.6 98.1 ± 2.4
Mn 91.9 ± 0.7 92.0 ± 2.5 90.8 ± 2.8 98.9 ± 0.8 99.1 ± 0.9 99.5 ± 1.5 96.5 ± 3.1
Cr 96.5 ± 2.9 94.5 ± 2.8 98.9 ± 2.4 91.5 ± 2.5 97.0 ± 2.4 90.8 ± 3.2 96.8 ± 2.3
Cu 92.6 ± 2.5 93.7 ± 2.7 91.3 ± 3.1 92.7 ± 0.7 98.9 ± 2.5 94.2 ± 1.9 92.8 ± 2.1
Co 93.5 ± 1.4 96.7 ± 2.5 93.7 ± 2.2 96.4 ± 1.7 94.4 ± 1.1 94.4 ± 2.6 91.6 ± 2.9
Ni 95.1 ± 1.1 69.5 ± 2.7 92.9 ± 2.4 91.3 ± 2.3 95.0 ± 1.6 93.9 ± 2.8 91.4 ± 3.2

2.2. Analytical Performance

To evaluate the method’s applicability to the analysis of metal ions, the linearity range
of the methods for each analyte and the detection limits, quantification limits, precision, and
accuracy were determined. The detection limits of the analytes for the ICP-OES technique
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were determined as described in the article [44]. Lower detection limits were obtained for
the batocuproine system. The results are shown in Table 2. The precision of the method
was determined in eight replicates for three different concentrations of analytes (5 ng mL−1,
10 ng mL−1, and 20 ng mL−1). The relative standard deviation did not exceed 4%. Three
certified reference materials were analyzed to verify the accuracy of the method. The results
obtained are shown in Table 3. Based on these, it can be concluded that there was no
significant difference between the certified and received values.

Table 3. Analysis of the certified reference materials M-3 HerTis, M-4 CormTis, and M-5 CodTis by
ICP-OES, n = 4.

Analyte Certified Value,
mg kg−1 (ng g−1) *

Found, mg kg−1

(ng g−1) * Recovery, % RSD, % Found, mg kg−1

(ng g−1) * Recovery, % RSD, %

M-3 HerTis Neocuproine/GO Batocuproine/GO
Fe 119 ± 13 118 ± 4 99.2 3.4 117 ± 6 98.3 5.1
Mn 5.78 ± 0.61 5.48 ± 0.23 94.8 4.2 5.63 ± 0.31 97.4 5.5
Zn 111 ± 6 110 ± 5 99.0 4.5 107 ± 3 96.4 2.8
Cd 325 ± 30 * 319 ± 17 * 98.2 5.3 311 ± 9 * 95.7 2.9
Pb 104 ± 13 * 99 ± 6 * 95.2 6.0 102 ± 5 * 98.1 4.9
Cu 3.19 ± 0.22 - - - 3.14 ± 0.08 98.4 2.5
Co 81 ± 12 * - - - 77 ± 4 * 95.1 5.2
Cr 900 ± 110 * - - - 870 ± 33 * 96.7 3.8
Ni 316 ± 49 * - - - 298 ± 11 * 94.3 3.7

M-4 CormTis Neocuproine/Go Batocuproine/GO
Fe 280 ± 16 263 ± 12 93.9 4.6 270 ± 14 96.4 5.2
Mn 2.16 ± 0.17 2.07 ± 0.09 95.8 4.3 2.09 ± 0.12 96.8 5.7
Zn 63.3 ± 3.5 58.4 ± 2.6 92.3 4.4 61.8 ± 2.9 97.6 4.7
Pb 2.33 ± 0.28 2.19 ± 0.08 94.0 3.6 2.27 ± 0.12 97.4 5.3
Cd 17.2 ± 2.1 * 16.6 ± 0.80 * 96.5 4.8 17.1 ± 1.1 * 99.4 6.4
Cu 19.5 ± 1.2 - - - 18.7 ± 0.6 95.9 3.2
Co 41.0 ± 0.28 * - - - 40.7 ± 0.23 * 99.3 0.6

M-5 CodTis Neocuproine/GO Batocuproine/GO
Fe 13.2 ± 1.1 12.4 ± 0.18 94.0 1.5 12.6 ± 0.23 95.5 1.8
Mn 921 ± 75 873 ± 37 94.8 4.2 881 ± 32 95.7 3.6
Zn 20.1 ± 1.1 19.7 ± 0.80 98.0 4.1 19.3 ± 0.7 96.0 3.6
Cd 5 * 4.9 ± 0.32 * 98.0 6.5 4.7 ± 0.27 * 94.0 5.7
Pb 45 * 44 ± 1 * 97.8 2.3 43 ± 2 * 95.6 4.7
Cu 1.38 ± 0.09 - - - 1.34 ± 0.04 97.1 3.0
Co 14 * - - - 12.9 ± 0.43 * 92.1 3.3
Cr 201 * - - - 189 ± 4 * 94.0 2.1
Ni 136 * - - - 124 ± 3 * 91.2 2.4

* Found in ng g−1.

A comparison of the described method with recently published methods for the de-
termination of metal ions after their concentration using Dµ-SPE is presented in Table 4.
In the methods developed using cationic complexes of neocuproine and batocuproine, sig-
nificantly lower detection limits and higher preconcentration factors for selected metal ions
were obtained than those found with other presented methods. The influence of methyl
and phenyl substituents in the aromatic system for 1,10-phenanthroline derivatives is no-
ticeable. The results obtained from the conducted studies on the effectiveness of the cationic
adsorption of complexes of three 1,10-phenanthroline derivatives, i.e., (i) batophenanthro-
line (4,7-diphenyl-o-phenanthroline), (ii) neocuproine (2,9-dimethyl-o-phenanthroline),
and (iii) batocuproine (2,9-dimethyl-4,7-diphenyl-o-phenanthroline) with nine metal ions
(Cd, Co(II), Cu(II), Ni(II), Pb(II), Zn, Cr(III), Mn(II), and Fe(III)) showed that the sorption
efficiency of cationic metal complexes decreases in the following order: batocuproine
> batophenanthroline > neocuproine. All three complex compounds that form cationic
chelates with metal ions—i.e., the neocuproine and batocuproine presented in this paper
and the batophenanthroline presented in [43]—can be used in the multi-element analysis
of real samples. A large dynamic linear range characterized all the proposed methods.
However, the most effective method was the one using batocuproine. We then obtained the
lowest detection limits. Using batocuproine and neocuproine, we were able to concentrate
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Pb and Zn ions in large sample volumes (500 mL) with a recovery of over 90%. In turn,
the maximum sample volume for the system with bathophenanthroline was 200 mL for
each analyte.

Table 4. Analytical methods for the determination of metal ions using carbon nanomaterials in Dµ-SPE.

Adsorbent Analytes Technique Eluent
Volume, mL

Volume max,
mL PF DL, ng mL−1 Ref.

CNT-BMBATT 1 Cd(II), Pb(II) FAAS 2 100 200 0.08, 0.1 [45]

CNT-IL 2 Pb(II), Ni(II) ETAAS 0.4 10 25 0.05, 0.1 [46]

GO-Fe3O4@PTh 3 Zn(II) FAAS 2 30 60 0.08 [47]

GO-SiO2

Cd(II), Pb(II),
Zn(II), Cr(III),

Cu(II), Co(II), Ni(II)
FAAS 1 10 10 5.8–23 [48]

GO-Fe3O4@NpSH 4 Cd(II) ETAAS 0.2 1 5 0.01 [49]

GO-Fe3O4@BMIM 5
Cd(II), Pb(II),
Zn(II), Cr(III),
Cu(II), Co(II)

ICP-OES 0.5 25 50 0.1–1 [50]

GO/Batophenanthroline
Cd(II), Pb(II),
Zn(II), Cr(III),
Fe(III), Mn(II)

ICP-OES 4 200 50 0.06–0.25 [43]

GO/Neocuproine
Pb(II), Zn(II),

Mn(II)
Cd(II), Fe(III)

ICP-OES 5
500
100
50

100
20
10

0.035–0.84 This
work

GO/Batocuproine

Pb(II), Zn(II),
Cd(II), Fe(III),
Mn(II), Cr(III),

Cu(II), Co(II), Ni(II)

ICP-OES 5 500
200

100
40 0.047–0.54 This

work

1 5-benzyl-4-[4-methoxybenzylideneamino)-4H- 1,2,4-triazole-3-thiol, 2 ionic liquid, 3 polythionine, 4 naphthalene-
1-thiol, 5 1-butyl-3-methylimidazolium.

2.3. Application

The methods were successfully used to determine metal ions in pork liver and kidney.
The accuracy of the process was checked by the standard addition method. The analytical
results are shown in Table 5. The analytes’ recoveries were in the 94–102% range. The relative
standard deviation did not exceed 3%. The results show that the method was accurate. The
results for neocuproine and batocuproine as metal ion chelating agents were comparable.

Table 5. Analysis of pork liver and kidney and samples spiked with 1.0 mg kg−1 Ni, Co and Cr,
5.0 mg kg−1 Pb, Cd, Mn and Cu, and 50.0 mg kg−1 Zn and Fe; n = 6.

Analite Found, mg kg−1 Spiked Pork
Liver, mg kg−1 Recovery, % RSD, % Found,

mg kg−1
Spiked Pork

Kidney, mg kg−1 Recovery, % RSD, %

Neocuproine/GO
Cd 1.41 ± 0.01 6.38 ± 0.19 99.4 2.97 2.83 ± 0.09 7.76 ± 0.15 98.6 1.93
Pb 7.31 ± 0.26 12.28 ± 0.33 99.4 2.69 15.65 ± 0.16 20.57 ± 0.38 98.4 1.85
Zn 156 ± 3 205 ± 3 98 1.46 62.03 ± 2.83 110 ± 2 95.9 1.82
Fe 208 ± 3 258 ± 4 99 1.55 138 ± 2 185 ± 3 94 1.62
Mn 6.39 ± 0.06 11.19 ± 0.17 96 1.52 3.15 ± 0.08 7.98 ± 0.12 96.6 1.50

Batocuproine/GO
Cd 1.32 ± 0.04 6.29 ± 0.09 99.4 1.43 2.45 ± 0.018 7.49 ± 0.02 101 0.27
Pb 5.97 ± 0.08 10.68 ± 0.23 94.2 2.15 14.81 ± 0.17 19.63 ± 0.13 96.4 0.66
Zn 155 ± 2 204 ± 2 98 0.98 67.47 ± 0.24 118 ± 1 101 0.85
Fe 203 ± 4 251 ± 3 96 1.19 135 ± 3 184 ± 2 98 1.09
Mn 6.80 ± 0.081 11.74 ± 0.17 98.8 1.45 3.68 ± 0.076 8.70 ± 0.11 100.4 1.26
Cr 0.22 ± 0.002 1.19 ± 0.002 97 0.17 0.16 ± 0.001 0.64 ± 0.005 96 0.78
Cu 25.15 ± 0.21 30.06 ± 0.38 98.2 1.26 9.5 ± 0.036 14.28 ± 0.23 95.6 1.61
Co 0.23 ± 0.004 1.24 ± 0.003 101 0.24 0.23 ± 0.002 0.74 ± 0.007 102 0.95
Ni 0.12 ± 0.003 1.09 ± 0.002 97 0.18 0.51 ± 0.005 1.49 ± 0.003 98 0.20
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3. Materials and Methods
3.1. Instruments

An inductively coupled plasma optical emission spectrometer, ICP-OES model Spec-
troblue Spectro Analytical Instruments GmbH (Kleve, Germany) was used to determine
the concentrations of all the metal ions. The exact operating parameters of the spectrometer
are given in the article [44]. The selected wavelengths for the individual metal ions were
Cr—267.716 nm, Mn—257.611 nm, Fe—259.941 nm, Co—238.892 nm, Ni—231.604 nm,
Cu—219.958 nm, Zn—213.856 nm, Cd—228.802 nm, and Pb—220.353 nm.

An Ethos Up microwave digestion system Milestone (Sorisole, Italy) equipped with
a Teflon high-pressure reaction vessel was used to digest the samples and the certified
reference materials.

3.2. Reagents and Solutions

Metal stock solutions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II),
and Pb(II); 1000 mg L−1 in 1% HNO3) neocuproine and batocuproine were purchased
from Merck (Darmstadt, Germany). Graphite powder was obtained from Sigma-Aldrich
(St. Louis, MI, USA). Sulfuric acid (98%, p.a.), nitric acid (65%, p.a.), hydrochloric acid
(35–38%, p.a.), hydrogen peroxide (30%, p.a.), ammonium hydroxide solution (25%, p.a.),
ethanol (96%, p.a.), boric acid (p.a.), disodium tetraborate (p.a.), sodium nitrate (p.a.),
potassium permanganate (p.a.), and all of the salts (p.a.) used in the study of potentially
coexisting ions influence were bought from Avantor (Gliwice, Poland). The certified ref-
erence materials MODAS-3 Herring Tisue (M-3 HerTis), MODAS-4 Cormorant Tissue
(M-4 CormTis), and MODAS-5 Cod Tisue (M-5 CodTis) were purchased from Consor-
tium MODAS LGC Standards (Warsaw, Poland). The experiments were carried out using
ultrapure water provided with a Milli-Q system (Millipore, Molsheim, France).

A pH 8 borate buffer solution was prepared by mixing an appropriate amount of boric
acid with an appropriate amount of disodium tetraborate. Neocuproine (0.01 mol dm−3)
and batocuproine (0.1%) were prepared in ethanol (96%).

3.3. Synthesis and Characterization of GO

GO was obtained by the Hummers’ method using concentrated sulfuric acid, potas-
sium permanganate, and sodium nitrate [51]. The GO was characterized by X-ray photo-
electron spectroscopy (XPS), powder X-ray diffraction (XRD), and Raman spectroscopy [52].

As presented in the article [52], XPS shows the presence of oxygen groups on the
surface of the GO compared to the graphite from which the GO was obtained. The C 1s
spectrum of graphite shows the main peak at 284.4 eV due to the graphitic carbon, whereas
the spectrum of the GO also revealed four other peaks at 285.8, 286.9, 288.1, and 289.5 eV,
assigned to C−OH, C−O−C, C=O, and O−C=O. The C 1s spectrum of the GO also
showed a main peak at 284.6 eV, assigned to the non-oxidized carbon C-C/C-H. The
O 1s spectrum of the GO showed three peaks at 531.2, 532.4, and 533.6 eV, assigned to
O−C=O (carboxyl and carbonyl groups), C-OH/C-O-C (hydroxyl and epoxy groups), and
H2O/C-OH (carboxyl group).

3.4. Sample Preparation

Certified reference materials. 200 mg of Herring Tisue, Cormorant Tissue, and Cod
Tisue were digested in 5 mL of concentrated nitric acid using microwave-assisted digestion.
Mineralization was carried out for 30 min in Teflon (PTFE) vessels with a capacity of 100 mL
at a temperature of 210 ◦C, a pressure of 50 bar, and a power of 1800 W. After cooling,
the obtained solution was diluted to a volume of about 50 mL. Next, the samples were
prepared using the preconcentration procedure Dµ-SPE/ICP-OES. The same procedure
was used for the blank solutions.

Pork liver and pork kidney. The pork liver and pork kidney were purchased from a
supermarket in Poland. The samples were lyophilized, ground in a high-speed rotor mill,
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and sieved through sieves with a mesh size of 500 µm. Next, the procedure was similar to
the certified reference materials.

3.5. Dµ-SPE Procedure

In the first step, the GO was dispersed in high-purity water to obtain a homogenous
suspension with a concentration of 2 mg mL−1. Next, 1 mL of the GO suspension was
transferred to 50 mL of the analyzed solution containing (i) 1 mL of neocuproine solution
or (ii) 0.2 mL of batocuproine solution and metal ions. Afterwards, the solution’s pH
was adjusted to 8 with borate buffer. The sample solutions were stirred on a magnetic
stirrer for 30 min. After this time, the solutions were passed through cellulose filters under
reduced pressure. The adsorbed metal ions were eluted with 5 mL of 0.5 mol L−1 HNO3.
The analytes were determined using the ICP-OES technique.

4. Conclusions

Based on the conducted research, it was found that the use of neocuproine and
batocuproine as chelating agents for the initial preconcentration of trace amounts of Pb(II),
Zn(II), Cd(II), Fe(III), Mn(II), Cr(III), Cu(II), Co(II), and Ni(II) in food samples before
their determination with the ICP-OES technique is effective and gives replicable results.
Thus, this broadens the range of possible GO applications for analysing food samples.
An undeniable advantage is the lack of influence of the inorganic matrix on the analytes
being determined. Cationic complexes of these metals adsorbed on graphene oxide can be
easily eluted with 0.5 mol L−1 of nitric acid. These methods are fast, simple, economical,
and environmentally friendly.
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