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Abstract: Objective: the study was to find a suitable treatment for acute drug-induced liver injury.
The use of nanocarriers can improve the therapeutic effect of natural drugs by targeting hepatocytes
and higher loads. Methods: firstly, uniformly dispersed three-dimensional dendritic mesoporous
silica nanospheres (MSNs) were synthesized. Glycyrrhetinic acid (GA) was covalently modified on
MSN surfaces through amide bond and then loaded with COSM to form drug-loaded nanoparticles
(COSM@MSN-NH2-GA). The constructed drug-loaded nano-delivery system was determined by
characterization analysis. Finally, the effect of nano-drug particles on cell viability was evaluated and
the cell uptake in vitro was observed. Results: GA was successfully modified to obtain the spherical
nano-carrier MSN-NH2-GA (≤200 nm). The neutral surface charge improves its biocompatibility.
MSN-NH2-GA has high drug loading (28.36% ± 1.00) because of its suitable specific surface area and
pore volume. In vitro cell experiments showed that COSM@MSN-NH2-GA significantly enhanced
the uptake of liver cells (LO2) and decreased the AST and ALT indexes. Conclusion: this study
demonstrated for the first time that formulation and delivery schemes using natural drug COSM and
nanocarrier MSN have a protective effect on APAP-induced hepatocyte injury. This result provides a
potential nano-delivery scheme for the targeted therapy of acute drug-induced liver injury.

Keywords: acetaminophen; chitosan oligosaccharide; drug-induced liver injury; glycyrrhetinic acid
modification; mesoporous silica

1. Introduction

Acetaminophen (APAP), which is also known as N-acetyl-p-aminophenol or parac-
etamol, is among the most frequently used tablets due to its analgesic and antipyretic
properties [1,2]. Especially in the era of the COVID-19 virus epidemic, because of its low
price and significant effect on fighting fever and muscle soreness, it is often combined
with other drugs and is easily overused frequently [3–5]. Therefore, the safety of APAP
is questionable. Studies have shown that its overdose might lead to hepatotoxicity and
acute liver failure (ALF) [6,7]. APAP mediates the formation of N-acetyl-p-benzoquinone
imine through cytochrome P450 in the human body, leading to mitochondrial oxidative
stress and activation of c-Jun N-terminal kinase, which will lead to nuclear translocation
of mitochondrial proteins and induce DNA fragmentation, eventually leading to liver cell
necrosis [8]. The drug-induced liver damage (DILI) observed with APAP is the second
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main reason for liver transplantation in humans [9]. APAP-induced DILI is responsible
for 50% of cases of acute liver failure in the United States and Europe [10], whereas in
China, APAP-induced DILI is responsible for 50.8% of all cases of anti-inflammatory- and
analgesic-induced DILI [11]; therefore, it is urgent to develop safer and more effective
drugs to treat liver injury induced by APAP. At present, N-acetylcysteine (NAC) is the
only clinically approved antidote for APAP-induced liver damage [12–14]. Because of
its poor bioavailability, complicated drugs, limited administration time, and many side
effects, it is necessary to design and construct a new nano-drug delivery system to find a
solution [15–18].

Mesoporous silicon nanocarriers (MSNs) have high drug loading capacity and can
load small molecular drugs, especially hydrophobic drugs. Up to now, MSNs have been
developed for targeted drug, gene and protein delivery, and composite nano-drugs for
diagnostic biological imaging, tissue engineering, cancer treatment, vaccine development,
biomaterials, and diagnosis and treatment [19–21]. At the same time, nano-loaded drugs
can avoid drug degradation and physiological toxicity to healthy tissues caused by the
premature exposure of drugs [22,23]. Mesoporous silica with various specific modifications
has attracted people’s interest as the carrier of nanoparticle drug delivery system. This
approach enhances cellular-specific uptake to increase intracellular drug concentration and
retain the drug in the targeted tissue [24,25]. In addition, targeted nanoparticles include
excessive drug load and ensure targeted delivery and improve bioavailability [19].

Glycyrrhetinic acid (GA) is an active aglycone of glycyrrhizic acid. Studies have proven
that GA has numerous advisable pharmacological activities, such as anti-inflammatory,
antiviral and antiulcer activities [26,27]. Because GA molecules can provide a hydrophobic
moiety and bind liver-targeting ligands, GA-mediated drug carrier structures have emerged
as a novel liver-targeting platform [28,29]. Studies have confirmed that GA receptors are
present on the surface of liver (parenchymal) cell membranes, and GA can be highly
accumulated in the liver [30]. Studies have confirmed that GA receptors are present on
the surface of liver (parenchymal) cell membranes, and GA can be highly accumulated
in the liver. Compared to carriers not modified with GA, those modified with GA were
reported to be more effective in livers or in targeting livers [30]. In addition, GA-modified
nanoparticles may exhibit an ability to distinguish normal liver tissue from diseased or
damaged liver tissue, resulting in higher therapeutic efficacy and safety [31]. In a word,
it is a very promising scheme to embed GA into MSN and load drugs to treat diseases in
the liver.

COSM, with an average molecular weight of less than 3000, is a natural product ex-
tracted from shrimp and crab shells that exhibits antioxidant, anti-inflammatory and other
biological activities [32–34]. Our research group has performed research on chitosan and
chitosan oligosaccharide regarding weight loss and liver protection for a long time. In par-
ticular, the team has a good research foundation on the antioxidant and anti-inflammatory
activities and mechanisms of chitosan oligosaccharide on the liver. Previous studies have
found that COSM has a good protective effect on liver injury [35–39]. In this study, GA
was selected as the target ligand to be covalently modified on the structure of MSNs. The
ensuing glycyrrhetinic acid-functionalized mesoporous silica nanoparticles (MSN-NH2-
GA) have potential for transferring unique capsules to LO2 cells. COSM, a polysaccharide
product with anti-inflammatory and antioxidant effects, was loaded into MSN-NH2-GA.
The covalent bond between GA and MSN was investigated by Fourier transform infrared
spectroscopy (FTIR). The structures and morphologies of MSNs and MSN-NH2-GA were
investigated via transmission electron microscopy (TEM) and dynamic light scattering
(DLS). LO2 cells were selected to explore the cytotoxicity and cell uptake by focusing on
the effectiveness of COSM-loaded MSN-NH2-GA.



Molecules 2023, 28, 4147 3 of 14

2. Results and Discussions
2.1. Synthesis and Characterization of MSN-NH2-GA and COSM@MSN-NH2-GA

The nanomedicine, labelled COSM@MSN-NH2-GA, was synthesized in several steps
(Scheme 1). Briefly, uniformly dispersed three-dimensional dendritic mesoporous silica
nanospheres were synthesized by referring to the preparation method by Shen’s team [40].
These 3D dendritic MSNs exhibit unique advantages in protein loading and release due to
their adjustable large porosity and intelligent layered mesostructure. More importantly,
the release rate depends in part on graded biodegradation as 3D dendritic MSNs with
larger pore sizes have a faster rate of biological interpretation [41,42]. In this study, GA
was selected as the target ligand, and by grafting alkoxysilane, MSNs were externally
functionalized and finally anchored by amino reaction with amino-modified GA [43].
COSM was loaded in ethanol by impregnation [44]. The formed glycyrrhetinic acid-
functionalized MSN nanoparticles exhibit the potential to specifically deliver drugs to
hepatocytes [42].
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Scheme 1. Diagram of the synthetic process used to develop our nanomedicine and the simulated
cell uptake schematic diagram of COSM@MSN-NH2-GA.

As shown in Figure 1a,b, SEM revealed that the MSN nanoparticles are spherical
and exhibit a uniform particle size distribution. TEM showed that the MSN nanopar-
ticles are spherical with clear and uniform mesoporous channels on the surface and a
uniform particle size, which is consistent with the SEM results. After targeted modification,
MSN-NH2-GA nanoparticles with a uniform particle size and complete morphology were
obtained. The particle size distributions of MSN and MSN-NH2-GA nanoparticles are
(156.7 ± 61.7) nm and (190.7 ± 78.1) nm, respectively (Figure 1c). The particle size of the
nanoparticles gradually increases with the modification process. The nanoparticles are
dispersed in different solvents, and the measured particle size is also inconsistent because
the DLS measurement conditions are in aqueous solution. Therefore, the DLS results are
slightly larger than the TEM particle size results. The zeta potential of the nanoparticles
also reflects the macroscopic changes in the surface modification of the nanoparticles.
Figure 1d shows that the zeta potential of the blank MSN was −40.42 ± 22.11 mV due to
the presence of silanol groups on the MSN surface and its negative charge. After amino
modification occurred, the amino group (positively charged) replaced silanol (which is
negatively charged), so the zeta potential changed from negative to positive, and the zeta
potential of MSN-NH2 was 58.62 ± 4.479 mV. When glycyrrhetinic acid was docked, part
of the amino group was consumed and covered so that the positive charge decreased, and
the zeta potential of MSN-NH2-GA became (7.013 ± 4.132) mV.
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To decide the chemical grafting of exceptional practical groups, MSN, MSN-NH2
and MSN-NH2-GA were characterised using distinct methods and after every reaction
step. Using FTIR spectroscopy, we can see the functionalization manner of nanoparticles.
Figure 2 shows that all samples show the skeleton absorption peaks of silicon-based
materials, namely, the Si-O-Si symmetrical stretching vibration peak (800 cm−1), the Si-O-Si
asymmetric stretching vibration peak (1085 cm−1), and the Si-OH stretching vibration
peak (960 cm−1). The infrared spectra peaks of MSN-NH2 are located at 2922 cm−1 and
2855 cm−1, which are the C-H stretching vibrations of APTES, indicating that the amino
group was correctly modified. The amide II band at 1445 cm−1 and the C=C stretching
vibration of GA at 1545 cm−1 indicate that the GA molecule is modified to MSN by
amide bonds.

As seen in Figure 3a,b, the adsorption isotherm conforms to the Langmuir IV isotherm,
and the nanomaterial exhibits a mesoporous structure. It can be seen that, when the relative
pressure P/P0 < 0.35, N2 is present on the surface of the material channel. With single
molecule and multimolecular layer adsorption, the amount of adsorption slowly increases.
Under a relative pressure of 0.35 < P/P0 < 0.8, an obvious capillary condensation step can
be observed, and the adsorption amount increases, indicating that the pore size distribution
is wide. When 0.8 < P/P0 < 0.9, the nitrogen adsorption and the outer surface curve are
gentle. When P/P0 > 0.9, there is a hysteresis loop. At this time, nitrogen adsorption occurs
in the gap between the particles, the adsorption capacity increases, and the curve shows an
additional large jump. The postgrafting method was used to modify the targeting group
so that group modification would also occur in the pores of the nanoparticles. Figure 3b
shows that the modification of amino and glycyrrhetinic acids exhibited a certain covering
effect on the nanoparticles. As seen in Figure 4a,b, the MSNs had specific surfaces of
565.27 m2/g, contained pores with a size of 6.15 nm, and a volume of 1.18 cm3/g. MSN-
NH2-GA had specific surface areas of 245.83 m2/g, showed pores with a size of 6.04 nm,
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and a volume of 0.69 cm3/g. Therefore, the specific surface area, pore volume and pore
size of MSN-NH2-GA decreased accordingly.
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To identify the COSM API, nanocarriers (MSN-NH2-GA), physically mixed groups,
and nanopharmaceutical groups, differential scanning calorimetry (DSC) was performed.
The results are shown in Figure 5. The black (A), red (B), blue (C), and green (D) curves
represent the COSM, nanocarrier (MSN-NH2-GA), physical mixing, and nanomedicine
(COSM@MSN-NH2-GA) groups, respectively. COSM exhibits an obvious single-melting
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endothermic peak at approximately 200 ◦C, while the nanocarrier (MSN-NH2-GA) group
shows an obvious dehydration peak at approximately 100 ◦C. The DSC analysis of the
physically mixed group contains characteristic absorption peaks of the carriers and COSM,
which was because the drug and the carriers were simply mixed. In the DSC analysis of the
nanodrug group, the characteristic absorption peak of the main drug (COSM) disappeared,
indicating that COSM was present in an amorphous form in the nanodrug group and
was no longer present in a crystalline state. These observations indicate that COSM was
successfully incorporated into the mesoporous channels of MSN-NH2-GA.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. The nitrogen adsorption isotherms of MSN (a) and MSN-NH2-GA (b). 

 
Figure 4. The pore size distributions of MSN (a) and MSN-NH2-GA (b) Pore size distribution. 

According to the previous experiments, the feasibility of using 3,5-dinitrosalicylic 
acid (DNS) as a method for the determination of COSM content was determined, and the 
specific determination conditions were finally optimized and screened out [45,46]. In the 
drug loading experiment, the dosage ratio of COSM and MSN-NH2-GA is 1:2, and the 
drug loading time is 12 h, which is the best drug loading condition. The encapsulation 
efficiency (EE%) was 28.36% and the load capacity (LC%) was 56.72%. 

 
Figure 5. Differential scanning calorimetry results COSM (A), MSN-NH2-GA (B), physical mixing 
(C), COSM@MSN-NH2-GA (D). 

2.2. In Vitro Biological Evaluation 

Figure 5. Differential scanning calorimetry results COSM (A), MSN-NH2-GA (B), physical mixing
(C), COSM@MSN-NH2-GA (D).

According to the previous experiments, the feasibility of using 3,5-dinitrosalicylic
acid (DNS) as a method for the determination of COSM content was determined, and the
specific determination conditions were finally optimized and screened out [45,46]. In the
drug loading experiment, the dosage ratio of COSM and MSN-NH2-GA is 1:2, and the
drug loading time is 12 h, which is the best drug loading condition. The encapsulation
efficiency (EE%) was 28.36% and the load capacity (LC%) was 56.72%.

2.2. In Vitro Biological Evaluation

LO2 was cultivated, 8000–10,000 cells per well in a 96-well plate were seeded, the
cell state with a microscope was observed after about 10–12 h of culture; APAP modelling
groups were set at 0, 2, 4, 6, 8, 10, 12, 14, 16 mM. APAP was given to each group according to
the preset setting, and the culture was continued for 3, 6, 12, and 24 h; the cell survival rate
was measured by CCK-8 method, and the optimal concentration and time for modelling
were determined. According to the results of nanomedicine cytotoxicity, the dosage of
COSM@MSN-NH2-GA group was low dose (200 µg/mL), medium dose (400 µg/mL),
high dose (800 µg/mL); in total, there was a group of six duplicate holes. The drug loading
of COSM@MSN-NH2-GA is 28.36% ± 1.00%. By equivalent conversion, the dosage of
the free drug COSM was low dose (56 µg/mL), medium dose (113 µg/mL), high dose
(226 µg/mL); in total, eight duplicate wells were in each group, and they continued to
culture for 12 h after adding the COSM drug. The experiment and results of this part are
shown in the annex.

LO2 hepatocytes were treated with APAP for 12 h and then treated with COSM, MSN-
NH2-GA, and COSM@MSN-NH2-GA for 12 h. Then, the growth state of the cells were
observed under the microscope. As shown in Figure 6, in the blank nanocarrier groups,
MSN-NH2-GA(L), MSN-NH2-GA(M), and MSN-NH2-GA(H), basically no difference in
the cell state and the number of dead cells was observed. This indicated that the blank
nanocarrier did not improve the decrease of cell viability caused by APAP at each dose.
Compared with the MOD group, the cell viability was not affected, which preliminarily
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proved that the nanoparticles were a safe and non-toxic nanocarrier. In the free drug
group, the cell state of the COSM (L) group was close to that of the APAP model group, the
normal hepatocytes in the COSM (M) and COSM (H) groups increased, the cell morphology
was more normal, and the number of dead cells decreased. Each group treated with the
nanodrug showed a decrease in the number of dead cells, but the middle-dose group and
the high-dose group displayed the most pronounced effects of cell treatment due to the
more normalized cell morphology and lower number of dead cells in these groups. The
model group generally showed a substantially higher number of dead cells and significantly
fewer normal liver cells than the normal control group. In addition, the appearance of
many dead cells changed, displaying abnormal forms and decreased cell activity.
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The contents of ALT and AST in the medium were determined by collecting the culture
medium, and the therapeutic effect of each administration group on APAP-induced LO2
hepatocyte injury was detected by CCK-8 method. As shown in Table 1, COSM@MSN-
NH2-GA (M) and COSM@MSN-NH2-GA (H) treatment groups significantly increased
hepatocyte survival and inhibited hepatocyte injury. In addition, compared with the APAP
model group, the nanomedicine treatment could significantly reduce the contents of ALT
and AST in the culture medium, as shown in Figure 7. In the high-dose group, compared to
the free COSM, the nano-drug COSM@MSN-NH2-GA showed a more significant decrease
in the indexes of ALT and AST. It can be speculated that the glycyrrhetinic acid receptor
(GAR), as the most commonly used targeting effect, is overexpressed in hepatocytes [47,48].
MSN-NH2-GA uses a receptor-mediated strategy to improve delivery efficiency and achieve
better therapeutic effect. Taken together, the results indicated that COSM@MSN-NH2-GA
could treat APAP-induced hepatocyte injury. Therefore, the combined use of COSM and
MSN-NH2-GA can improve the vitality of hepatocytes and provide great hope for the
treatment of APAP-induced hepatocyte injury.
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Table 1. Effects of COSM, MSN-NH2-GA, and COSM@MSN-NH2-GA on cell viability of APAP-
induced hepatocyte injury (n = 6).

Sample Dosage Cell Viability (%)

CON - 100.00 ± 5.72
MOD - 51.70 ± 8.40

COSM
L 52.24 ± 6.20
M 64.10 ± 7.80 *
H 73.59 ± 11.23 **

MSN-NH2-GA
L 51.82 ± 8.16
M 53.07 ± 7.32
H 54.95 ± 6.41

COSM@MSN-NH2-GA
L 60.49 ± 6.53
M 72.58 ± 7.40 **
H 88.27 ± 5.14 ***

Compared to APAP model group, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 7. Contents of AST (A) and ALT (B) in cell culture medium of each group after administration
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In this experiment, fluorescence microscopy was used to observe the cellular uptake
behaviour of nanoparticles. As shown in Figure 8, at 5 min, no fluorescence could be
observed in the C6-NP group, but blue nuclei stained with DAPI could be clearly observed.
After 1 h, fluorescence was observed in the cytoplasm of the cells. The fluorescence intensity
of the C6-NP group was significantly enhanced, indicating that the targeted nanoparticles
showed higher cell uptake ability. At 2 h, the fluorescence intensity of the C6-NP groups
confirmed an increasing trend. In the C6-NP group, the Merge diagram showed mixed blue
and green light, and the cytoplasm and nucleus of the cells exhibited much fluorescence.
This result may be due to the above-mentioned specific GA-receptor-mediated endocy-
tosis mechanism, and a large number of C6-NPs nanoparticles are internalized by LO2
cells [29,30].

In this experiment, flow cytometry was performed to analyse the cell uptake behaviour
of nanoparticles (Figure 9). At 5 min, the fluorescence intensity of the free coumarin group
(938.6 ± 115.7) was not considerably longer than that of the C6-NP group (923.8 ± 27.4). At
1 h, the cell fluorescence intensity of the nanoparticle group was maintained at a high level
(11378.07 ± 2692.05), which was appreciably different from that of the free drug group
(3082.83 ± 220.94). With increases in the reaction time, the fluorescence intensity of the
nanoparticle group reached 12991.77 ± 2303.26 at 2 h, whereas the fluorescence intensity
of the free drug group was 4746.3 ± 1990.77. This finding shows that compared with free
drugs, targeted modified nanoparticles exhibit a stronger drug transport ability and are
more easily taken up by cells.
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Overall, the uptake of glycyrrhetinic-acid-modified nanomedicines by cells was better.
The results of fluorescence microscopy and flow cytometry showed that the glycyrrhetinic-
acid-modified nanoparticles exhibited a higher fluorescence intensity than that of the free
C6 group at the same time and showed stronger fluorescence intensity faster, indicating
that the treatment can significantly increase the uptake of nanomedicines by LO2 cells.
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3. Materials and Methods
3.1. Synthesis of MSN-NH2-GA Nanoparticles

The following substances were purchased from industrial suppliers and used as re-
ceived. Triethanolamine (TEA), N-hydroxysuccinimide (NHS), dicyclohexylcarbodiimide
(DCC), glycyrrhetinic acid (GA), dimethyl sulfoxide (DMSO), and diethyl ether were all
biochemically obtained from MACKLIN Technology Co., Ltd. (Shanghai, China). Cyclo-
hexane, absolute ethanol, and methanol were all provided by Tianjin Damao Reagent Fac-
tory (Tianjin, China). Cetyltrimethylammonium chloride (CTAC), tetraethyl orthosilicate
(TEOS), 3-aminopropyltriethoxysilane (APTES), and 1-octadecene (ODE) were purchased
from Sigma-Aldrich Trading Co., Ltd. (Shanghai, China). Unless otherwise indicated, all
solvents were of analytical grade and were used without purification.

24 mL (25 wt %) CTAC solution and 0.09 g TEA were added to 36 mL distilled water
and stirred at 150 rpm for 1 h. Then, 20 mL of ODE solution containing TEOS (10 v/v %)
was added and reacted at 70 ◦C for 24 h to obtain MSN. MSN-NH2 was obtained by adding
MSN to 25 mL anhydrous ethanol, adding 2.0 mL APTES, and reacting at 30 ◦C for 24 h.
GA-NHS was obtained by adding 0.52 g NHS, 0.94 g DCC, and 1.0 g GA into 20 mL DMSO,
and reacting at 40 ◦C for 24 h. Finally, GA-NHS and MSN-NH2 were added to DMSO
and stirred at 60 ◦C for 24 h. MSN-NH2-GA was obtained by washing with DMSO and
anhydrous ethanol for 3 times. Please see attachment Figure S1 for details.

3.2. Preparation Characterization

FTIR spectra were obtained using an FTIR spectrophotometer (VERTEX 70v, Bruker
GmbH, Bremen, Germany) to determine the profitable synthesis of MSN-NH2 and MSN-
GA. The dimension distribution and zeta potential of the pattern nanoparticles were
explored using a laser particle dimension analyser (Delsa, Beckman Technology Co., Ltd.,
Durahm, NC, USA). The morphologies of MSN and MSN-NH2-GA were observed by
TEM (Tecnai G2 F20, Thermo Fisher Scientific, Waltham, MA, USA) and scanning electron
microscopy (SEM) (XFlash 6130, Carl Zeiss, Oberkochen, Germany). The unique structures
and pore dimension distribution traits of MSN and MSN-NH2-GA were determined by
nitrogen adsorption (ASAP2460, American Mack Instruments Co., Ltd., Colonial Heights,
VA, USA).

3.3. Encapsulation of COSM in MSN-NH2-GA (COSM@MSN-NH2-GA)

Chitosan oligosaccharide (COSM) was purchased from Shandong Aokang Biotech-
nology Co., Ltd., with batch number of 200409C, degree of deacetylation (DD) of 90.2%,
and molecular weight of 1000 Da. To study the loading ability of COSM on the prepared
nanoparticles, 10 mg of nanocarrier MSN-NH2-GA was placed into 10 mL of ethanol so-
lution at room temperature and ultrasonically dispersed for approximately 10 min. Then,
10 mg of COSM was added and stirred slowly on a magnetic stirrer for 12 h. Finally, a high-
speed centrifuge was used for centrifugation to collect the lower drug-loaded nanoparticles,
which were freeze-dried for storage. Differential scanning calorimetry (DSC) curves were
obtained using a synchronous thermal analyser (STA449, Netzsch, Selb, Germany) with a
temperature range of 20 ◦C to 300 ◦C and a heating rate of 10 ◦C/min. The determination
method of COSM content was established by DNS method, and the absorbance of COSM
was determined by multifunctional enzyme-labeled instrument (MAXM4, Meigu Molecular
Instruments Co., Ltd., Shanghai, China), and the standard curve of COSM was drawn
(Figure S3). The amounts of COSM in the nanoparticles were measured.

The encapsulation efficiency (EE%) of COSM in the nanoparticles was calculated using
the following formula:

EE (%) =
Total amount of COSM drugs − COSM content in supernatant

Total amount o f nanoparticles



Molecules 2023, 28, 4147 11 of 14

The load capacity (LC%) of COSM in the nanoparticles was calculated using the
following formula:

LC (%) =
Total amount of COSM drugs − COSM content in supernatant

Total amount o f drugs administered by COSM

3.4. Effect of COSM@MSN-NH2-GA on Cell Activity and Treatment

The cell line was purchased from the Cell Bank of the Chinese Academy of Sciences
and was cryopreserved at the Institute of Traditional Chinese Medicine, Guangdong Phar-
maceutical University, with the human foetal hepatocyte LO2 mobile line. The cells were
cultured in RPMI-1640 medium containing 10% foetal bovine serum and 1% FBS in a
humidified incubator with a 5% carbon dioxide atmosphere. This protocol was reviewed
and approved by the Institutional Review Board of Guangdong Pharmaceutical University.

First, LO2 cells were cultured and observed by microscope. Then, according to the
previous experimental results (see attachment: Figure S2, Tables S1 and S2), the adminis-
tration components were divided into high, medium, and low (H, M, L) COSM, (H, M, L)
MSN-NH2-GA nanoparticles and (H, M, L) COSM@MSN-NH2-GA nanomedicine, with
8 replicate wells in each group. APAP was added at the modelling concentration for 12 h,
the model group was treated with APAP only, the clean group was treated with an iden-
tical amount of medium, and the experimental group was treated with free drug COSM,
nanoparticles MSN-NH2-GA, and the nanodrug COSM@MSN-NH2-GA and cultured for
12 h.

The cytopathological state was observed to evaluate the therapeutic effect. In this study,
the optimal concentration and time of APAP for modeling were screened (see attachment:
Figure S4), and the cell viability was measured by CCK-8 method as the evaluation index.
First, the cell culture medium was collected and centrifuged, and the contents of AST
(C010-3-1, Nanjing Jiancheng Biological Co., Ltd., Nanjing, China) and ALT (C009-3-1,
Nanjing Jiancheng Biological Co., Ltd., Nanjing, China) were measured according to the kit
instructions. The survival state of adherent cells was detected by the CCK-8 method.

3.5. In Vitro Cellular Uptake
3.5.1. Fluorescence Microscopy (CLSM)

Coumarin-6 (C6) is a liposoluble dye with strong fluorescence. It is commonly used in
cellular uptake studies with nanoformulations [49,50]. LO2 hepatocytes with cell viability
meeting the experimental requirements were inoculated into a 24-well plate and incubated
for more than 12 h until 80% of the cells adhered to the wall. The C6 solution and C6-NP
nanosolution were diluted with serum-free medium so that both groups of C6 concen-
trations were 800 ng/mL and were washed 3 times with PBS. After culturing for 30 min,
1 h, and 2 h, the original medium was discarded, subjected to three 5 min washes with
PBS, incubated with 4% paraformaldehyde for 15 min, and washed 4 times with PBS after
fixation. In a dark environment, the anti-fluorescence-quenching suspension-containing
DAPI was dropped on the glass slide, and then the cell slide was placed upside down
on the glass slide to complete the suspension. A fluorescence microscope was used for
observation and analysis.

3.5.2. Flow Cytometry (FCM)

LO2 cells were seeded in a 6-well plate at 20 w cells/well and incubated for more
than 12 h, and cell adherence was observed. When more than 80% of the cells adhered, the
coumarin solution and coumarin-labelled C6-NPs were diluted with minimal medium so
that the fluorescein concentration was 800 ng/mL. Time gradients were set as 5 min, 1 h,
and 2 h. After incubation for corresponding time in each group, cells were collected by cen-
trifugation. The cells were resuspended with 300 µL PBS and detected by flow cytometry.
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4. Conclusions

In this study, a multifunctional drug delivery carrier based on glycyrrhetinic acid em-
bedded in silica nanoparticles was successfully synthesized. Not only does MSN-NH2-GA
show satisfactory loading ability, but also it enhances its biocompatibility. The successful
synthesis of MSN-NH2-GA was verified by FTIR, SEM and zeta potential measurement.
In vitro studies show that this kind of nontoxic nanoparticles can significantly enhance
the uptake of cells. The COSM drug has a protective effect on liver cell injury induced by
APAP. In particular, the delivery of COSM through MSN-NH2-GA can greatly improve the
therapeutic effect on LO2 cells. In summary, COSM@MSN-NH2-GA is a non-toxic, stable
and efficient nano-therapeutic drug for acute liver injury. The results of this study provide
a potential nanodelivery platform for the targeted therapy of acute liver injury.
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https://www.mdpi.com/article/10.3390/molecules28104147/s1, Figure S1: The synthetic route
of MSN-NH2 (A), the synthetic route of GA-NHS (B) and the synthetic route of MSN-NH2-GA (C);
Figure S2: Effect of different MSN and MSN-NH2-GA concentrations on cell viability rate; Figure S3:
Standard curve of GluNH2 with glucosamine as standard; Figure S4: Effect of different modeling
concentrations (APAP) and time on cell viability rate (A) and IC50 curve (B); Table S1: Investigation
of different drug/carrier ratio; Table S2: Investigation of different drug/carrier ratio.
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