Fully Room Temperature Reprogrammable, Recyclable, and Photomobile Soft Actuators from Physically Cross-Linked Main-Chain Azobenzene Liquid Crystalline Polymers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the Main-Chain Azo Liquid Crystalline Poly(Ester-Amide-Secondary Amine)s (PEAsAs)
2.2. Mechanical and Photomechanical Properties of the Uniaxially Oriented PEAsA-n Fibers
2.3. Room Temperature 3D Shape Reprogrammability and Recyclability of PEAsA-n Fibers
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis of AAzo-OH (Scheme 1)
3.3. Synthesis of the Diacrylate-Type AZO Monomer with an Amide Group (M-Azo, Scheme 1)
3.4. Synthesis of the Main-Chain Azo LCPs with Both Ester Groups and Two Kinds of Hydrogen Bond-Forming Groups (i.e., Both Amide and Secondary Amino Groups) and Different Lengths of Flexible Spacers in Their Backbones (PEAsA-n (n = 2, 6, 12), Scheme 1)
3.5. Polymer Analogous Reactions of PEAsA-n with Acetic Anhydride (Scheme S2)
3.6. Fabrication of the Uniaxially Oriented Main-Chain Azo Polymer Fibers
3.7. 3D Shape Reprogramming of the Uniaxially Oriented PEAsA-n Fibers
3.8. Recycling of PEAsA-6 Fibers
3.9. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 2010, 22, 3366–3387. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149–2180. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ye, G.; Wang, X.; Keller, P. Micron-sized liquid crystalline elastomer actuators. Soft Matter 2011, 7, 815–823. [Google Scholar] [CrossRef]
- Broer, D.J.; Bastiaansen, C.M.W.; Debije, M.G.; Schenning, A.P.H.J. Functional organic materials based on polymerized liquid-crystal monomers: Supramolecular hydrogen-bonded systems. Angew. Chem. Int. Ed. 2012, 51, 7102–7109. [Google Scholar] [CrossRef] [PubMed]
- Ube, T.; Ikeda, T. Photomobile polymer materials with crosslinked liquid-crystalline structures: Molecular design, fabrication, and functions. Angew. Chem. Int. Ed. 2014, 53, 10290–10299. [Google Scholar] [CrossRef]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Bisoyi, H.K.; Li, Q. Light-driven liquid crystalline materials: From photo-induced phase transitions and property modulations to applications. Chem. Rev. 2016, 116, 15089–15166. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.C.; Xiao, Y.Y.; Zhao, Y. Shining light on liquid crystal polymer networks: Preparing, reconfiguring, and driving soft actuators. Adv. Opt. Mater. 2019, 7, 1900262. [Google Scholar] [CrossRef]
- Pang, X.; Lv, J.; Zhu, C.; Qi, L.; Yu, Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater. 2019, 31, 1904224. [Google Scholar] [CrossRef]
- Chen, M.; Liang, S.; Liu, C.; Liu, Y.; Wu, S. Reconfigurable and recyclable photoactuators based on azobenzene-containing polymers. Front. Chem. 2020, 8, 706. [Google Scholar] [CrossRef]
- Zhang, H. Reprocessable photodeformable azobenzene polymers. Molecules 2021, 26, 4455. [Google Scholar] [CrossRef] [PubMed]
- Saed, M.O.; Gablier, A.; Terentjev, E.M. Exchangeable liquid crystalline elastomers and their applications. Chem. Rev. 2022, 122, 4927–4945. [Google Scholar] [CrossRef]
- Herbert, K.M.; Fowler, H.E.; McCracken, J.M.; Schlafmann, K.R.; Koch, J.A.; White, T.J. Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 2022, 7, 23–38. [Google Scholar] [CrossRef]
- Kondo, M.; Yu, Y.; Ikeda, T. How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? Angew. Chem. Int. Ed. 2006, 45, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Ma, S.; Zhang, Y.; Huang, S.; Chen, Y.; Yu, H. Photomechanical motion of liquid-crystalline fibers bending away from a light source. Macromolecules 2017, 50, 8317–8324. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, H.T.; Li, Z.; Zhang, Y.; Zhang, Y.Y.; Zhang, H. Synthesis of reactive azobenzene main-chain liquid crystalline polymers via Michael addition polymerization and photomechanical effects of their supramolecular hydrogen-bonded fibers. Macromolecules 2013, 46, 7650–7660. [Google Scholar] [CrossRef]
- Nie, J.; Liu, X.; Yan, Y.; Zhang, H. Supramolecular hydrogen-bonded photodriven actuators based on an azobenzene-containing main-chain liquid crystalline poly(ester-amide). J. Mater. Chem. C 2017, 5, 10391–10398. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H. Synthesis of an azobenzene-containing main-chain crystalline polymer and photodeformation behaviors of its supramolecular hydrogen-bonded fibers. Chin. J. Polym. Sci. 2020, 38, 37–44. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Ma, S.; Zhang, H. Reprocessable and healable room temperature photoactuators based on a main-chain azobenzene liquid crystalline poly(ester-urea). J. Mater. Chem. C 2021, 9, 13255–13265. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Ma, S.; Zhang, H. Fully room-temperature reprogrammable, reprocessable, and photomobile soft actuators from a high-molecular-weight main-chain azobenzene crystalline poly(ester-amide). ACS Appl. Mater. Interfaces 2022, 14, 3264–3273. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, L.; Zhang, H. Enhancing the performances of physically cross-linked photodeformable main-chain azobenzene poly(ester-amide)s via chemical structure engineering. Polym. Chem. 2022, 13, 3713–3725. [Google Scholar] [CrossRef]
- Ube, T.; Nakayama, R.; Ikeda, T. Photoinduced motions of thermoplastic polyurethanes containing azobenzene moieties in main chains. Macromolecules 2022, 55, 413–420. [Google Scholar] [CrossRef]
- Zhang, P.; Lan, Z.; Wei, J.; Yu, Y. Photodeformable azobenzene-containing polyimide with flexible linkers and molecular alignment. ACS Macro Lett. 2021, 10, 469–475. [Google Scholar] [CrossRef]
- Zhong, H.-Y.; Chen, L.; Yang, R.; Meng, Z.-Y.; Ding, X.-M.; Liu, X.-F.; Wang, Y.-Z. Azobenzene-containing liquid crystalline polyester with π-π interactions: Diverse thermo- and photo-responsive behaviours. J. Mater. Chem. C 2017, 5, 3306–3314. [Google Scholar] [CrossRef]
- de Gennes, P.-G.; Hébert, M.; Kant, R. Artificial muscles based on nematic gels. Macromol. Symp. 1997, 113, 39–49. [Google Scholar] [CrossRef]
- Aly, K.I.; Abdel-Rahman, M.A.; Hussein, M.A. New polymer syntheses Part 53. Novel polyamides of diarylidenecycloalkanone containing azo groups in the polymer backbone: Synthesis and characterization. Int. J. Polym. Mater 2010, 59, 553–569. [Google Scholar] [CrossRef]
- Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 2006, 31, 487–531. [Google Scholar] [CrossRef]
- Cheng, W.; Wu, D.; Liu, Y. Michael addition polymerization of trifunctional amine and acrylic monomer: A versatile platform for development of biomaterials. Biomacromolecules 2016, 17, 3115–3126. [Google Scholar] [CrossRef]
- Ube, T.; Kawasaki, K.; Ikeda, T. Photomobile liquid-crystalline elastomers with rearrangeable networks. Adv. Mater. 2016, 28, 8212–8217. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.C.; Xiao, Y.Y.; Yin, L.; Han, L.; Zhao, Y. “Self-lockable” liquid crystalline Diels-Alder Dynamic network actuators with room temperature programmability and solution reprocessability. Angew. Chem. Int. Ed. 2020, 59, 4925–4931. [Google Scholar] [CrossRef]
- Huang, S.; Shen, Y.; Bisoyi, H.K.; Tao, Y.; Liu, Z.; Wang, M.; Yang, H.; Li, Q. Covalent adaptable liquid crystal networks enabled by reversible ring-opening cascades of cyclic disulfides. J. Am. Chem. Soc. 2021, 143, 12543–12551. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Ho, R.-M.; Li, F.; Leland, M.E.; Park, J.-Y.; Cheng, S.Z.D.; Percec, V.; Chu, P. Existence of highly ordered smectic structures in a series of main-chain liquid-crystalline polyethers. Prog. Polym. Sci. 1997, 22, 765–794. [Google Scholar] [CrossRef]
- Jeong, K.U.; Knapp, B.S.; Ge, J.J.; Jin, S.; Graham, M.J.; Xiong, H.M.; Harris, F.W.; Cheng, S.Z.D. Structures and phase transformations of asymmetric bent main-chain liquid crystalline polyesters. Macromolecules 2005, 38, 8333–8344. [Google Scholar] [CrossRef]
- Yu, Z.-Q.; Li, T.-T.; Zhang, Z.; Liu, J.-H.; Yuan, W.Z.; Lam, J.W.Y.; Yang, S.; Chen, E.-Q.; Tang, B.Z. Phase behaviors of side-chain liquid crystalline polyacetylenes with different length of spacer: Where will the decoupling effect appear? Macromolecules 2015, 48, 2886–2893. [Google Scholar] [CrossRef]
- Niemann, M.; Ritter, H. Comb-like methacrylamide polymers containing condensates of amino acids and azobenzene moieties in the side chains. Makromol. Chem. 1993, 194, 1169–1181. [Google Scholar] [CrossRef]
- Li, X.; Wen, R.; Zhang, Y.; Zhu, L.; Zhang, B.; Zhang, H. Photoresponsive side-chain liquid crystalline polymers with an easily cross-linkable azobenzene mesogen. J. Mater. Chem. 2009, 19, 236–245. [Google Scholar] [CrossRef]
- Li, X.; Fang, L.; Hou, L.; Zhu, L.; Zhang, Y.; Zhang, B.; Zhang, H. Photoresponsive side-chain liquid crystalline polymers with amide group-substituted azobenzene mesogens: Effects of hydrogen bonding, flexible spacers, and terminal tails. Soft Matter 2012, 8, 5532–5542. [Google Scholar] [CrossRef]
- Wang, G.; Tong, X.; Zhao, Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 2004, 37, 8911–8917. [Google Scholar] [CrossRef]
- Akiyama, H.; Tamaoki, N. Synthesis and photoinduced phase transitions of poly(N-isopropylacrylamide) derivative functionalized with terminal azobenzene units. Macromolecules 2007, 40, 5129–5132. [Google Scholar] [CrossRef]
- Li, M.H.; Keller, P.; Li, B.; Wang, X.G.; Brunet, M. Light-driven side-on nematic elastomer actuators. Adv. Mater. 2003, 15, 569–572. [Google Scholar] [CrossRef]
- Naciri, J.; Srinivasan, A.; Jeon, H.; Nikolov, N.; Keller, P.; Ratna, B.R. Nematic elastomer fiber actuator. Macromolecules 2003, 36, 8499–8505. [Google Scholar] [CrossRef]
- Yoshino, T.; Kondo, M.; Mamiya, J.-I.; Kinoshita, M.; Yu, Y.; Ikeda, T. Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv. Mater. 2010, 22, 1361–1363. [Google Scholar] [CrossRef] [PubMed]
- Petr, M.; Katzman, B.-A.; DiNatale, W.; Hammond, P.T. Synthesis of a new, low-Tg siloxane thermoplastic elastomer with a functionalizable backbone and its use as a rapid, room temperature photoactuator. Macromolecules 2013, 46, 2823–2832. [Google Scholar] [CrossRef]
- Li, S.; Tu, Y.; Bai, H.; Hibi, Y.; Wiesner, L.W.; Pan, W.; Wang, K.; Giannelis, E.P.; Shepherd, R.F. Simple synthesis of elastomeric photomechanical switches that self-heal. Macromol. Rapid Commun. 2019, 40, 1800815. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yao, B.; Kappl, M.; Liu, S.; Yuan, J.; Berger, R.; Zhang, F.; Butt, H.-J.; Liu, Y.; Wu, S. Entangled azobenzene-containing polymers with photoinduced reversible solid-to-liquid transitions for healable and reprocessable photoactuators. Adv. Funct. Mater. 2020, 30, 1906752. [Google Scholar] [CrossRef]
- Peng, K.; Nain, A.; Mirzaeifar, R. Tracking the origins of size dependency in the mechanical properties of polymeric nanofibers at the atomistic scale. Polymer 2019, 175, 118–128. [Google Scholar] [CrossRef]
- Hu, W. Principles of Polymer Crystallization; Chemical Industry Press Co., Ltd.: Beijing, China, 2013; pp. 332–338. (In Chinese) [Google Scholar]
- Yu, Y.; Maeda, T.; Mamiya, J.-I.; Ikeda, T. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew. Chem. Int. Ed. 2007, 46, 881–883. [Google Scholar] [CrossRef]
Sample | Yield (%) | Mn,GPC (g/mol) a | Đ a | Thermal Transition T (°C) b | ΔHsi (J/g) f | Td (°C) g |
---|---|---|---|---|---|---|
PEAsA-2 | 93 | 8260 | 1.74 | G 18.4 Sx 96.4 I c I 86.1/69.8 Sx-G d,e | 22.6 c −12.9, −9.1 d | 260 |
PEAsA-6 | 92 | 13,300 | 1.23 | G 17.3 Sx 82.1/99.6 I c I 61.1 Sx-G d,e | 34.2, 7.9 c −27.9 d | 275 |
PEAsA-12 | 90 | 9860 | 1.98 | G 16.8 Sx 105.4 I c I 79.4 Sx-G d,e | 35.5 c −34.2 d | 289 |
Sample | Elastic Modulus (MPa) | Rupture Strength (MPa) | Elongation at Break (%) | Photoinduced Stress (kPa) |
---|---|---|---|---|
PEAsA-2 fiber | 656.2 ± 26.1 | 10.9 ± 0.6 | 1.8 ± 0.1 | 320.4 ± 17.5 |
PEAsA-6 fiber | 704.4 ± 35.3 | 20.9 ± 0.9 | 3.0 ± 0.1 | 373.2 ± 22.0 |
PEAsA-12 fiber | 749.3 ± 11.4 | 30.7 ± 0.4 | 4.3 ± 0.1 | 295.6 ± 16.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Wang, L.; Zhou, Y.; Zhang, H. Fully Room Temperature Reprogrammable, Recyclable, and Photomobile Soft Actuators from Physically Cross-Linked Main-Chain Azobenzene Liquid Crystalline Polymers. Molecules 2023, 28, 4174. https://doi.org/10.3390/molecules28104174
Ma S, Wang L, Zhou Y, Zhang H. Fully Room Temperature Reprogrammable, Recyclable, and Photomobile Soft Actuators from Physically Cross-Linked Main-Chain Azobenzene Liquid Crystalline Polymers. Molecules. 2023; 28(10):4174. https://doi.org/10.3390/molecules28104174
Chicago/Turabian StyleMa, Shengkui, Lei Wang, Yan Zhou, and Huiqi Zhang. 2023. "Fully Room Temperature Reprogrammable, Recyclable, and Photomobile Soft Actuators from Physically Cross-Linked Main-Chain Azobenzene Liquid Crystalline Polymers" Molecules 28, no. 10: 4174. https://doi.org/10.3390/molecules28104174
APA StyleMa, S., Wang, L., Zhou, Y., & Zhang, H. (2023). Fully Room Temperature Reprogrammable, Recyclable, and Photomobile Soft Actuators from Physically Cross-Linked Main-Chain Azobenzene Liquid Crystalline Polymers. Molecules, 28(10), 4174. https://doi.org/10.3390/molecules28104174