
Citation: Rajagopal, K.;

Kalusalingam, A.;

Bharathidasan, A.R.; Sivaprakash, A.;

Shanmugam, K.; Sundaramoorth, M.;

Byran, G. In Silico Drug Design of

Anti-Breast Cancer Agents. Molecules

2023, 28, 4175. https://doi.org/

10.3390/molecules28104175

Academic Editor: Marta Erminia

Alberto

Received: 14 March 2023

Revised: 18 April 2023

Accepted: 12 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

In Silico Drug Design of Anti-Breast Cancer Agents
Kalirajan Rajagopal 1,* , Anandarajagopal Kalusalingam 2,* , Anubhav Raj Bharathidasan 1,
Aadarsh Sivaprakash 1, Krutheesh Shanmugam 1, Monall Sundaramoorthy 1 and Gowramma Byran 1

1 Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education &
Research, The Nilgiris, Ooty 643001, Tamilnadu, India

2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, KPJ Healthcare University College,
Nilai 71800, Negeri Sembilan, Malaysia

* Correspondence: rkalirajan@jssuni.edu.in (K.R.); anand@kpjuc.edu.my (A.K.)

Abstract: Cancer is a condition marked by abnormal cell proliferation that has the potential to invade
or indicate other health issues. Human beings are affected by more than 100 different types of
cancer. Some cancer promotes rapid cell proliferation, whereas others cause cells to divide and
develop more slowly. Some cancers, such as leukemia, produce visible tumors, while others, such
as breast cancer, do not. In this work, in silico investigations were carried out to investigate the
binding mechanisms of four major analogs, which are marine sesquiterpene, sesquiterpene lactone,
heteroaromatic chalcones, and benzothiophene against the target estrogen receptor-α for targeting
breast cancer using Schrödinger suite 2021-4. The Glide module handled the molecular docking
experiments, the QikProp module handled the ADMET screening, and the Prime MM-GB/SA module
determined the binding energy of the ligands. The benzothiophene analog BT_ER_15f (G-score
−15.922 Kcal/mol) showed the best binding activity against the target protein estrogen receptor-α
when compared with the standard drug tamoxifen which has a docking score of −13.560 Kcal/mol.
TRP383 (tryptophan) has the highest interaction time with the ligand, and hence it could act for
a long time. Based on in silico investigations, the benzothiophene analog BT_ER_15f significantly
binds with the active site of the target protein estrogen receptor-α. Similar to the outcomes of
molecular docking, the target and ligand complex interaction motif established a high affinity of lead
candidates in a dynamic system. This study shows that estrogen receptor-α targets inhibitors with
better potential and low toxicity when compared to the existing market drugs, which can be made
from a benzothiophene derivative. It may result in considerable activity and be applied to more
research on breast cancer.

Keywords: breast cancer; benzothiophene analog; docking studies; pharmacophore modeling;
3D-QSAR; molecular dynamics

1. Introduction

Breast cancer is defined as a malignant tumor that starts in the cells of the breast. The
type of breast cancer is determined by which cells in the breast becomes cancerous [1].
There are numerous locations in the breast where breast cancer can begin. Breasts primarily
consist of lobules, ducts, and connective tissue. The milk travels through the ducts, which
are tubes, from the breast to the nipple [2]. Connective tissue, which is made up of fibrous
and fatty tissue, holds everything together. Usually, ducts or lobules are places where
breast cancer develops [3]. Blood and lymphatic vessels are two ways that breast cancer
can spread to other body areas. Metastasis refers to the spread of breast cancer to other
bodily regions [4]. Cancer is a disorder wherein some body cells proliferate out of control
and spread to other body regions [5]. In any one of the billions of cells that make up the
human body, cancer can start almost anywhere. With more than 10 million deaths from
cancer in the previous year, it is the leading cause of mortality worldwide. In all regions
of India, the incidence of breast cancer has been rising by 0.5% to 2% annually in all age
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groups, but it has been especially high among women over the age of 45 years [6]. In the
US, it is the second most common cause of death. By the end of the next five years, cancer
incidences in India are expected to increase by 12%, according to the Indian Council of
Medical Research (ICMR) [7]. Almost 23% of mortality in cancer patients is due to breast
cancer. Many signaling mechanisms, including estrogen receptors (ER-alpha) and HER2
signaling pathways, which regulate stem cell proliferation, cell death, cell differentiation,
and cell motility, control the normal breast development and mammary stem cells. ER-α
(encoded by ESR1) is a crucial driver in oncogenic proliferation and metastasis, and about
70% of these individuals display it. The estrogen receptor, a nuclear hormone receptor,
is divided into two types: estrogen receptor alpha (ER-alpha) and estrogen receptor beta
(ER-beta). The estrogen receptor is involved in the development and maintenance of
the female reproductive system [8], whereas ER- is mostly expressed in the prostate,
bladder, ovary, colon, adipose tissue, and immune system. ER- is found in the mammary
gland, uterus, ovary, bone, male reproductive organs (testis, prostate), liver, and adipose
tissues [9]. Endocrine treatments, such as tamoxifen (TAM), have long been used to treat
breast cancer by blocking estrogen binding to the receptor or preventing estrogen synthesis
under aromatase catalysis [10,11]. Selected estrogen receptor degrader (SERD), such as
fulvestrant, was discovered as a result of efforts to develop novel ER-α antagonist without
this risk [12,13]. Tamoxifen, a selective estrogen receptor modulator (SERM), inhibits the
E2-mediated activity of AF2, causing it to become ER-antagonistic while still retaining
some partial agonistic effect. Contrary to tamoxifen, fulvestrant induces a change in the
ER’s structure that interferes with both the transcriptional activity associated with AF2 and
AF1 genes [14].

The ER-alpha receptor has lately received a lot of interest as a possible anti-cancer drug.
The nuclear transcription factors estrogen receptors alpha (ER-alpha) and beta (ER-beta)
are involved in the control of many complicated physiological processes in humans. The
estrogen receptor subtypes alpha (ER-alpha) and beta (ER-beta) significantly influence the
physiological effects of estrogenic substances. These proteins regulate the transcription of
certain target genes in the cell nucleus by binding to related DNA regulatory regions [15].
Both receptor subtypes are expressed in many cells and tissues in humans, and they control
key physiological functions in many organ systems, including the reproductive, skeletal,
cardiovascular, and central nervous systems, as well as specific tissues (such as the breast
and prostate, and ovary sub-compartments). The mammary gland, uterus, ovary (thecal
cells), bone, male reproductive organs (testes and epididymis), prostate (stroma), liver, and
adipose tissue are the primary sites of ER-alpha expression [16].

In this work, benzothiophene (BT) analogs, marine sesterterpene (MS) analogs, het-
eroaromatic chalcones (HC) analogs, and sesquiterpene lactone (SL) analogs have been
discussed. These compounds were collected from literature studies that have inhibitory
activities (IC50) in micromolar concentrations against breast cancer protein. These above-
discussed analogs in our study target ER-alpha as their major target and possess inhibitory
action. The majority of the compounds were far more effective against both drug-sensitive
and drug-resistant breast cancer cells. The protein (PDB ID: 2IOG) was selected as the
target as it possesses ER-alpha and was reported in the Protein Data Bank (PDB).

2. Results and Discussion

The results are summarized in Tables 1–3 and Figures 1–14. The observation showed
that the chemical makeup of the substituents had a significant impact on the compounds’
ability to inhibit breast cancer. The chemical structures of benzothiophene derivatives are
given in Figure 1. The marine sesquiterpene analogs, heteroaromatic chalcones analogs,
and sesquiterpene lactone analogs which have been tested are given in Figures 2–4.
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2 BT_ER_Tf 59.574 −13.560 −13.563 −0.9 
3 BT_ER_21b 65.999 −12.577 −12.964 −0.385 
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6 BT_ER_23c 44.431 −12.394 −12.404 −0.599 
7 BT_ER_15d 60.801 −11.524 −12.321 −0.9 
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2.1. Molecular Docking Studies

For the purpose of assessing the compounds’ binding affinities at atomic levels, the
ligands were docked to the active sites of proteins using the molecular docking program
Glide module of Schrodinger suite 2021-4. To ascertain the inhibitory action of the devel-
oped analogs, they were docked to the breast cancer target (PDB ID: 2IOG). It is amply
established that when compared to the standard drug tamoxifen, the compound BT_ER_15f
has the highest Glide G-score (−16.14). BT_ER_15f represents BT-benzothiophene analog;
ER is the target, and 15f is the compound code as given in Figure 1. The docking score
and Glide G-score are given in Table 1 below which shows the best binding pose of the
top 60 compounds. Figure 5 below represents the 2D and 3D docked poses of compound
BT_ER_15f. The other 2D and 3D docked poses of the top 10 compounds are given in
Figure S1a–j in the Supplementary Data.

The obtained Glide score is between −16.14 and −8.71, and the top score is for BT_ER_15f.
The amino acids residues binding LEU931, MET388, LEU387, LEU384, TRP383,

LEU346, ALA350, LEU354, LEU530, TYR537, LEU536, PRO535, CYS530, MET528, TYR526,
LEU525, VAL418, MET421, ILE424, PHE425, PHE404, and LEU428 make hydrophobic
interaction with the ligand (BT_ER_15f). The amino acid residues THR347, ASN532, and
(histidine) HIS524 make polar regions.

The lipophilic evidence of the aromatic moieties is what mostly causes the Glide
scores to increase. The amino acid residues such as ASP351, GLU 380, and GLU419 form
a negative charge around the ligand (BT_ER_15f_), and LYS 531 forms a positive charge
around the ligand.
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The discovered binding modes demonstrated that the ligand (BT_ER_15f) created con-
nections with various residues LEU391 to LEU428 surrounding the active pocket through
hydrogen bonds, hydrophobic interactions, and other mechanisms. The 2D and 3D interac-
tion diagram of BT_ER_15f with protein 2IOG is given in Figure 5.

The amino group of the ligand (BT_ER_15f) binds to the active pocket with the amino
acid residues TRP383 and ASP351.
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Table 1. Molecular docking results for selected compounds against 2IOG.pdb.

S.No Compound Code Glide ENERGY Docking Score Glide-Gscore XP H-Bond

1 BT_ER_15f 53.441 −15.922 −16.14 −1.546

2 BT_ER_Tf 59.574 −13.560 −13.563 −0.9

3 BT_ER_21b 65.999 −12.577 −12.964 −0.385

4 BT_ER_15e 51.353 −12.155 −12.825 −1.164

5 BT_ER_15b 57.5 −12.007 −12.776 −0.688

6 BT_ER_23c 44.431 −12.394 −12.404 −0.599

7 BT_ER_15d 60.801 −11.524 −12.321 −0.9

8 BT_ER_15c 52.788 −11.459 −12.32 −0.7

9 BT_ER_23b 49.559 −11.622 −11.632 −0.35

10 BT_ER_Rf 46.16 −8.852 −11.314 −0.627

11 BT_ER_21d 69.206 −10.469 −11.035 −0.335

12 SL_TN_55 27.163 −10.962 −10.962 0

13 SL_TN_56 27.163 −10.962 −10.962 0

14 SL_TN_34 15.699 −10.856 −10.856 0

15 BT_ER_23a 45.782 −10.773 −10.782 0

16 MS_ER_8b 18.796 −10.726 −10.726 0

17 SL_TN_51 26.449 −10.553 −10.553 0

18 SL_TN_63 26.449 −10.535 −10.535 0

19 BT_ER_21c 62.876 −9.931 −10.519 −0.605

20 BT_ER_15a 48.368 −7.952 −10.495 0

21 SL_TN_32 13.11 −10.492 −10.492 0

22 SL_TN_53 28.726 −10.462 −10.465 0

23 SL_TN_38 17.353 −10.447 −10.447 0

24 MS_ER_8a 24.947 −10.418 −10.418 −0.027

25 HC_TI_CT 52.763 −10.333 −10.333 −0.854

26 SL_TN_35 20.901 −10.255 −10.255 0

27 SL_TN_21 2.415 −10.214 −10.214 0

28 SL_TN_37 17.418 −10.146 −10.146 0

29 BT_ER_21e 61.13 −9.576 −10.101 −0.7

30 SL_TN_60 18.294 −10.065 −10.065 0

31 SL_TN_47 17.206 −10.043 −10.043 0

32 SL_TN_33_DETD_39 18.699 −10.04 −10.04 0

33 BT_ER_21a 56.951 −9.415 −10.027 −0.7

34 SL_TN_40 5.994 −9.892 −9.892 0

35 SL_TN_52 27.449 −9.861 −9.861 0

36 MS_ER_6a 24.224 −9.836 −9.836 0

37 SL_TN_39 24.888 −9.765 −9.765 0

38 SL_TN_59 35.939 −9.75 −9.75 0

39 SL_TN_57 29.053 −9.719 −9.719 0

40 SL_TN_58 29.053 −9.719 −9.719 0



Molecules 2023, 28, 4175 12 of 27

Table 1. Cont.

S.No Compound Code Glide ENERGY Docking Score Glide-Gscore XP H-Bond

41 BT_ER_25a 39.481 −7.193 −9.666 0

42 MS_ER_5b 19.258 −9.627 −9.627 0

43 MS_ER_4b 17.706 −9.603 −9.603 −0.178

44 SL_TN_44 12.471 −9.559 −9.559 0

45 SL_TN_42 10.596 −9.34 −9.34 0

46 SL_TN_31 11.769 −9.329 −9.329 0

47 SL_TN_41 8.182 −9.286 −9.286 0

48 SL_TN_27 5.437 −9.273 −9.273 0

49 SL_TN_16 9.358 −9.256 −9.256 0

50 SL_TN_19 4.803 −9.249 −9.249 0

51 SL_TN_12 4.923 −9.13 −9.13 0

52 SL_TN_46 8.311 −8.998 −8.998 0

53 SL_TN_20 3.842 −8.994 −8.994 0

54 BT_ER_25b 42.416 −8.96 −8.969 0

55 SL_TN_26 12.472 −8.959 −8.959 0

56 SL_TN_25 15.772 −8.941 −8.941 0

57 SL_TN_17 3.063 −8.894 −8.894 0

58 SL_TN_50 19.536 −8.723 −8.723 0

59 HC_TI_14 20.434 −8.713 −8.713 0

60 SL_TN_18 3.524 −8.71 −8.71 0

Glide energy; Docking score; Glide Gscore; XP H-bond (extra precision hydrogen bonding).

2.2. Binding Free Energy Calculation Using MM/GBSA

Additionally, molecular docking was evaluated using MM/GBSA free restricting
vitality, which is identified for breast cancer (PDB ID: 2IOG) target using a post-scoring
approach, and the results are displayed in Table 2. The free energy of binding for the group
of ligands was calculated using the Prime molecular mechanics-generalized Born surface
area (MM/GBSA) of Schrödinger 2021-4 suite. The OPLS4 force field was used to minimize
energy from the post-docked ligand-receptor complex with generalized-Born/surface
area (MM/GBSA).

∆G(bind) = Ecomplex(minimized) − Eligand(minimized) + Ereceptor(minimized)

Because of the significant negative values produced by all compounds in the MM/GBSA
experiment, the energies that showed strong ligand binding in the binding pocket of 2IOG
are van der Waals energy (MMGBA dG Bind vdW) and non-polar solvation (MMGBA dG
Bind Lipo). Other energies, such as covalent energy (MMGBA dG Bind Covalent) and
electrostatic solvation (∆GSolv), do not favor receptor binding. Moreover, greater negative
values of MMGBA dG Bind vdW and MMGBA dG Bind Lipo demonstrate extraordinary
hydrophobic interaction with 2IOG and ligands.

According to the findings of the MM/GBSA research, the DG bind values for con-
siderably active compounds were found to be in the range of −15.33 to −84.12 kcal/mol.
Additionally, dGvdW values, dG lipophilic values, and the energies are favorably con-
tributing to the total binding energy [17]. BT_ER_15f, which has the highest docking score,
exhibited excellent DG bind values of −70.59 kcal/mol.
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Table 2. Binding free energy calculation using Prime MM-GBSA approach.

Compound MMGBA dG
Bind

MMGBSA dG
Bind Coulomb

MMGBA dG
Bind Covalent

MMGBA dG
Bind H-bond

MMGBA dG
Bind Lipo

MMGBA dG
Bind vdW

BT_ER_15f −70.59 −31.39 25.77 0.29 −47.46 −66.83

BT_ER_Tf −73.77 −37.36 13.73 1.85 −50.23 −51.61

BT_ER_21b −67.84 6.28 3.91 3.72 −44.3 −58.54

BT_ER_15e −58.72 −7.14 11.68 0.65 −43.31 −50.6

BT_ER_15b −84.12 2.23 12.68 1.55 −49.81 −67.59

BT_ER_23c −35.85 35.14 4.56 2.43 −38.46 −38.31

BT_ER_15d −69.35 15.23 16.5 1.6 −50.67 −76.44

BT_ER_15c −77.87 −8.52 4.85 −0.1 −43.55 −51.96

BT_ER_23b −42.39 4.45 15.46 2.18 −35.55 −43.15

BT_ER_Rf −39.6 9.74 5.84 2.32 −40.64 −54.61

BT_ER_21d −83.6 −23.01 9.8 −0.26 −46.56 −61.19

SL_TN_55 −47.68 19.48 13.24 1.19 −37.05 −63.86

SL_TN_56 −47.68 19.48 13.24 1.19 −37.05 −63.86

SL_TN_34 −47.89 2.46 17.92 0.06 −34.68 −54.25

BT_ER_23a −22.06 43.87 4.15 3.73 −33.83 −37.62

MS_ER_8b −51.07 23.16 16.5 1.72 −38.3 −53.5

SL_TN_51 −23.06 19.21 16.72 0.71 −27.94 −44.25

SL_TN_63 −32.26 7.75 28.36 0.71 −33.29 −60.91

BT_ER_21c −62.02 −11.89 10.67 −0.17 −41.19 −40.9

BT_ER_15a −48.48 −28.74 20.87 0.87 −40.95 −69.26

SL_TN_32 −51.78 21.56 10.52 2.17 −37.46 −60.5

SL_TN_53 −26.15 26.63 11.07 1.24 −26.98 −42.96

SL_TN_38 −43.82 36.19 3.87 4.46 −32.63 −52.89

MS_ER_8a −32.26 13.04 8.48 3.91 −35.7 −31.91

HC_TI_CT −37.49 33.67 9.55 4.97 −35.4 −59.22

SL_TN_35 −70.61 8.94 17.37 0.14 −35.16 −71.95

SL_TN_21 −40.68 33.51 17.41 1.79 −33.22 −58.98

SL_TN_37 −44.62 10.16 16.17 2.79 −35.66 −54.67

BT_ER_21e −77.57 −12.32 8.39 −0.4 −42.39 −57.26

SL_TN_60 −15.66 30.43 11.01 2.91 −22.07 −33.97

SL_TN_47 −14.45 36.34 14.47 1.62 −26.13 −42.54

SL_TN_33 −44.77 −4.51 23.03 1.05 −37.47 −54

BT_ER_21a −74.17 −25.99 19.61 0.51 −42.98 −64.65

SL_TN_40 −46.78 3.72 14.69 1.93 −34.26 −45.35

SL_TN_52 −61.66 51.17 6.73 2 −36.49 −64.87

MS_ER_6a −80.51 45.68 7.44 3.79 −42.18 −69.73

SL_TN_39 −32.17 27.4 5.89 4.14 −29.4 −38.86

SL_TN_59 −23.46 16.16 −4.63 2.44 −23.08 −20.15

SL_TN_57 −45.01 24.7 13.93 3.5 −38.92 −47.17

SL_TN_58 −45.01 24.7 13.93 3.5 −38.92 −47.17
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Table 2. Cont.

Compound MMGBA dG
Bind

MMGBSA dG
Bind Coulomb

MMGBA dG
Bind Covalent

MMGBA dG
Bind H-bond

MMGBA dG
Bind Lipo

MMGBA dG
Bind vdW

BT_ER_25a −20.73 20.05 8.4 1.86 −32.66 −40.55

MS_ER_5b −44.69 1.97 27.56 0.39 −37.99 −43.9

MS_ER_4b −45.14 −4.23 26.93 −0.77 −36.71 −43.04

SL_TN_44 −51.74 29.57 3.53 1.71 −31.97 −53.17

SL_TN_42 −25.68 7.34 14.67 1.59 −25.3 −45.84

SL_TN_31 −59.09 26.08 34.57 0.18 −44.44 −62.36

SL_TN_41 −32.35 27.42 8.56 4.49 −31.66 −39.33

SL_TN_27 −36.14 19.28 8.97 3.86 −31.29 −44.2

SL_TN_16 −26.89 32.38 15.44 3.74 −32.99 −45.44

SL_TN_19 −28.82 41.14 10.29 3.07 −32.82 −41.2

SL_TN_12 −36.46 16.03 3.56 3.35 −29.29 −42.28

SL_TN_46 −17.05 31.24 14 1.77 −25.1 −43.97

SL_TN_20 −45.87 33.37 6.75 4.13 −31.83 −52.63

BT_ER_25b −63.44 −23.53 13.99 0.3 −43.08 −57.07

SL_TN_26 −31.13 −2.41 17.3 0.95 −28.38 −56.03

SL_TN_25 −20.67 24.88 9.38 1.91 −21.97 −37.14

SL_TN_17 −24.26 41.87 −1.61 4.43 −25.99 −34.99

SL_TN_50 −40.32 3.61 8.68 1.26 −29.99 −35.15

HC_TI_14 −36.29 47.93 −4.62 5.56 −29.23 −33.83

SL_TN_18 −15.33 45.87 3.18 4.13 −25.08 −29.85

MMGBA dG Bind (free energy of binding); MMGBSA dG Bind Coulomb (Coulomb energy); MMGBA dG Bind
Covalent (covalent energy); MMGBA dG Bind H-bond (hydrogen bonding energy); MMGBA dG Bind Lipo
(hydrophobic energy); MMGBA dG Bind vdW (van der Waals energy).

2.3. ADMET Studies

ADMET features were predicted using the Schrödinger suite 2021-4’s Qikprop module.
Properties such as molecular weight, dipole, hydrogen bond donor, hydrogen bond accep-
tor, log P o/w, and Lipinski’s rule of five are identified and mentioned in Table 3 below.

According to Lipinski’s rule of five, the molecule’s molecular weight should be ≤500,
the partition coefficient should be ≤5, and the number of hydrogen bond donors and
acceptors should be ≤5 and ≤10, respectively. All of these qualities, together with molecular
flexibility, are thought to be important drivers of oral bioavailability. The BT_ER_15f ligand
possesses a molecular weight of 561.67, a dipole moment of 5.605, an estimated number of
hydrogen bonds that would be donated by the solute to water molecules in an aqueous
solution is 3, and an estimated number of hydrogen bonds that would be accepted by
the solute from water molecules in an aqueous solution is 7.5. With fewer exceptions, the
obtained ADMET attributes are within the suggested ranges.

The number of H-bond donors is in the range of 0–2; the number of H-bond acceptors
is in the range of 2–9.7. The number of violations of Lipinski’s rule of five is 0–2.

Table 3. In silico ADMET screening results of top 60 molecules using Qikprop module.

Compound Mol MW Dipole Donor HB Accpt HB QP Log Po/w Rule of Five

BT_ER_15f 561.67 5.605 3 7.5 5.995 2

BT_ER_Tf 355.522 0.865 0 2 6.682 1
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Table 3. Cont.

Compound Mol MW Dipole Donor HB Accpt HB QP Log Po/w Rule of Five

BT_ER_21b 518.602 6.426 1 5 6.874 2

BT_ER_15e 563.642 4.866 3 9.2 5.013 2

BT_ER_15b 506.591 6.325 2 6.5 5.827 2

BT_ER_23c 463.522 7.699 2 4.5 6.319 1

BT_ER_15d 547.643 3.649 3 7.5 6 2

BT_ER_15c 533.616 4.877 3 6 6.059 2

BT_ER_23b 463.522 10.476 2 4.5 6.354 1

BT_ER_Rf 473.586 3.216 2 6.25 4.686 0

BT_ER_21d 559.654 6.407 2 6 7.16 2

SL_TN_55 488.536 6.502 0 8.75 3.567 0

SL_TN_56 488.536 6.502 0 8.75 3.567 0

SL_TN_34 490.432 8.923 0 8 3.939 0

BT_ER_23a 449.496 6.238 2 4.5 5.939 1

MS_ER_8b 454.648 4.201 0 6 5.814 1

SL_TN_51 444.483 5.698 0 8 3.007 0

SL_TN_63 444.483 5.698 0 8 3.002 0

BT_ER_21c 545.627 8.062 2 4.5 7.754 2

BT_ER_15a 492.564 7.054 3 6 5.127 1

SL_TN_32 440.879 6.971 0 8 3.291 0

SL_TN_53 445.471 7.567 0 9 2.305 0

SL_TN_38 450.487 7.079 0 8.75 3.325 0

MS_ER_8a 480.686 7.171 0 6 6.628 1

HC_TI_CT 348.357 9.984 1 7.75 1.742 0

SL_TN_35 472.46 6.031 0 6.75 4.818 0

SL_TN_21 426.508 7.617 0 8 3.504 0

SL_TN_37 450.487 6.55 0 8.75 3.323 0

BT_ER_21e 575.653 5.019 2 7.7 6.795 2

SL_TN_60 450.505 6.824 0 8 2.934 0

SL_TN_47 420.418 6.224 0 8.5 2.307 0

SL_TN_33 436.46 6.732 0 8.75 2.848 0

BT_ER_21a 504.575 7.879 2 4.5 6.882 2

SL_TN_40 396.396 7.295 0 8.5 2.042 0

SL_TN_52 474.509 5.824 0 8.75 3.042 0

MS_ER_6a 452.633 6.505 0 6 5.499 1

SL_TN_39 450.444 7.35 0 9.5 2.209 0

SL_TN_59 488.536 6.657 0 8.75 3.815 0

SL_TN_57 474.509 6.071 0 9.7 2.768 0

SL_TN_58 474.509 6.071 0 9.7 2.768 0

BT_ER_25a 461.507 7.977 1 4 6.11 1

MS_ER_5b 412.568 8.87 0 6 4.603 0
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Table 3. Cont.

Compound Mol MW Dipole Donor HB Accpt HB QP Log Po/w Rule of Five

MS_ER_4b 398.541 3.782 0 6 4.268 0

SL_TN_44 410.423 6.063 0 8.75 2.101 0

SL_TN_42 386.419 6.579 0 8 1.975 0

SL_TN_31 420.461 7.979 0 8 3.112 0

SL_TN_41 412.456 7.171 0 8 2.707 0

SL_TN_27 386.444 6.974 0 8 2.236 0

SL_TN_16 386.444 8.057 0 8 2.481 0

SL_TN_19 402.486 6.561 0 8 2.848 0

SL_TN_12 358.39 8.016 0 8 1.783 0

SL_TN_46 459.292 6.371 0 8 2.614 0

SL_TN_20 388.46 6.587 0 8 2.382 0

BT_ER_25b 475.533 7.097 1 4 6.266 1

SL_TN_26 372.417 6.793 0 8 1.878 0

SL_TN_25 344.363 6.336 0 8 1.196 0

SL_TN_17 374.433 6.114 0 8 1.856 0

SL_TN_50 424.449 5.364 0 8.75 2.215 0

HC_TI_14 302.405 8.12 0 3.25 4.681 0

SL_TN_18 374.433 6.621 0 8 2.159 0

Mol MW (molecular weight of the molecule); Dipole (computed dipole moment); Donor HB (estimated number
of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution); Accpt HB
(estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous
solution); QP Log Po/w (predicted octanol/water partition coefficient); Rule of Five (Rule of Five Number of
violations of Lipinski’s rule of five).

2.4. Pharmacophore Modeling

A pharmacophore model is a theory that explains how a group of compounds that bind
to the same biological target exhibit the biological behaviors that have been observed [18].
The electron-withdrawing group, hydrogen bond donor, and hydrophobic top-active
compounds are given below in Figure 6. The pharmacophore models were created using
the Phase module of the Schrödinger suite 2021-4. The default set of six chemical properties
of Phase was used to build pharmacophore sites for these compounds: hydrogen bond
acceptor (A), hydrogen bond donor (D), hydrophobic (H) negative ionizable (N), positive
ionizable (P), and aromatic ring (R). The distance and angles between different AAHHH.3
sites are shown in Figure 7a,b. AAHHH.3 represents that two hydrogen bond acceptors
and three hydrophobic groups are essential for the activity. All ligands had their fitness
scores evaluated using the AAHHH.3 model. A scatter plot analysis was also used to
uncover discrete vital pharmacophoric requirements at spatial structure areas. The blue
cubes around the ligand represented a favorable position for group substitution, whereas
the red cubes showed a non-favorable position in Figure 6a–c for the top four ligands of
this study.

2.5. 3D-QSAR Results

The atom-based QSAR module of Schrodinger suite 2021-4 was used to create the
3D-QSAR models for ER-alpha. Pharmacophore-based alignment of the ligands was taken
into consideration in order to produce a statistically meaningful and highly predictive
3D-QSAR model [19]. Both the training and test sets of molecules had their prediction
ability examined. Additionally, the default settings were applied, and a maximum of
2000 conformers and 15 conformations per rotatable bond were produced. Using vector,
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volume, site, survival, and survival in actives scores, the generated hypotheses were
graded and ranked. Five places were determined to be common to all compounds in
the hypothesis. A 3D-QSAR model was then developed using partial least squares (PLS)
regression statistics.
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The formula for the test set:

y = 0.58x + 2.29 (R2 = 0.83) (1)
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The green dots in Figure 8a,b represent ligands of the test set and training set. The
ligands must be near the linear progression curve. The scatter plot with the XY-axis of the
actual correlation with the predicted pIC50 is represented in Figure 8a,b for the test and
training set compounds.

Molecules 2023, 28, x FOR PEER REVIEW 17 of 27 
 

 

2.5. 3D-QSAR Results 
The atom-based QSAR module of Schrodinger suite 2021-4 was used to create the 

3D-QSAR models for ER-alpha. Pharmacophore-based alignment of the ligands was taken 
into consideration in order to produce a statistically meaningful and highly predictive 3D-
QSAR model [19]. Both the training and test sets of molecules had their prediction ability 
examined. Additionally, the default settings were applied, and a maximum of 2000 con-
formers and 15 conformations per rotatable bond were produced. Using vector, volume, 
site, survival, and survival in actives scores, the generated hypotheses were graded and 
ranked. Five places were determined to be common to all compounds in the hypothesis. 
A 3D-QSAR model was then developed using partial least squares (PLS) regression sta-
tistics. 

The formula for the test set: 

y = 0.58x + 2.29 (R2 = 0.83) (1) 

The green dots in Figure 8a,b represent ligands of the test set and training set. The 
ligands must be near the linear progression curve. The scatter plot with the XY-axis of the 
actual correlation with the predicted pIC50 is represented in Figure 8a,b for the test and 
training set compounds. 

  
(a) (b) 

Figure 8. (a) Scatter plot for the test set; (b) Scatter plot for the training set. 

2.6. MD Simulation 
The MD simulation is used to estimate macromolecule mechanics, and it is based on 

classical mechanics and the application of Newton’s equation of motion to compute the 
speed and location of each atom in the investigated system. As a result, MD undertakes a 
more thorough structural investigation than docking, resulting in a more realistic depic-
tion of protein motion [20]. 

Using a 100 ns MD, the stability of the docked BT ER 15f/2IOG complex was exam-
ined. Using the Desmond module of Schrödinger 2021-4, the complex in the explicit sol-
vent system with the OPLS4 force field was investigated. The BT_ER_15f compound in-
teracts with the protein residues as shown in Figure 9. The interaction fraction of each 
amino acid is given in Figure 10. 

Figure 8. (a) Scatter plot for the test set; (b) Scatter plot for the training set.

2.6. MD Simulation

The MD simulation is used to estimate macromolecule mechanics, and it is based on
classical mechanics and the application of Newton’s equation of motion to compute the
speed and location of each atom in the investigated system. As a result, MD undertakes a
more thorough structural investigation than docking, resulting in a more realistic depiction
of protein motion [20].

Using a 100 ns MD, the stability of the docked BT ER 15f/2IOG complex was examined.
Using the Desmond module of Schrödinger 2021-4, the complex in the explicit solvent
system with the OPLS4 force field was investigated. The BT_ER_15f compound interacts
with the protein residues as shown in Figure 9. The interaction fraction of each amino acid
is given in Figure 10.
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The amino acid LYS 531, which is depicted in green in Figure 10, has the highest
H-bond and a maximum interaction fraction of 0.5. H-bonds are essential for ligand
binding. The donor and acceptor atoms in the donor-acceptor-hydrogen bond (D—H•••A)
must be separated by 2.5 Å, the donor-acceptor-hydrogen bond (D—H•••A) must have
a donor angle of 120◦, and the hydrogen-acceptor-bonded atoms in the acceptor bond
(H•••A—X) must have a donor angle of 90◦. The following are the geometric requirements
for hydrophobic interactions: p-cation, -aromatic, and charged groups that are within 4.5;
p-p: two aromatic groups that are stacked face-to-face or face-to-edge; other non-specific
hydrophobic side chains that are within 3.6 Å of a ligands’ aromatic or aliphatic carbons.
A distance of 2.8 Å between the donor and acceptor atoms (D—H•••A), a donor angle of
110◦ between the donor-hydrogen-acceptor atoms (D—H•••A), and an acceptor angle of
90◦ between the hydrogen-acceptor-bonded atoms (H•••A—X) are needed for a H-bond
to exist between a protein and water or water-ligand.

MD of standard tamoxifen was also performed, and it was found that the amino acids
ALA350 and PHE404 have the highest interaction time. It is represented in Figures 11 and 12.
Amino acid residue ALA350 has a continuous interaction time. The RMSD value from the
resulting trajectory analysis was in the range of 1.0 to 3.0. Green vertical bars in Figure 13
indicate protein residues that interact with the ligand, and the interactions between residues
100 and 130 showed the largest changes up to 2.4 Å. Through the formation of hydrophobic
contacts with TRP383, ALA 350, PHE 404, and LEU 387, the molecule was positioned in the
active pocket.

At 37 ns, higher ligand RMSD fluctuations (up to 2.7 Å) were noted, given in Figure 14.
Stable hydrophobic interactions with ALA 350, LEU 387, and PHE 404 were noted during
the simulation. Utilizing measures of root-mean-square fluctuations, the flexibility of
residues on ligand bindings was examined. To comprehend the molecular insights involved
in the binding of TRP383 in the active pocket of protein target 2IOG, a 100 ns molecular
dynamic simulation was conducted.

It could be noted from Figure 15 that the deviation in the displacement of atoms is
larger compared to BT_ER_15f. Thus BT_ER_15f, which has the best fit in the binding
pocket, is best compared to the market available drug tamoxifen.
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The interaction time of each amino acid is given in Figure 13. It could be noted that the
interaction times of amino acid TRP383 were greater than all other amino acids. Amino acid
ASN 532 interaction was steady for the first 60 nanoseconds (ns), and then interaction was
lost. Again, interaction occurs from 80 to 100 ns. Figure 16 provides the ligand (BT_ER_15f)
characteristics such as ligand RMSD, radius of gyration (rGyr), intramolecular hydrogen
bonds (intraHB), molecular surface area (MolSA), solvent accessible surface area (SASA),
and polar surface area (PSA). The ligand and protein root-mean-square fluctuation is shown
in Figure 17a,b, and it is important for describing local variations throughout the protein
chain. RMSF is a measure of the displacement of a particular atom or group of atoms
relative to the reference structure averaged over the number of atoms. RMSD is useful for
the analysis of time-dependent motions of the structure.

L-RMSF (local root-mean-square fluctuation) and P-RMSF (protein root-mean-square
Fluctuation) are both measures of a protein molecule’s flexibility or mobility. The average
deviation or fluctuation in the position of each atom in a protein molecule from its average
position in a given simulation or experimental data is measured as L-RMSF. It is calculated
for a specific region or residue in a protein rather than the entire protein, and it is commonly
used to identify flexible or disordered regions of a protein that are important for its function.
P-RMSF, on the other hand, is the average RMSF value calculated for all the atoms in a
protein molecule. It is used to quantify the protein’s overall flexibility or mobility and can
aid in identifying regions that are relatively stable or flexible. P-RMSF can also be used
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to compare the flexibility of various proteins or conformations of the same protein. Both
L-RMSF and P-RMSF are key techniques in the study of protein structure and function
because they give insight into the dynamic features of proteins that are vital for their
biological activity.
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3. Materials and Method
3.1. Docking Studies

Docking studies were carried out mainly for four analogs which are marine sesquiter-
pene [21], sesquiterpene lactone analogs [22,23], heteroaromatic chalcones [24,25], and ben-
zothiophene analogs [26] which were obtained from literature studies. The 3D crystal struc-
ture of the breast cancer protein 2IOG was previously co-crystallized with the N-[(1R)-3-
(4hydroxyphenyl)-1-methylpropyl]-2-[2-phenyl-6-(2-piperidin-1-ylethoxy)-1H-indol-3-yl]
acetamide. From the Protein Data Bank, the protein PDB ID 2IOG (resolution 1.6 Å) was
retrieved. Arpita Roy published a paper on in silico investigation of agonists for proteins
involved in breast cancer using the same target 2IOG [27]. The protein was optimized
using the epic module of the Schrödinger suite 2021-4’s protein preparation wizard. By
adjusting bond ordering, adding hydrogen atoms, and eliminating water molecules longer
than 5 Å, the protein was optimized using the protein preparation wizard. Missing chains
were then added using the Prime module of the Schrödinger suite 2021-4. The RMSD of the
crystallographic heavy atoms was held at 0.30 for the OPLS4 molecular force field, which
was used to minimize the protein. To pinpoint the centroid of the active site, a grid box was
created. Using the Glide module of the Schrödinger suite 2021-4, all the compounds were
docked into the catalytic pocket of the target protein 2IOG [28]. Significant Glide scores
indicate ligands with higher 2IOG binding affinities [29,30]. Hussein highlighted in his
work that the compound CH4 (chalcone) exhibited a binding energy of −10.83 kcal/mol
against the target protein 2IOG [31], which possesses anti-breast cancer activity.

3.2. MM/GBSA Binding Free Energy Calculation

The precise determination of binding free energy plays a very essential role among the
several strategies that may be used to analyze the ligand-receptor interaction [32,33]. Using
the Prime molecular mechanics-generalized Born surface area (MM/GBSA) of Schrödinger
2021-4, post-docking energy minimization calculations were carried out to determine the
free energy of binding for the collection of ligands in complex with a receptor [34]. The
Poisson–Boltzmann surface area (MM/PBSA) and molecular mechanics-generalized Born
surface area (MM/GBSA) are arguably very popular methods for binding free energy
predictions [35]. Imaobong Etti published that the Artocarpus species has good anti-
cancerous properties [36]. He and his co-workers found that Artonin E possesses the best
drug-likeness using the Prime module of the Schrodinger software 2021-4 against the target
protein 2IOG.
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3.3. In Silico Predicted ADMET Properties

By identifying the most promising candidates for development and eliminating those
with a low chance of success, early assessment of ADME-Tox characteristics can reduce
the time and expense of screening and testing. The regulatory authorities are now very
interested in the practical application of in silico methodologies for predicting preclinical tox-
icological endpoints, clinical side effects, and ADME features of new chemical entities [37].
ChemAxon properties such as molecular weight, total polar surface area (TPSA), hydro-
gen bond acceptor and donor count, log P, log D, log S, molar volume, and dissociation
constant (KD), as well as the number of violations of Lipinski’s rule of five, van der Waals
volume, and other properties were used to predict the physically and pharmacokinetically
significant descriptors for the top hits by using the Qikprop module of Schrodinger suite
2021-4. Table 3 displays these outcomes.

3.4. Pharmacophore Modeling

An explanation for the pharmacological effects of a collection of substances that bind
to the same biological target is known as a pharmacophore model [38]. “An ensemble of
steric and electronic features necessary to produce optimal supramolecular interactions
with a given biological target” is a pharmacophore model [39]. A pharmacophore model
can then be used to query the 3D chemical library to look for potential ligands, which
are referred to as “pharmacophore-based virtual screening,” depending on whether the
approach was ligand- or structure-based virtual screening (VS) [40]. The pharmacophore
model was created using the Phase module of the Schrodinger suite 2021-4. The common
pharmacophore AAHHH.3 found from our work can be used for further high-throughput
screening to screen a large database [41]. Tien-Yi-Hou and his co-workers performed work
on estrogen receptor-α ligand binding through pharmacophore modeling and concluded
few pharmacophore models active against breast cancer.

3.5. QSAR-Quantitative Structure Activity Relationship

The application of force field calculations requiring three-dimensional structures of
a given collection of small molecules with known activities is referred to as 3D-QSAR.
3D-QSAR is an extension of classical QSAR that uses robust statistical analysis such as
PLS, G/PLS, and AN to explain the three-dimensional features of ligands and predict their
biological activity [42].

A computational modeling method known as the quantitative structure-activity rela-
tionship (QSAR) helps researchers connect the structural characteristics of chemical com-
pounds with their biological functions. Drug development requires QSAR modeling [43].

3.6. Molecular Dynamics

A technique for simulating the physical motions of atoms and molecules is called
molecular dynamics (MD) [44]. For a predetermined period of time, the atoms and
molecules are allowed to interact, giving insight into the dynamic “evolution” of the
system. Molecular dynamics is a method for computing the time evolution of a group of
interacting atoms using Newton’s equations of motion. In the thermodynamic process of
protein-ligand interaction, a tiny molecule’s solvation free energy acts as a stand-in for
the ligand’s desolvation [45]. MD of the highest Glide score compound was performed in
this work using the Desmond module of Schrodinger suite 2021-4. From these geometric
requirements around the ligand, BT_ER_15f was identified.

4. Conclusions

In the realm of drug design and discovery, integrated methodologies of QSAR and
molecular docking-based prediction have been successfully used in a number of statisti-
cally supported examples. The current research on benzothiophene analogs, specifically
BT_ER_15f, using molecular docking and QSAR demonstrated that it has a sizable anti-
cancer effect against the target 2IOG.
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From the docking study, the benzothiophene derivative demonstrated better arrange-
ment at the dynamic site. The current investigation aided in identifying the key compounds
and their beneficial effects. In subsequent analysis using in vitro and in vivo techniques,
it could be optimized as a drug to treat breast cancer. According to the findings, the com-
pound BT_ER_15f, a benzothiophene derivative, exhibits strong anti-breast cancer action
and is useful for future research.

The pharmacokinetics and drug-likeness studies revealed that the ligand BT_ER_15f
could be the best drug candidate against breast cancer.

In the future, this study will be a reliable resource for achieving further benzothiophene
derivatives through innovative structural modifications in benzothiophene derivatives that
are being widely researched. These findings provide compelling support for novel studies
that involve developing more methodological frameworks to investigate molecular facets
of their anti-cancer action.
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