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Abstract: In this work, we implemented an approximate algorithm for calculating nonadiabatic
coupling matrix elements (NACMEs) of a polyatomic system with ab initio methods and machine
learning (ML) models. Utilizing this algorithm, one can calculate NACMEs using only the information
of potential energy surfaces (PESs), i.e., energies, and gradients as well as Hessian matrix elements.
We used a realistic system, namely CH2NH, to compare NACMEs calculated by this approximate
PES-based algorithm and the accurate wavefunction-based algorithm. Our results show that this
approximate PES-based algorithm can give very accurate results comparable to the wavefunction-
based algorithm except at energetically degenerate points, i.e., conical intersections. We also tested
a machine learning (ML)-trained model with this approximate PES-based algorithm, which also
supplied similarly accurate NACMEs but more efficiently. The advantage of this PES-based algorithm
is its significant potential to combine with electronic structure methods that do not implement
wavefunction-based algorithms, low-scaling energy-based fragment methods, etc., and in particular
efficient ML models, to compute NACMEs. The present work could encourage further research on
nonadiabatic processes of large systems simulated by ab initio nonadiabatic dynamics simulation
methods in which NACMEs are always required.

Keywords: nonadiabatic couplings; machine learning; excited states

1. Introduction

The Born–Oppenheimer (B-O) approximation is widely used in the research of compu-
tational and theoretical chemistry when potential energy surfaces (PESs) are far away from
each other. However, the B-O approximation will break down when two or more PESs
come close or even cross. In such a situation, nonadiabatic effects are non-negligible and
nonadiabatic couplings between different PESs should be considered seriously. Nonadia-
batic coupling matrix elements (NACMEs) are important physical quantities that are used
for measuring coupling strengths between different adiabatic electronic states. Additionally,
NACMEs play important roles in calculating non-radiative rates and nonadiabatic molecu-
lar dynamic (NAMD) simulations [1–10]. However, the computational cost of NACMEs is
generally pretty expensive using ab initio methods. Moreover, not all electronic structure
programs and methods have implemented wavefunction-based algorithms for calculating
NACMEs yet. From this point of view, it is desirable to develop a simple and general-
ized method for obtaining NACMEs which can be easily adopted by most excited-state
electronic structure methods. To achieve this target, Köppel et al. proposed a strategy
for constructing diabatic states from PESs of adiabatic states, which can compute nona-
diabatic couplings without wavefunction information [11]. Lasorne et al. re-investigated
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and compared wavefunction- and PES-based NACMEs and suggested that PES-based
NACMEs are accurate in regions around conical intersections [12]. Richardson reported
a new machine learning (ML) approach for eliminating the issue with the double-valued
nature of NACMEs by a set of auxiliary single-valued functions [13]. Recently, Baeck and
An developed a practical approximation for the calculation of NACMEs and successfully
applied it in one-dimensional model systems [14,15]. This method is easy to implement
and has the potential to combine with electronic structure methods that can provide PES
information. Very recently, Gastegger and coworkers used this approximate PES-based
algorithm in their developed SchNarc machine learning approach to calculate NACMEs for
NAMD simulations [16]. However, the accuracy of this approximate method to calculate
NACMEs for polyatomic molecular systems still needs comprehensive benchmarks and
in-depth analysis.

Motivated by these facts, we have in this work implemented an approximate PES-
based method for NACMEs using a realistic system CH2NH (Figure 1) and proved that
this algorithm can give accurate NACMEs if PES information (i.e., energies, gradients and
Hessian matrices) can be accurately provided by either ab initio methods or ML-trained
models. Our work indicates that this approximate method performs very well even near
PES regions with quasi-degenerate energies. However, this approximate algorithm will fail
and become divergent if relevant PESs are rigorously degenerate in energy, i.e., truly conical
intersections (CIs). Nevertheless, this PES-based algorithm remains useful and beneficial for
combining electronic structure methods, energy-based fragment methods, and ML models,
which can provide PES information but with either difficult- or impossible-to-supply
wavefunctions, and has potential applications in nonadiabatic dynamics simulations, etc.
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Figure 1. A polyatomic system used in this work. (a) CH2NH molecule; (b) structure of the opti-
mized conical intersection (CI) of CH2NH. 

2. Results and Discussion 
2.1. Comparison of Wavefunction- and PES-Based NACMEs  

Figure 2 shows the wavefunction- and PES-based NACMEs with structures near the 
optimized CI structure of CH2NH. It can be found that the PES-based NACMEs at the 
optimized CI structure (energy gap less than 0.17 kcal/mol) not only have large values but 
also are far away from the wavefunction-based NACMEs (red points in Figure 2). This is 
originated from the fact that NACMEs at truly degenerate CI points become divergent 
because their values are inversely proportional to related energy gaps. Note that at the 
optimized CI structure of CH2NH, the energy gap is only 0.17 kcal/mol, which makes 
NACMEs a little divergent. On the other hand, the PES-based NACMEs at the structures 

Figure 1. A polyatomic system used in this work. (a) CH2NH molecule; (b) structure of the optimized
conical intersection (CI) of CH2NH.

2. Results and Discussion
2.1. Comparison of Wavefunction- and PES-Based NACMEs

Figure 2 shows the wavefunction- and PES-based NACMEs with structures near the
optimized CI structure of CH2NH. It can be found that the PES-based NACMEs at the
optimized CI structure (energy gap less than 0.17 kcal/mol) not only have large values but
also are far away from the wavefunction-based NACMEs (red points in Figure 2). This
is originated from the fact that NACMEs at truly degenerate CI points become divergent
because their values are inversely proportional to related energy gaps. Note that at the
optimized CI structure of CH2NH, the energy gap is only 0.17 kcal/mol, which makes
NACMEs a little divergent. On the other hand, the PES-based NACMEs at the structures
far away from the CI structure (energy gap larger than 0.17 kcal/mol) are very close to the
wavefunction-based NACMEs (see blue points and insert panel of Figure 2). The small
deviations may be caused by numerically calculated Hessian matrix elements. In total,
the PES-based NACMEs become much better compared with the wavefunction-based
NACMEs when the energy gap is increased.
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Figure 2. Comparison of wavefunction- and PES-based NACMEs at the CI structure (red points) and
at the structures far away from the CI structure (blue points). Insert panel: comparison of NACMEs
at the structures far away from the CI structure.

To give insight into the accuracy of the PES-based NACMEs, we separated the
structures near the optimized CI structure into several groups according to their en-
ergy gaps ∆ES0S1 (i.e., 0.17–1 kcal/mol, 1–3 kcal/mol, 3–5 kcal/mol, 5–10 kcal/mol,
10–15 kcal/mol and >15 kcal/mol). Then, the average norms (see definition in Section 3.3)
of the wavefunction- and PES-based NACMEs in each group were calculated (see Table 1).
Firstly, the average norm gets smaller when the energy gap ∆ES0S1 is increased, which is
consistent with the discussion above(see supplementary materials). In addition, as men-
tioned above, the approximate PES-based algorithm fails to give good enough norm of
NACMEs at the optimized CI (363.4 Bohr−1 vs. 240.9 Bohr−1). As to the other groups,
the deviations of the average norms between the wavefunction- and PES-based NACMEs
becomes much smaller with the increasing energy gap. For instance, the average norms
of the wavefunction- and PES-based NACMEs were estimated to be 78.2 and 80.4 Bohr−1

when the energy gap between S0 and S1 was within 0.17–1 kcal/mol. The relative devia-
tions for the other groups, i.e., 0.17–1 kcal/mol, 1–3 kcal/mol, 3–5 kcal/mol, 5–10 kcal/mol,
10–15 kcal/mol and > 15 kcal/mol, were calculated to be 2.8%, 3.6%, 3.8%, 4.0%, 3.6%, and
3.4%, respectively (see the last column in Table 1).

Table 1. Average norms (in Bohr−1) and relative deviations between wavefunction- and PES-based
NACMEs. The energy gap of 0.17 kcal/mol is for the optimized CI structure. See text for discussion.

Energy Gap
(kcal/mol) Wavefunction-Based PES-Based Deviation

0.17 (CI) 363.4 240.9 33.7%
0.17–1 78.2 80.4 2.8%

1–3 30.3 31.4 3.6%
3–5 15.3 15.9 3.8%

5–10 8.3 8.7 4.0%
10–15 5.1 5.3 3.6%
>15 3.3 3.4 3.4%

In order to give more in-depth comparison between the wavefunction- and PES-based
NACMEs, the scattering plots for each group with the different ∆ES0S1 values (including all
x/y/z components of each atom) are given in Figure 3. It is obvious that: (1) the PES-based
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NACMEs at the optimized CI have large deviations (red points in Figure 3a); and (2) the PES-
based NACMEs are close to the wavefunction-based NACMEs for the structures far away
from the optimized CI structure (see Figure 3a–f). In one sentence, these data demonstrate
that the PES-based algorithm can give as accurate NACMEs as the wavefunction-based
algorithm. Finally, one should also note that NACMEs calculated by both the wavefunction-
and PES-based algorithms will become divergent at truly degenerate CIs. So, one can see a
large deviation between both the wavefunction- and PES-based NACMEs at the optimized
CI structure (energy gap less than 0.17 kcal/mol; see above).
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2.2. PES-Based NACMEs with ML Models  

Figure 3. Comparison of wavefunction- and PES-based NACMEs at the optimized CI structure
of CH2NH (red points in panel (a); ∆ES0S1 = 0.17 kcal/mol) and at the structure far away from
the CI one (blue points; panels (b–f)). (a) 0.17–1 kcal/mol; (b) 1–3 kcal/mol; (c) 3–5 kcal/mol;
(d) 5–10 kcal/mol; (e) 10–15 kcal/mol; and (f) >15 kcal/mol.

2.2. PES-Based NACMEs with ML Models

Although the PES-based NACMEs give good enough results compared with the
wavefunction-based NACMEs, this PES-based algorithm remains expensive because it
needs full Hessian matrix elements, which still cannot be analytically calculated for many
electronic structure methods and packages nowadays, to our best knowledge. Fortunately,
this shortcoming can be avoided by using trained ML models, which can calculate Hessian
matrix elements analytically and efficiently, as seen in our recent papers [17]. Thus, we
next used a machine learning technique, i.e., the embedding atom neural network (EANN)
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method [18–20], as an alternative to calculate the relevant information of PESs, i.e., energies,
forces, Hessian matrix elements, etc.

It should be noted that the ML models trained by the EANN method can provide
analytical Hessian matrix elements while this ML method does not need ab initio Hessian
matrix elements as input in the training stage [17,19]. The trained ML model reproduces the
PESs near the optimized CI structure, calculated with the SA-CASSCF method (Figure 4),
very well, which demonstrates that the trained ML model is accurate enough and can
be used for the PES-based algorithm to calculate NACMEs. In fact, the previous works
have proved that the ML model can give as accurate energies, forces, and Hessian matrix
elements as the ab initio method as long as a sufficient quantity and quality data are
provided for the ML training [16,17,21].
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Figure 4. Three-dimensional PESs with respect to the two branching space vectors g and h near the
S0/S1 conical intersection of CH2NH calculated by the SA-CASSCF method (blue grids) and the ML
model trained by the EANN method (colored surfaces).

Similarly, we first compare the average norms of the PES-based NACMEs calculated
by the ab initio (SA-CASSCF) method and the trained ML model (Table 2). In total, the
deviation between the ab initio and ML-calculated NACMEs (PES-based algorithm) is
very small when the energy gap is greater than 1 kcal/mol except at the optimized CI
structure with an energy gap of 0.17 kcal/mol. In detail, the deviation of the average norms
at the optimized CI structure is as large as 73.9% (SA-CASSCF vs. ML: 240.9 Bohr−1 vs.
62.9 Bohr−1). Moreover, the PES-based NACMEs with the ML model do not perform very
well when the energy gap is in the range of 0.17–1 kcal/mol, which gives a deviation of
20.2%. Nevertheless, when the energy gap is larger than 1 kcal/mol, the deviations of
the average norms become much smaller. Specifically, the deviations of average norms
related to the energy gaps of 0.17–1 kcal/mol, 1–3 kcal/mol, 3–5 kcal/mol, 5–10 kcal/mol,
10–15 kcal/mol and >15 kcal/mol are estimated to be 3.6%, 9.1%, 0.6%, 2.3% and 2.7%,
respectively. In terms of the above results, one can see that the PES-based NACMEs
calculated by the ML model can also give accurate results, except at certain structures with
extremely small energy gaps (i.e., around 1 kcal/mol).

In addition, Figure 5 compares the SA-CASSCF- and ML-calculated NACMEs (PES-
based algorithm). Figure 5a shows that the ML-calculated NACMEs are to some extent
far from the SA-CASSCF-calculated NACMEs at the optimized CI structure. This can be
understood very well when considering that PESs are discontinuous at these energetically
degenerate points (i.e., singularities). In addition, the accurate fitting of PESs at CI points is
also extremely difficult for ML techniques due to this discontinuous character. Although
the ML-calculated NACMEs are not so accurate at the optimized CI structure, they can
give fairly good results for the structures where the energy gap is larger than 3 kcal/mol
(Figure 5c–f). In summary, ML-calculated NACMEs provide reasonably accurate results
except at truly degenerate points.
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Table 2. Average norms (in Bohr−1) and relative deviations of SA-CASSCF- and ML-calculated
NACMEs (PES-based algorithm). The energy gap of 0.17 kcal/mol is for the optimized CI structure.
See text for discussion.

Energy Gap
(kcal/mol)

PES-Based NACMEs
(SA-CASSCF)

PES-Based NACMEs
(ML) Deviation

0.17 (CI) 240.9 62.9 73.9%
0.17–1 80.4 64.1 20.2%

1–3 31.4 30.2 3.6%
3–5 15.9 14.5 9.1%

5–10 8.7 8.7 0.6%
10–15 5.3 5.4 2.3%
>15 3.4 3.5 2.7%

Molecules 2023, 28, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 5. Comparison of SA-CASSCF- and ML-calculated NACMEs (PES-based algorithm) at the 
optimized CI structure of CH2NH (red points in panel (a); 𝛥𝐸ௌబௌభ = 0.17 kcal/mol) and at the struc-
ture far away from the CI one (blue points; panels (b–f)). (a) 0.17–1 kcal/mol; (b) 1–3 kcal/mol; (c) 3–
5 kcal/mol; (d) 5–10 kcal/mol; (e) 10–15 kcal/mol; and (f) >15 kcal/mol. 

Finally, the computational cost of both the wavefunction- and PES-based NACMEs 
is discussed. As we have mentioned, the calculation of Hessian matrix elements at ab initio 
level is very expensive, which makes the computational cost of PES-based NACMEs high 
using ab initio methods. However, the combination of efficient ML models with the PES-
based algorithm brings advantages because the calculation of Hessian matrix elements is 
cheap using ML models. 

3. Methods 
3.1. The Approximate PES-Based Algorithm for NACMEs 

Here, we briefly introduce the approximate algorithm for NACMEs proposed by 
Baeck and An [14,15]. Diabatic states could be transformed from adiabatic states by a uni-
tary transformation with an adiabatic-to-diabatic (ADT) mixing angle 𝜃 [22]: ൬𝛹௜𝛹௝൰ = ቀcos 𝜃 − sin 𝜃sin 𝜃 cos 𝜃 ቁ ൬𝛷௜𝛷௝൰ (1)

where 𝛹௜(𝛹௝) represent diabatic states while 𝛷௜(𝛷௝) represent adiabatic states, respec-
tively. The index 𝑖 and 𝑗 represent the indexes of different electronic states. Meanwhile, 
the relationship between diabatic potentials 𝑉௜(𝑉௝) and adiabatic potentials 𝐸௜(𝐸௝) can be 
written as follows [11]: 

Figure 5. Comparison of SA-CASSCF- and ML-calculated NACMEs (PES-based algorithm) at the
optimized CI structure of CH2NH (red points in panel (a); ∆ES0S1 = 0.17 kcal/mol) and at the
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(c) 3–5 kcal/mol; (d) 5–10 kcal/mol; (e) 10–15 kcal/mol; and (f) >15 kcal/mol.

Finally, the computational cost of both the wavefunction- and PES-based NACMEs
is discussed. As we have mentioned, the calculation of Hessian matrix elements at ab
initio level is very expensive, which makes the computational cost of PES-based NACMEs
high using ab initio methods. However, the combination of efficient ML models with the
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PES-based algorithm brings advantages because the calculation of Hessian matrix elements
is cheap using ML models.

3. Methods
3.1. The Approximate PES-Based Algorithm for NACMEs

Here, we briefly introduce the approximate algorithm for NACMEs proposed by Baeck
and An [14,15]. Diabatic states could be transformed from adiabatic states by a unitary
transformation with an adiabatic-to-diabatic (ADT) mixing angle θ [22]:(

Ψi
Ψj

)
=

(
cos θ − sin θ
sin θ cos θ

)(
Φi
Φj

)
(1)

where Ψi
(
Ψj
)

represent diabatic states while Φi
(
Φj
)

represent adiabatic states, respectively.
The index i and j represent the indexes of different electronic states. Meanwhile, the
relationship between diabatic potentials Vi

(
Vj
)

and adiabatic potentials Ei
(
Ej
)

can be
written as follows [11]:(

Vi 0
0 Vj

)
=

(
Ei + Ej

)
2

(
1 0
0 1

)
+

(
Ei − Ej

)
2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
. (2)

Additionally, θ can be expressed by

θ(Q) = θ(Q0) +
∫ Q

Q0

〈
Φa

j

∣∣∣∂/∂Q′ |Φ a
i

〉
dQ′ = θ(Q0)−

∫ Q

Q0

dij
(
Q′
)
dQ′ (3)

in which Q0 is a reference coordinate and dij(Q) =
〈

Φa
j

∣∣∣∂/∂Q |Φ a
i

〉
is a nonadiabatic

coupling term. On the other hand, in 1981, Werner and Meyer proposed a Lorentz function
dLo

ij (Q) to approximate dij(Q) as [23]

dLo
ij (Q) =

1
2

α

(1 + [α · (Q′ −Qc)]
2 (4)

in which Q′ are nuclear coordinates of the current structure while Qc are coordinates of the
crossing point. When Q′ = Qc, one can obtain α = 2 · dLo

ij (Q). However, this approximate
method was not developed further until the work by Baeck and An in 2017, [15] who
showed that the approximate NACMEs dappr

ij can be obtained by

dappr
ij =

1
2

√√√√∂2
(
∆Eij

)2/∂2R
∆Eij

(5)

in which ∆Eij is the energy gap between electronic states i and j, R represents the coordi-
nates of the atoms. In addition, a more practical formula was adopted by Lasorne et al. and
Westermayr et al. [12,16], which is shown below:

dappr
ij ⊗ dappr

ij ≈
∂2(∆Eij

)2

∂2R
−

∂∆Eij

2∂R
⊗

∂∆Eij

2∂R
(6)

in which ⊗ means a tensor product. The final approximate PES-based NACMEs are
calculated via

dappr
ij = vij ·

√
λij

∆Eij
(7)

in which vij and λij are eigenvectors and eigenvalues of the right side of Equation (6)
calculated by the singular value decomposition (SVD). Additionally, the signs (i.e., positive
or negative) of the PES-based NACMEs are determined by Equation (7) directly.
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3.2. The Embedding Atom Neural Network (EANN) Method

Nowadays, machine learning techniques are widely used in the research fields of
physics, chemistry, biology, and materials [24–34]. In particular, using ML methods for
improving computational efficiency is one of the most popular fields [21,35–43]. In this
work, the EANN method proposed by Jiang et al. was adopted for training potential energy
surfaces of polyatomic molecules because of its available Hessian matrices [20]. In the
EANN method, the total energy of a system is written as the sum of all atomic energies Ei:

EEANN =
Natom

∑
i

Ei =
Natom

∑
i

NNi

(
ρi
)

(8)

in which Natom is the total number of atoms; NNi is the atomic neural network and ρi

is the function of the embedding electron density of the atom i, which is given by the
superposition of electron densities of the surrounding atoms.

A set of Gaussian-type orbitals centered at each atom is used for calculating the
embedding electron density associated with each atom:

Ψα,rs
lx ly lz

= xlx yly zlz exp
(
−α|r− rs|2

)
(9)

in which x, y and z are coordinate components of an electron coordinate vector r, while |r| is
the norm of r. α and rs are parameters for determining the radial distribution of the atomic
orbitals Ψ, and lx, ly, lz are indicating the orbital angular momentum components with
the relationship L = lx + ly + lz. With the definition of these Gaussian-type orbitals, the
embedding electron density of the atom i can be calculated as the square of all the linearly
combined atomic orbitals from the neighboring atoms. Then, the individual electron density
from Gaussian-type orbitals is written as

ρi
L,α,rs

=
L=lx+ly+lz

∑
lx ,ly ,lz

L!
lx!ly!lz!

Nneighbor

∑
j=1

cjΨ
α,rs
lx ly lz

(
rij
) (10)

in which rij is the distance between the atoms i and j, Nneighbor is the number of the
neighboring atoms of the atom i within the sphere with the radius equaling the cutoff
radius rc, and cj is the expansion coefficient of the Gaussian-type orbitals. Finally, the
energy for each atom can be obtained from the atomic neural networks by taking ρ as its
input vectors. Moreover, in order to decay the interactions between the central atom with
neighbor atoms to zero smoothly, a cutoff function fc(r) is used in the EANN method:

fc
(
rij
)
=

{
0.5
[
cos
(

πrij
rc

)
+ 1
]
, rij < rc

0, rij > rc
(11)

in which rc is the cutoff radius. Note that the same elements share the same atomic
neural network. After obtaining the input vectors of the EANN method, the atomic
neural network models are trained via minimizing the loss function δ(w, b) by the extreme
learning machine (ELM) and Levenberg–Marquardt (LM) algorithm (ELM-LM) developed
by Jiang et al. [44]. In addition, to improve the efficiency of the ML model training processes
and reduce the size of the training data set, the deviations between ML-predicted and
SA-CASSCF-calculated atomic forces are added into δ(w, b). Thus, the loss function δ(w, b)
is expressed as follows:

δ(w, b) =
Ndata

∑
a=1

[
(EEANN

a − EREF
a )

2
+ η

Natom

∑
b=1

∑
c=x,y,z

(FEANN
a,b,c − FREF

a,b,c )
2
]

/Ndata (12)
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in which w and b are the weight and bias parameters of atomic neural network models,
and Ndata is the size of the training data set. η is a parameter to control the importance
of deviations of atomic forces during the training process. EEANN

a and EREF
a are energies

of the ath configuration in the training data set calculated by EANN models and the ab
initio method, while FEANN

a,b,c and FREF
a,b,c are the forces of the bth atom in c direction for the

ath configuration, evaluated by EANN models and the ab initio method, respectively. The
accuracy and efficiency of the EANN method for both isolated and periodic systems have
been demonstrated in previous works [18–20].

3.3. Definition of the Average Norm of Matrices

In this work, the average norms of NAC matrices are calculated. The norm of a matrix
|Ai| is calculated as follows:

|Ai| =
√

∑
n,m

A2
i,nm (13)

in which Ai,nm is the matrix element of Ai. The average norm is calculated by dividing the
sum of the norms of Ai (I = 1 − n)

〈|Ai|〉 =
∑n

i=1|Ai|
n

(14)

3.4. Computational Details

In this work, a CH2NH molecule is used for demonstrating the accuracy of the approx-
imate PES-based algorithm of NACMEs. To make direct comparisons, the wavefunction-
based NACMEs of CH2NH are also calculated at the same SA-CASSCF level. The approxi-
mate PES-based NACMEs are calculated using the PES information (energies, gradients,
and Hessian matrices) provided by the SA-CASSCF method or the trained ML model,
respectively. In this work, we only consider NACMEs between S0 and S1 of CH2NH.
An active space including two electrons and two orbitals, as well as 6-31G* basis sets, are
adopted for all the SA-CASSCF calculations. All the SA-CASSCF calculations are performed
with OpenMolcas-v18.09 [45,46]. The S1/S0 conical intersection structure of CH2NH is
optimized by Gaussian16 [47].

In ML model training processes using the EANN method, the atomic neural networks
with two hidden layers of 40 and 50 nodes are adopted as the atomic neural network
models for C, H, and N elements. The cutoff radius rc is set to 9 , which is large enough
to take all other atoms as the neighbor atoms of the center atom. The maximum orbital
angular momentum L is set to 2, which is suitable for training models of PESs of CH2NH.
On the other hand, β = 0.2 and ∆rs = 1 Å leads to α = β

(∆rs)
2 = 0.2 Å

−2
, which are used for

determining the Gaussian-type-orbital input vectors in Equation (10) for all atomic neural
networks in this work. In addition, η is set to 1 during the model training processes for
balancing the importance of deviations of energies and atomic forces in the present work.
More details of data collection and training process for the ML models can be found in our
previous works [17,21,48].

The purpose of this work is to prove the accuracy and efficiency of the approximate
PES-based method for calculating NACMEs. CH2NH is chosen as a test system because its
excited-state properties have been reported and studied, and it has only 5 atoms [48–50]. Thus,
the computational cost is affordable for calculating Hessian matrix elements numerically at
the SA-CASSCF level.

4. Conclusions

In this work, we have implemented an approximate algorithm for calculating NACMEs
of polyatomic systems based only on PES information, i.e., energies, gradients and Hessian
matrix elements. The advantage of this algorithm is that it only demands the information
of PESs without any wavefunction information, which is very suitable for machine learning
techniques or low-scaling energy-based fragment methods. The approximate algorithm is
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used for calculating NACMEs with the ab initio SA-CASSCF method and the ML model.
The results show that the PES-based algorithm for NACMEs, whether using the ab initio
method or the ML model, performs very well except at the CI structure. The present work
demonstrates the accuracy of the approximate PES-based algorithm for NACMEs of poly-
atomic systems. It encourages the combination of this approximate PES-based algorithm
with electronic structure methods that do not code wavefunction-based algorithms for
NACMEs. Most importantly, this PES-based algorithm provides a good opportunity to
calculate NACMEs for energy-based fragment methods and ML models, in which the
computational cost of Hessian matrix elements is significantly reduced, as demonstrated in
our recent work, and in particular for ML models [17]. Finally, this PES-based algorithm
for NACMEs in combination with either low-scaling energy-based fragment methods or ef-
ficient ML models also brings an economic but accurate nonadiabatic dynamics simulation
method to investigate the nonadiabatic process of large systems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28104222/s1, Table S1: Number of structures for ∆ES0S1 in
different groups; Table S2: RMSD of wavefunction- and PES-based NACMEs; Table S3: RMSD of
SA-CASSCF- and ML-calculated NACMEs (PES-based algorithm); Cartesian coordinates of optimized
CI structure; branching space vectors.
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